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By applying the fixed point theorem in a cone of Banach space, we obtain an easily verifiable necessary and sufficient condition
for the existence of positive periodic solutions of two kinds of generalized 𝑛-species competition systems with multiple delays and
impulses as follows: 𝑥

𝑖
(𝑡) = 𝑥

𝑖
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𝑖
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+
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𝑘
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𝑖
(𝑡
−

𝑘
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𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
), 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍

+
; and 𝑥
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𝑖
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𝑐
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𝑖
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𝑗
(𝑡+𝑠)𝑑𝑠], a.e., 𝑡 > 0, 𝑡 ̸= 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑛;

𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝜃
𝑖𝑘
𝑥
𝑖
(𝑡
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), 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍

+
. It improves and generalizes a series of the well-known sufficiency theorems in the

literature about the problems mentioned previously.

1. Introduction

Let 𝑅 = (−∞, +∞), 𝑅
+
= [0, +∞), 𝑅

−
= (−∞, 0], 𝑅𝑛 =

{(𝑥
1
, . . . , 𝑥

𝑛
)
𝑇
: 𝑥
𝑖
≥ 0, 1 ≤ 𝑖 ≤ 𝑛}, 𝐽 ⊂ 𝑅, 𝑍

+
= {1, 2, 3, . . .},

respectively, and let 𝜔 > 0 be a constant and 𝐶
𝜔
= {𝑥 | 𝑥 ∈

𝐶(𝑅, 𝑅), 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)}, with the norm defined by |𝑥|
0
=

max
𝑡∈[0,𝜔]

|𝑥(𝑡)|; 𝐶1
𝜔
= {𝑥 | 𝑥 ∈ 𝐶

1
(𝑅, 𝑅), 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)},

with the norm defined by ‖𝑥‖ = max
𝑡∈[0,𝜔]

{|𝑥|
0
, |𝑥

|
0
}; 𝑃𝐶 =

{𝑥 | 𝑥 : 𝑅 → 𝑅
+
, lim
𝑠→ 𝑡
𝑥(𝑠) = 𝑥(𝑡), if 𝑡 ̸= 𝑡

𝑘
, lim
𝑡→ 𝑡
−

𝑘

𝑥(𝑡) =

𝑥(𝑡
𝑘
), lim
𝑡→ 𝑡
+

𝑘

𝑥(𝑡) exists, 𝑘 ∈ 𝑍
+
}; 𝑃𝐶1 = {𝑥 | 𝑥 : 𝑅 →

𝑅
+
, 𝑥

∈ 𝑃𝐶}; 𝑃𝐶

𝜔
= {𝑥 | 𝑥 ∈ 𝑃𝐶, 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)},

with the norm defined by |𝑥|
0
= max

𝑡∈[0,𝜔]
|𝑥(𝑡)|; 𝑃𝐶1

𝜔
=

{𝑥 | 𝑥 ∈ 𝑃𝐶
1
, 𝑥(𝑡 + 𝜔) = 𝑥(𝑡)}, with the norm defined

by ‖𝑥‖ = max
𝑡∈[0,𝜔]

{|𝑥|
0
, |𝑥

|
0
}; 𝑔𝑀 = max

𝑡∈[0,𝜔]
{𝑔(𝑡)}, 𝑔

𝐿
=

min
𝑡∈[0,𝜔]

{𝑔(𝑡)}, for any 𝑔(𝑡) ∈ 𝑃𝐶
𝜔
.

The theory of impulsive delay differential equations is
emerging as an important area of investigation, since it is a lot
richer than the corresponding theory of nonimpulsive delay
differential equations.Many evolution processes in nature are
characterized by the fact that at certainmoments of time they
experience abrupt change of state.That was the reason for the
development of the theory of impulsive differential equations

and impulsive delay differential equations, see the mono-
graphs [1–4]. In recent years, the existence theory of positive
periodic solutions of delay differential equations with impul-
sive effects or without impulsive effects has been an object of
active research, which is referred to as [5–12]. However, only
a little work has been done on the existence of positive peri-
odic solutions to the high-dimension impulsive differential
equations based on the theory in cones. Motivated by this, in
this paper, we mainly consider the following two classes of
𝑛-species Lotka-Volterra competitive systems with multiple
delays and impulses:

𝑥
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a.e., 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑛,
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]

,

a.e., 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 ∈ 𝑍

+
, 𝑖 = 1, 2, . . . , 𝑛,
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(2)
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𝑖
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𝑖𝑗
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𝑖𝑗
(𝑡), 𝑒
𝑖𝑗
(𝑡), 𝜏
𝑖𝑗
(𝑡), 𝛾
𝑖𝑗
(𝑡) ∈ 𝑃𝐶

𝜔
, 𝑖, 𝑗 =

1, 2, . . . , 𝑛, with 𝑎
𝑖
= (1/𝜔) ∫

𝜔

0
𝑎
𝑖
(𝑡)𝑑𝑡 > 0. Moreover, 𝑓

𝑖𝑗
∈

𝑃𝐶, 𝜎
𝑖𝑗
> 0 is a constant, and ∫0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠)𝑑𝑠 = 1. Furthermore,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
𝑘
), 𝑖 = 1, 2, . . . , 𝑛 (here 𝑥(𝑡+

𝑘
) represents

the right limit of 𝑥(𝑡) at the point 𝑡
𝑘
); 𝜃
𝑘
= (𝜃
1𝑘
, 𝜃
2𝑘
, . . . , 𝜃

𝑛𝑘
) ∈

𝐶(𝑅
𝑛

+
, 𝑅
𝑛

−
); that is, 𝑥

𝑖
(𝑡) changes decreasingly suddenly at

times 𝑡
𝑘
. We assume that there exists an integer 𝑝 > 0 such

that 𝑡
𝑘+𝑝

= 𝑡
𝑘
+ 𝜔, 𝜃

𝑖(𝑘+𝑝)
= 𝜃
𝑖𝑘
, 𝑖 = 1, 2, . . . , 𝑛, where

0 < 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑝
< 𝜔.

References [13, 14], G. Seifert investigated the following
periodic single-species population growth models with peri-
odic delay:

𝑦


(𝑡) = 𝑦 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑦 (𝑡) − 𝑏 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))] . (3)

They had assumed that the net birth 𝑟(𝑡), the self-inhibition
rate 𝑎(𝑡), and the delay 𝜏(𝑡) are continuously differentiable 𝜔-
periodic functions, and 𝑟(𝑡) > 0, 𝑎(𝑡) > 0, 𝑏(𝑡) ≥ 0, 𝜏(𝑡) ≥ 0,
for 𝑡 ∈ 𝑅. The negative feedback term −𝑏(𝑡)𝑦(𝑡 − 𝜏(𝑡)) in the
average growth rate of species has a negative time delay (the
sign of the time delay term is negative), which can be regarded
as the deleterious effect of time delay on a species growth rate.
They had derived sufficient conditions for the existence and
global attractivity of positive periodic solutions of system (3).
But the discussion of global attractivity is only confined to the
special case when the periodic delay is constant.

In [15], Freedman and Wu proposed the following peri-
odic single-species population growth models with periodic
delay:

𝑦


(𝑡) = 𝑦 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑦 (𝑡) + 𝑏 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))] . (4)

They had assumed that the net birth 𝑟(𝑡), the self-inhibition
rate 𝑎(𝑡), and the delay 𝜏(𝑡) are continuously differentiable 𝜔-
periodic functions, and 𝑟(𝑡) > 0, 𝑎(𝑡) > 0, 𝑏(𝑡) ≥ 0, 𝜏(𝑡) ≥ 0
for 𝑡 ∈ 𝑅. The positive feedback term 𝑏(𝑡)𝑦(𝑡 − 𝜏(𝑡)) in the
average growth rate of species has a positive time delay (the
sign of the time delay term is positive), which is a delay due
to gestation.They had established sufficient conditions which

guarantee that system (4) has a positive periodic solution
which is globally asymptotically stable.

References [16, 17] have studied the following two-species
competitive system without delay:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑦
1
(𝑡) − 𝑐

1
(𝑡) 𝑦
2
(𝑡)] ,

𝑦


2
(𝑡) = 𝑦

2
(𝑡) [𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦
2
(𝑡) − 𝑐

2
(𝑡) 𝑦
1
(𝑡)] .

(5)

They had derived sufficient conditions for the existence and
global attractivity of positive periodic solutions of system
(5) by using differential inequalities and topological degree,
respectively. In fact, in many practical situations the time
delay occurs so often. A more realistic model should include
some of the past states of the system. Motivated by the previ-
ous ideas, Liu et al. [18] considered two corresponding peri-
odic Lotka-Volterra competitive systems involving multiple
delays:

𝑦


1
(𝑡) = 𝑦

1
(𝑡)
[

[

𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑦
1
(𝑡) +

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑦
1
(𝑡 − 𝜏
𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜌

𝑗
(𝑡))
]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)
[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦
2
(𝑡) +

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑦
1
(𝑡 − 𝜎

𝑖
(𝑡))
]

]

,

𝑦


1
(𝑡) = 𝑦

1
(𝑡)
[

[

𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑦
1
(𝑡) −

𝑛

∑

𝑖=1

𝑏
1𝑖
(𝑡) 𝑦
1
(𝑡 − 𝜏
𝑖
(𝑡))

−

𝑚

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜌

𝑗
(𝑡))
]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)
[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦
2
(𝑡) −

𝑚

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑖=1

𝑐
2𝑖
(𝑡) 𝑦
1
(𝑡 − 𝜎

𝑖
(𝑡))
]

]

,

(6)

where 𝑏
1𝑖
(𝑡), 𝑏
2𝑗
(𝑡) ∈ 𝐶(𝑅, [0, +∞)), 𝑎

1
(𝑡), 𝑎
2
(𝑡), 𝑐
1𝑗
(𝑡), 𝑐
2𝑖
(𝑡) ∈

𝐶(𝑅, [0, +∞)), 𝜏
𝑖
(𝑡), 𝜌
𝑗
(𝑡), 𝜂
𝑗
(𝑡), 𝜎
𝑖
(𝑡) ∈ 𝐶

1
(𝑅, [0, +∞)) (𝑖 =

1, 2, . . . , 𝑛; 𝑗 = 1, 2, . . . , 𝑚) are𝜔-periodic functions. Here, the
intrinsic growth rates 𝑟

𝑘
(𝑡) ∈ 𝐶(𝑅, 𝑅) are 𝜔-periodic func-

tions with ∫𝜔
0
𝑟
𝑘
(𝑡)𝑑𝑡 > 0, 𝑘 = 1, 2.They had derived the same

criteria for the existence and globally asymptotic stability of
positive periodic solutions of the previous two competitive
systems by using Gaines andMawhin’s continuation theorem
of coincidence degree theory and by means of a suitable Lya-
punov functional. However, to this day, no scholars had done
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works on the existence of positive periodic solution of (1) and
(2). One could easily see that systems (3)–(6) are all special
cases of system (1) and (2).

Throughout the paper, we make the following assump-
tions:

(H
1
) 𝑎
𝑖
(𝑡), 𝑏
𝑖
(𝑡), 𝑐
𝑖𝑗
(𝑡), 𝑑
𝑖𝑗
(𝑡), 𝑒
𝑖𝑗
(𝑡), 𝜏
𝑖𝑗
(𝑡), 𝛾
𝑖𝑗
(𝑡) ∈ 𝑃𝐶

𝜔
, 𝑖, 𝑗 =

1, 2, . . . , 𝑛, with 𝑎
𝑖
= (1/𝜔) ∫

𝜔

0
𝑎
𝑖
(𝑡)𝑑𝑡 > 0, 𝜏 =

max
1≤𝑖≤𝑛

max
1≤𝑗≤𝑛
{𝜏
𝑖𝑗
(𝑡), 𝛾
𝑖𝑗
(𝑡)};

(H
2
) {𝑡
𝑘
}, 𝑘 ∈ 𝑍

+
satisfies 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ and

lim
𝑘→+∞

𝑡
𝑘
= +∞;

(H
3
) {𝜃
𝑖𝑘
} is a real sequence with Δ

𝑖𝑘
= 𝜃
𝑖𝑘
+ 1 > 0, 𝑖 =

1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍
+
;

(H
4
) ∏
0<𝑡𝑘<𝑡

Δ
𝑖𝑘
is a 𝜔-periodic function.

To conclude this section, we summarize in the following
a few definitions and lemmas that will be needed in our argu-
ments.

Definition 1 (see [1]). A function 𝑥
𝑖
: 𝑅 → (0, +∞) is said to

be a positive solution of (1) and (2), if the following conditions
are satisfied:

(a) 𝑥
𝑖
(𝑡) is absolutely continuous on each (𝑡

𝑘
, 𝑡
𝑘+1
);

(b) for each 𝑘 ∈ 𝑍
+
, 𝑥
𝑖
(𝑡
+

𝑘
) and 𝑥

𝑖
(𝑡
−

𝑘
) exist and 𝑥

𝑖
(𝑡
−

𝑘
) =

𝑥
𝑖
(𝑡
𝑘
);

(c) 𝑥
𝑖
(𝑡) satisfies the first equation of (1) and (2) for

almost everywhere (for short a.e.) in [0,∞] \ {𝑡
𝑘
} and

satisfies 𝑥
𝑖
(𝑡
+

𝑘
) = Δ

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) for 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
=

{1, 2, . . .}.

Under the previous hypotheses (H
1
)–(H
4
), we consider

the following two classes of nonimpulsive Lotka-Volterra
competitive systems:

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡

= 𝑦
𝑖
(𝑡)
[

[

𝑎
𝑖
(𝑡) − 𝐵

𝑖
(𝑡) 𝑦
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

×∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

, a.e., 𝑡 ≥ 0,

(7)

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡

= 𝑦
𝑖
(𝑡)
[

[

𝑎
𝑖
(𝑡) − 𝐵

𝑖
(𝑡) 𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡)

×∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

, a.e., 𝑡 ≥ 0,

(8)

where

𝐵
𝑖
(𝑡) = 𝑏

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
,

𝐶
𝑖𝑗
(𝑡) = 𝑐

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

Δ
𝑖𝑘
,

𝐷
𝑖𝑗
(𝑡) = 𝑑

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝛾𝑖𝑗(𝑡)

Δ
𝑖𝑘
,

𝐸
𝑖𝑗
(𝑡) = 𝑒

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜎𝑖𝑗

Δ
𝑖𝑘
.

(9)

By a solution𝑦(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 of (7) and (8), itmeans

an absolutely continuous function 𝑦(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇

defined on [−𝜏, 0] that satisfies (7) and (8).

The following lemmas will be used in the proofs of our
results.The proof of the first lemma is similar to that ofTheo-
rem 1 in [5].

Lemma 2. Suppose that (H
1
)–(H
4
) hold. Then

(1) if 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (7) and

(8) on [−𝜏, +∞), then 𝑥
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ
𝑖𝑘
𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are solutions of (1) and (2) on [−𝜏, +∞);
(2) if 𝑥

𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (1) and (2)

on [−𝜏, +∞), then 𝑦
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are solutions of (7) and (8) on [−𝜏, +∞).

Proof. (1) It is easy to see that 𝑥
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ
𝑖𝑘
𝑦
𝑖
(𝑡) (𝑖 =

1, 2, . . . , 𝑛) are absolutely continuous on every interval
(𝑡
𝑘
, 𝑡
𝑘+1
], 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . .,

𝑥


𝑖
(𝑡) − 𝑥

𝑖
(𝑡)
[

[

𝑎
𝑖
(𝑡) − 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑥
𝑖
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡) 𝑥
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑡)

×∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑥
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]
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= ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
𝑦


𝑖
(𝑡) − ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
𝑦
𝑖
(𝑡)

×
[

[

𝑎
𝑖
(𝑡) − 𝑏

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
𝑦
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡)

× ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

Δ
𝑖𝑘
𝑦
𝑖
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡)

× ∏

0<𝑡𝑘<𝑡−𝛾𝑖𝑗(𝑡)

Δ
𝑖𝑘
𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

∏

0<𝑡𝑘<𝑡−𝜎𝑖𝑗

Δ
𝑖𝑘
𝑒
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

= ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
{𝑦


𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

× [𝑎
𝑖
(𝑡) − 𝑏

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘
𝑦
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

Δ
𝑖𝑘
𝑦
𝑖

× (𝑡 − 𝜏
𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡)

× ∏

0<𝑡𝑘<𝑡−𝛾𝑖𝑗(𝑡)

Δ
𝑖𝑘
𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

∏

0<𝑡𝑘<𝑡−𝜎𝑖𝑗

Δ
𝑖𝑘
𝑒
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗

× (𝑡 + 𝑠) 𝑑𝑠]}

= ∏

0<𝑡𝑘<𝑡

Δ
𝑖𝑘

{

{

{

𝑦


𝑖
(𝑡) − 𝑦

𝑖
(𝑡)

×
[

[

𝑎
𝑖
(𝑡) − 𝐵

𝑖
(𝑡) 𝑦
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖

× (𝑡 − 𝜏
𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

}

}

}

= 0.

(10)

On the other hand, for any 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . .,

𝑥
𝑖
(𝑡
+

𝑘
) = lim
𝑡→ 𝑡
+

𝑘

∏

0<𝑡𝑗<𝑡

Δ
𝑖𝑘
𝑦
𝑖
(𝑡) = ∏

0<𝑡𝑗≤𝑡𝑘

Δ
𝑖𝑘
𝑦
𝑖
(𝑡
𝑘
) ,

𝑥
𝑖
(𝑡
𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

Δ
𝑖𝑘
𝑦
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛;

(11)

thus

𝑥
𝑖
(𝑡
+

𝑘
) = Δ

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . . (12)

It follows from (10)–(12) that 𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solu-

tions of (1). Similarly, if 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of

(8),we can prove that𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛)are solutions of (2).

(2) Since 𝑥
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
Δ
𝑖𝑘
𝑦
𝑖
(𝑡) is absolutely continuous

on every interval (𝑡
𝑘
, 𝑡
𝑘+1
], 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . ., and in view of

(12), it follows that for any 𝑘 = 1, 2, . . .,

𝑦
𝑖
(𝑡
+

𝑘
) = ∏

0<𝑡𝑗≤𝑡𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡
+

𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) = 𝑦
𝑖
(𝑡
𝑘
) ,

𝑦
𝑖
(𝑡
−

𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡
−

𝑘
) = ∏

0<𝑡𝑗≤𝑡
−

𝑘

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡
−

𝑘
) = 𝑦
𝑖
(𝑡
𝑘
) ,

(13)

which implies that 𝑦
𝑖
(𝑡) is continuous on [−𝜏, +∞). It is easy

to prove that 𝑦
𝑖
(𝑡) is absolutely continuous on [−𝜏, +∞).

Similar to the proof of (1), we can check that 𝑦
𝑖
(𝑡) =

∏
0<𝑡𝑘<𝑡

Δ
−1

𝑖𝑘
𝑥
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (7) on

[−𝜏, +∞). Similarly, if 𝑥
𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑛, is a solution of (2),

we can prove that 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are solutions of (8).

The proof of Lemma 2 is completed.

In the following section, we only discuss the existence of
a periodic solution for (7) and (8).

Definition 3 (see [19]). Let 𝑋 be a real Banach space and 𝐸 a
closed, nonempty subset of𝑋. 𝐸 is said to be a cone if

(1) 𝛼𝑥 + 𝛽𝑦 ∈ 𝐸 for all 𝑥, 𝑦 ∈ 𝐸, and 𝛼, 𝛽 > 0,
(2) 𝑥, −𝑥 ∈ 𝐸 imply 𝑥 = 0.

Lemma4 (seeKrasnoselskii [20],Deimling [21], andGuo and
Lakshmikantham [22]). Let𝐸 be a cone in a real Banach space
𝑋. Assume that Ω

𝑟1
and Ω

𝑟2
are open subsets of 𝑋 with 0 ∈

Ω
𝑟1
⊂ Ω
𝑟1
⊂ Ω
𝑟2
, where Ω

𝑟𝑖
= {𝑥 ∈ 𝑋 : ‖𝑥‖ < 𝑟

𝑖
}, 𝑖 = 1, 2. Let

𝑇 : 𝐸 ∩ (Ω
𝑟2
\ Ω
𝑟1
) → 𝐸 be a continuous and completely con-

tinuous operator satisfying

(1) ‖𝑇𝑥‖ ≤ ‖𝑥‖, for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟1
;

(2) there exists 𝜙 ∈ 𝐸 \ {0} such that 𝑦 ̸= 𝑇𝑦 + 𝜆𝑦, for any
𝑦 ∈ 𝐸 ∩ 𝜕Ω

𝑟2
and 𝜆 > 0.

Then 𝑇 has fixed points in 𝐸 ∩ (Ω
𝑟2
\ Ω
𝑟1
). The same con-

clusion remains valid if (1) holds for any 𝑥 ∈ 𝐸 ∩ 𝜕Ω
𝑟2
and (2)

holds for any 𝑦 ∈ 𝐸 ∩ 𝜕Ω
𝑟1
and 𝜆 > 0.

The paper is organized as follows. In Section 2, firstly, we
give some definitions and lemmas. Secondly, we derive a nec-
essary and sufficient condition for at least one positive peri-
odic solution of (1) which is established by using the fixed-
point theorem in the cone of Banach space under some condi-
tions. In the following section,we also get a necessary and suf-
ficient condition for at least one positive periodic solution of
(2) that is also established by applying the fixed-point the-
orem in the cone of Banach space under some conditions.
Finally, as applications, we study some particular cases of sys-
tem (1) and (2) which have been investigated extensively in
the references mentioned earlier.
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2. Existence of Periodic Solution of (1)
We establish the existence of positive periodic solutions of (1)
by applying Lemma 4. We will first make some preparations
and list later a few preliminary results. Let 𝑋 = {𝑦 =

(𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝐶(𝑅, 𝑅

𝑛
) | 𝑦(𝑡+𝜔) = 𝑦(𝑡)}with the

norm ‖𝑦‖ = ∑𝑛
𝑖=1
|𝑦
𝑖
|
0
, |𝑦
𝑖
|
0
= sup

𝑡∈[0,𝜔]
|𝑦
𝑖
(𝑡)|. It is easy to

verify that (𝑋, ‖ ⋅ ‖) is a Banach space.
We define an operator 𝜓 : 𝑋 → 𝑋 as follows:

(𝜓𝑦) (𝑡) = ((𝜓𝑦)
1
(𝑡) , (𝜓𝑦)

2
(𝑡) , . . . , (𝜓𝑦)

𝑛
(𝑡))
𝑇

, (14)

where

(𝜓𝑦)
𝑖
(𝑡)

= ∫

𝑡+𝜔

𝑡

{

{

{

𝐺
𝑖
(𝑡, 𝜉) 𝑦

𝑖
(𝜉)

×
[

[

𝐵
𝑖
(𝜉) 𝑦
𝑖
(𝜉) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝜉) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝜉) 𝑦
𝑗
(𝜉 − 𝛾

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝜉) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝜉 + 𝑠) 𝑑𝑠

]

]

}

}

}

𝑑𝜉,

𝑖 = 1, 2, . . . , 𝑛,

(15)

where

𝐺
𝑖
(𝑡, 𝜉) =

𝑒
−∫
𝜉

𝑡
𝑎𝑖(𝑢)
𝑑𝑢

1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝑢)
𝑑𝑢

=

𝑒
∫
𝑡+𝜔

𝜉
𝑎𝑖(𝑢)

𝑑𝑢

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)
𝑑𝑢 − 1

,

𝐺 (𝑡, 𝜉) = diag [𝐺
1
(𝑡, 𝜉) , 𝐺

2
(𝑡, 𝜉) , . . . , 𝐺

𝑛
(𝑡, 𝜉)] ,

𝑡 ≤ 𝜉 ≤ 𝑡 + 𝜔.

(16)

It is clear that 𝐺
𝑖
(𝑡 + 𝜔, 𝜉 + 𝜔) = 𝐺

𝑖
(𝑡, 𝜉), 𝜕𝐺

𝑖
(𝑡, 𝜉)/𝜕𝑡 =

𝑎
𝑖
(𝑡)𝐺
𝑖
(𝑡, 𝜉),𝐺

𝑖
(𝑡, 𝑡) −𝐺

𝑖
(𝑡, 𝑡 +𝜔) = 1. In view of (H

1
), we also

define for 1 ≤ 𝑖 ≤ 𝑛

𝛼
𝑖
:= min
0≤𝑡≤𝜉≤𝜔





𝐺
𝑖
(𝑡, 𝜉)




=

1

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

− 1

,

𝛽
𝑖
:= max
0≤𝑡≤𝜉≤𝜔





𝐺
𝑖
(𝑡, 𝜉)




=

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

− 1

,

𝛼 = min
1≤𝑖≤𝑛

𝛼
𝑖
, 𝛽 = max

1≤𝑖≤𝑛

𝛽
𝑖
, 𝜎 =

𝛼

𝛽

∈ (0, 1) .

(17)

Define 𝐸 to be a cone in𝑋 by

𝐸 = {𝑦 = (𝑦
1
(𝑡) , 𝑦
2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))
𝑇

∈ 𝑋 : 𝑦
𝑖
(𝑡)

≥ 𝜎




𝑦
𝑖




0
, 𝑡 ∈ [0, 𝜔] } .

(18)

We easily verify that 𝐸 is a cone in 𝑋. For convenience of
expressions, we define an operator 𝜑 : 𝐸 → 𝑋 by

(𝜑𝑦)
𝑖
(𝑡) = 𝑦

𝑖
(𝑡)
[

[

𝐵
𝑖
(𝑡) 𝑦
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(19)

The proof of the main result in this paper is based on an
application of Krasnoselskii fixed-point theorem in cones. To
make use of fixed point theorem in the cone, firstly, we need to
introduce some definitions and lemmas.

Lemma 5. Assume that (H
1
)–(H
4
) hold. Then the solutions of

(1) are defined on [−𝜏,∞) and are positive.

Proof. By Lemma 2, we only need to prove that the solutions
𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) of (7) are defined on [−𝜏,∞) and are

positive on [0,∞). From (7), we have that for any 𝑢
𝑖
∈

𝐶([−𝜏, 0), 𝑅
+
), 𝑖 = 1, 2, 3, . . . , 𝑛, and 𝑡 > 0,

𝑦
𝑖
(𝑡) = 𝑢

𝑖
(0) exp

{

{

{

∫

𝑡

0

[

[

𝑎
𝑖
(𝜉) − 𝐵

𝑖
(𝜉) 𝑦
𝑖
(𝜉)

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝜉) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝜉))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝜉) 𝑦
𝑗
(𝜉 − 𝛾

𝑖𝑗
(𝜉))

−

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝜉) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗

× (𝜉 + 𝑠) 𝑑𝑠
]

]

𝑑𝜉

}

}

}

,

𝑖 = 1, 2, . . . , 𝑛.

(20)

Therefore, 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) are defined on [−𝜏,∞) and

are positive on [0,∞).The proof of Lemma 5 is complete.

Lemma 6. Assume that (H
1
)–(H
4
) hold. Then 𝜓 : 𝐸 → 𝐸 is

well defined.
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Proof. In view of the definitions of 𝐸 and 𝐹, for any 𝑦 ∈ 𝐸, we
have

(𝜓𝑦)
𝑖
(𝑡) = ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝜉) (𝜑𝑦)

𝑖
(𝜉) 𝑑𝜉,

(𝜓𝑦)
𝑖
(𝑡 + 𝜔) = ∫

𝑡+2𝜔

𝑡+𝜔

𝐺
𝑖
(𝑡, 𝜉 + 𝜔) (𝜑𝑦)

𝑖
(𝜉 + 𝜔) 𝑑𝜉

= ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝜉) (𝜑𝑦)

𝑖
(𝜉) 𝑑𝜉

= (𝜓𝑦)
𝑖
(𝑡) .

(21)

Therefore, (𝜓𝑦) ∈ 𝑋. Furthermore, for any 𝑦 ∈ 𝐸, it follows
from (15) that





(𝜓𝑦)
𝑖




0
≤ 𝛽
𝑖
∫

𝜔

0

(𝜑𝑦)
𝑖
(𝜉) 𝑑𝜉. (22)

On the other hand, we obtain

(𝜓𝑦)
𝑖
(𝑡) ≥ 𝛼

𝑖
∫

𝜔

0

(𝜑𝑦)
𝑖
(𝜉) 𝑑𝜉

≥

𝛼
𝑖

𝛽
𝑖





(𝜓𝑦)
𝑖




0

≥ 𝜎




(𝜓𝑦)
𝑖




0
.

(23)

Therefore, 𝜓𝑦 ∈ 𝐸. The proof of Lemma 6 is complete.

Lemma 7. The operator 𝜓 : 𝐸 → 𝐸 is continuous and com-
pletely continuous.

Proof. By using a standard argument one can show that 𝜓 is
continuous on 𝐸. Now, we show that𝜓 is completely continu-
ous. Let 𝑟 be any positive constant and 𝑆

𝑟
= {𝑦 ∈ 𝑋 : |𝑦

𝑖
|
0
≤ 𝑟}

a bounded set. For any 𝑦 ∈ 𝑆
𝑟
, by (15) we have





(𝜓𝑦)
𝑖




0

≤ 𝛽
𝑖
∫

𝜔

0

(𝜑𝑦)
𝑖
(𝜉) 𝑑𝜉

= 𝛽
𝑖
∫

𝜔

0

𝑦
𝑖
(𝑡)
[

[

𝐵
𝑖
(𝑡) 𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝐹
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

𝑑𝜉

≤ 𝜔𝛽
𝑖
𝑟
2
[

[

𝐵
𝑀

𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑀

𝑖𝑗
+ 𝐷
𝑀

𝑖𝑗
+ 𝐸
𝑀

𝑖𝑗
)
]

]

:= 𝑅
𝑖
.

(24)

Therefore, for any 𝑦 ∈ 𝑆
𝑟
, we obtain





𝜓𝑦




=

𝑛

∑

𝑖=1





(𝜓𝑦)
𝑖




0
≤

𝑛

∑

𝑖=1

𝑅
𝑖
:= 𝑅, (25)

which implies that 𝜓(𝑆
𝑟
) is a uniformly bounded set. On the

other hand, in view of the definitions of 𝜓 and 𝜑, we have

𝑑 [(𝜓𝑦)
𝑖
(𝑡)]

𝑑𝑡

= 𝐺
𝑖
(𝑡, 𝑡 + 𝜔) (𝜑𝑦)

𝑖
(𝑡 + 𝜔) − 𝐺

𝑖
(𝑡, 𝑡) (𝜑𝑦)

𝑖
(𝑡)

+ ∫

𝑡+𝜔

𝑡

𝑑𝐺
𝑖
(𝑡, 𝜉)

𝑑𝑡

(𝜑𝑦)
𝑖
(𝜉) 𝑑𝜉

= −(𝜑𝑦)
𝑖
(𝑡) + 𝑎

𝑖
(𝑡) ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝜉) (𝜑𝑦)

𝑖
(𝜉) 𝑑𝜉

= 𝑎
𝑖
(𝑡) (𝜓𝑦)

𝑖
(𝑡) − (𝜑𝑦)

𝑖
(𝑡) .

(26)

Again, from (15), we obtain











𝑑 [(𝜓𝑦)
𝑖
(𝑡)]

𝑑𝑡











≤ 𝑎
𝑀

𝑖
𝑅
𝑖
+ 𝑟
2
[

[

𝐵
𝑀

𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑀

𝑖𝑗
+ 𝐷
𝑀

𝑖𝑗
+ 𝐸
𝑀

𝑖𝑗
)
]

]

:= 𝑅
𝑖
≤ 𝑀 := max

𝑖∈[1,𝑛]

{𝑅
𝑖
} ,

(27)

which implies that 𝑑[(𝜓𝑦)
𝑖
(𝑡)]/𝑑𝑡, for any 𝑦 ∈ 𝑆

𝑟
, is also

uniformly bounded. Hence, 𝜓(𝑆
𝑟
) ⊂ 𝑋 is a family of uni-

formly bounded and equicontinuous functions. By the well-
known Ascoli-Arzela theorem, we know that the operator 𝜓
is completely continuous. The proof of Lemma 7 is com-
plete.

Lemma 8. Assume that (𝐻
1
)–(𝐻
4
) hold. The existence of pos-

itive 𝜔-periodic solution of (7) is equivalent to that of nonzero
fixed point of 𝜓 in 𝐸.

Proof. Assume that 𝑦 = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑋 is a

periodic solution of (7). Then, we have

[𝑦
𝑖
(𝑡) 𝑒
−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

]



= −𝑒
−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

𝑦
𝑖
(𝑡)
[

[

𝐵
𝑖
(𝑡) 𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝑡 − 𝜏
𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(28)
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Integrating the previous equation over [𝑡, 𝑡 + 𝜔], we can have

[𝑦
𝑖
(𝜉) 𝑒
−∫
𝜉

0
𝑎𝑖(𝑢)𝑑𝑢

]









𝑡+𝜔

𝑡

= −∫

𝑡+𝜔

𝑡

{

{

{

𝑒
−∫
𝜉

0
𝑎𝑖(𝑢)𝑑𝑢

𝑦
𝑖
(𝜉)

×
[

[

𝐵
𝑖
(𝜉) 𝑦
𝑖
(𝜉) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝜉) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝜉) 𝑦
𝑗
(𝜉 − 𝛾

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝜉) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝜉 + 𝑠) 𝑑𝑠

]

]

}

}

}

𝑑𝜉,

𝑖 = 1, 2, . . . , 𝑛.

(29)

Therefore, we have

𝑦
𝑖
(𝑡) 𝑒
−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

[1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

]

= ∫

𝑡+𝜔

𝑡

{

{

{

𝑒
−∫
𝜉

0
𝑎𝑖(𝑢)𝑑𝑢

𝑦
𝑖
(𝜉)

×
[

[

𝐵
𝑖
(𝜉) 𝑦
𝑖
(𝜉) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝜉) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝜉) 𝑦
𝑗
(𝜉 − 𝛾

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝜉) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝜉 + 𝑠) 𝑑𝑠

]

]

}

}

}

𝑑𝜉,

𝑖 = 1, 2, . . . , 𝑛,

(30)

which can be transformed into

𝑦
𝑖
(𝑡) = ∫

𝑡+𝜔

𝑡

{
{

{
{

{

𝑒
−∫
𝜉

0
𝑎𝑖(𝑢)𝑑𝑢

𝑒
−∫
𝑡

0
𝑎𝑖(𝑢)𝑑𝑢

[1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

]

𝑦
𝑖
(𝜉)

×
[

[

𝐵
𝑖
(𝜉) 𝑦
𝑖
(𝜉) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝜉) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝜉) 𝑦
𝑗
(𝜉 − 𝛾

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝜉) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝜉 + 𝑠) 𝑑𝑠

]

]

}
}

}
}

}

𝑑𝜉

= ∫

𝑡+𝜔

𝑡

{

{

{

𝐺
𝑖
(𝑡, 𝜉) 𝑦

𝑖
(𝜉)

×
[

[

𝐵
𝑖
(𝜉) 𝑦
𝑖
(𝜉) +

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝜉) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝜉) 𝑦
𝑗
(𝜉 − 𝛾

𝑖𝑗
(𝜉))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝜉) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝜉 + 𝑠) 𝑑𝑠

]

]

}

}

}

𝑑𝜉

= ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝜉) (𝜑𝑦)

𝑖
(𝜉) 𝑑𝜉, 𝑖 = 1, 2, . . . , 𝑛.

(31)

Thus, 𝑦
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑛) is a periodic solution for (15).

If 𝑦 = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑋 and 𝜓𝑦 =

((𝜓𝑦)
1
, (𝜓𝑦)

2
, . . . , (𝜓𝑦)

𝑛
)
𝑇
= 𝑦 with 𝑦 ̸= 0, then for any 𝑡 = 𝑡

𝑘

derivative the two sides of (15) about 𝑡,

𝑑 [(𝜓𝑦)
𝑖
(𝑡)]

𝑑𝑡

= 𝐺
𝑖
(𝑡, 𝑡 + 𝜔) (𝜑𝑦)

𝑖
(𝑡 + 𝜔) − 𝐺

𝑖
(𝑡, 𝑡) (𝜑𝑦)

𝑖
(𝑡)

+ ∫

𝑡+𝜔

𝑡

𝑑𝐺
𝑖
(𝑡, 𝜉)

𝑑𝑡

(𝜑𝑦)
𝑖
(𝜉) 𝑑𝜉

= −(𝜑𝑦)
𝑖
(𝑡) + 𝑎

𝑖
(𝑡) ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝜉) (𝜑𝑦)

𝑖
(𝜉) 𝑑𝜉

= 𝑎
𝑖
(𝑡) 𝑦
𝑖
(𝑡) − (𝜑𝑦)

𝑖
(𝑡)

= 𝑦
𝑖
(𝑡)
[

[

𝑎
𝑖
(𝑡) − 𝐵

𝑖
(𝑡) 𝑦
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

=

𝑑𝑦
𝑖
(𝑡)

𝑑𝑡

.

(32)

Hence, 𝑦(𝑡) = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑋 is a positive

𝜔-periodic solution of (7). Thus we complete the proof of
Lemma 8.

Our main result of this paper is as follows.

Theorem 9. Assume (H
1
)–(H
4
). Then condition

𝑚
0
= min
1≤𝑖≤𝑛

{

{

{

𝐵
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷
𝑖𝑗
+ 𝐸
𝑖𝑗
)

}

}

}

> 0 (33)
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is necessary and sufficient for system (1) to have at least one
positive 𝜔-periodic solution.

Proof. (Sufficiency) Let

𝑀
0
= max
𝑖∈[1,𝑛]

{

{

{

𝐵
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷
𝑖𝑗
+ 𝐸
𝑖𝑗
)

}

}

}

, (34)

by condition (33), we know that 𝑀
0
≥ 𝑚
0
> 0. Choose a

constant𝑀 ≥ 𝑀
0
such that 1/𝜔𝛽

𝑖
𝑀 < 1. Let 𝑟

1
= 1/𝜔𝛽

𝑖
𝑀

and

Ω
𝑟1
= {𝑦 (𝑡) = (𝑦

1
(𝑡) , 𝑦
2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))
𝑇

∈ 𝑋 :




𝑦
𝑖




0

< 𝑟
1
, 𝑖 = 1, 2, . . . , 𝑛} .

(35)

For any 𝑦 = 𝑦(𝑡) ∈ 𝐸⋂𝜕Ω
𝑟1
, 𝜎|𝑦
𝑖
|
0
≤ 𝑦
𝑖
(𝑡) ≤ |𝑦

𝑖
|
0
, from (15),

we obtain




(𝜓𝑦)
𝑖




0

≤ 𝛽
𝑖
∫

𝜔

0

(𝜑𝑦)
𝑖
(𝜉) 𝑑𝜉

= 𝛽
𝑖
∫

𝜔

0

𝑦
𝑖
(𝑡)
[

[

𝐵
𝑖
(𝑡) 𝑦
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

𝑑𝜉

≤ 𝜔𝛽
𝑖





𝑦
𝑖




0
[

[

𝐵
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷
𝑖𝑗
+ 𝐸
𝑖𝑗
)
]

]

𝑟
1

≤ 𝜔𝛽
𝑖





𝑦
𝑖




0
𝑀
0
𝑟
1

≤




𝑦
𝑖




0
.

(36)

Hence, for any 𝑦 = 𝑦(𝑡) ∈ 𝐸⋂𝜕Ω
𝑟1
, 𝜎|𝑦
𝑖
|
0
≤ 𝑦
𝑖
(𝑡) ≤ |𝑦

𝑖
|
0
, we

have





𝜓𝑦




=

𝑛

∑

𝑗=1





(𝜓𝑦)
𝑖




0
≤

𝑛

∑

𝑗=1





𝑦
𝑖




0
=




𝑦




, (37)

which implies that condition (1) in Lemma 4 is satisfied.
On the other hand, we choose 0 < 𝑚 ≤ 𝑚

0
such that

1/𝜔𝜎𝛼
𝑖
𝑚 > 1. Let 𝑟

2
= 1/𝜔𝜎𝛼

𝑖
𝑚 > 1 and suppose that

𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇
∈ 𝐸/{0}. We show that for any 𝑦 =

𝑦(𝑡) ∈ 𝐸⋂𝜕Ω
𝑟2
and𝜆 > 0,𝑦 ̸= 𝜓𝑦+𝜆𝑢. Otherwise, there exist

𝑦
0
= 𝑦
0
(𝑡) ∈ 𝐸⋂𝜕Ω

𝑟2
and 𝜆

0
> 0, such that 𝑦

0
= 𝜓𝑦
0
+ 𝜆
0
𝑢.

Let 𝑢
𝑖0
̸= 0 (1 ≤ 𝑖

0
≤ 𝑛), since 𝑦

𝑖0
(𝑡) ≥ 𝜎|𝑦

𝑖0
|
0
, it follows that

𝑦
𝑖0
= (𝜓𝑦)

𝑖0
(𝑡) + 𝜆

0
𝑢
𝑖0

= ∫

𝑡+𝜔

𝑡

𝐺
𝑖0
(𝑡, 𝜉) (𝜑𝑦)

𝑖0
(𝜉) 𝑑𝜉 + 𝜆

0
𝑢
𝑖0

≥ 𝜔𝜎𝛼
𝑖






𝑦
𝑖0





0
∫

𝜔

0

[

[

𝐵
𝑖
(𝑡) 𝑦
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗

× (𝑡 + 𝑠) 𝑑𝑠
]

]

𝑑𝑡 + 𝜆
0
𝑢
𝑖0

≥ 𝜔𝜎𝛼
𝑖






𝑦
𝑖0





0

[

[

𝐵
𝑖
+

𝑛

∑

𝑗=1

(𝐶
𝑖𝑗
+ 𝐷
𝑖𝑗
+ 𝐸
𝑖𝑗
)
]

]

𝑟
2
+ 𝜆
0
𝑢
𝑖0

≥ 𝜔𝜎𝛼
𝑖






𝑦
𝑖0





0
𝑚
0
𝑟
2
+ 𝜆
0
𝑢
𝑖0

≥






𝑦
𝑖0





0
+ 𝜆
0
𝑢
𝑖0
>






𝑦
𝑖0





0
,

(38)

which is a contradiction. This proves that condition (2) in
Lemma 4 is also satisfied. By Lemmas 4 and 8, system (7) has
at least one positive𝜔-periodic solution. From Lemma 2, sys-
tem (1) has at least one positive 𝜔-periodic solution.

(Necessity) Suppose that (33) does not hold. Then there
exists at least an 𝑖

0
(1 ≤ 𝑖
0
≤ 𝑛) such that

𝐵
𝑖0
= 0, 𝐶

𝑖0𝑗
= 𝐷
𝑖0𝑗
= 𝐸
𝑖0𝑗
= 0, 𝑗 ∈ [1, 𝑛] . (39)

If system (7) has a positive 𝜔-periodic solution 𝑦(𝑡) = (𝑦
1
(𝑡),

𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇, then we have

𝑑𝑦
𝑖0
(𝑡)

𝑑𝑡

= 𝑎
𝑖0
(𝑡) 𝑦
𝑖0
(𝑡) . (40)

Integrating the previos equation over [𝑡, 𝑡 + 𝜔], we can have

0 = ln
𝑦
𝑖0
(𝑡 + 𝜔)

𝑦
𝑖0
(𝑡)

= ∫

𝜔

0

𝑎
𝑖0
(𝑡) 𝑑𝑡 > 0, (41)

which is a contradiction.The proof ofTheorem 9 is complete.

3. Existence of Periodic Solution of (2)
Now, we are at the position to study the existence of positive
periodic solutions of (2). By carrying out similar arguments
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as in Section 2, it is not difficult to derive sufficient criteria
for the existence of positive periodic solutions of (2). For
simplicity, we prefer to list later the corresponding criteria for
(2) without proof since the proofs are very similar to those in
Section 2.

For (𝑡, 𝜉) ∈ 𝑅2, 1 ≤ 𝑖 ≤ 𝑛, we define

𝐺
𝑖
(𝑡, 𝜉) =

𝑒
−∫
𝜉

𝑡
𝑎𝑖(𝑢)
𝑑𝑢

1 − 𝑒
−∫
𝜔

0
𝑎𝑖(𝑢)
𝑑𝑢

=

𝑒
∫
𝑡+𝜔

𝜉
𝑎𝑖(𝑢)

𝑑𝑢

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)
𝑑𝑢 − 1

,

𝐺 (𝑡, 𝜉) = diag [𝐺
1
(𝑡, 𝜉) , 𝐺

2
(𝑡, 𝜉) , . . . , 𝐺

𝑛
(𝑡, 𝜉)] ,

𝑡 ≤ 𝜉 ≤ 𝑡 + 𝜔.

(42)

It is clear that 𝐺
𝑖
(𝑡 + 𝜔, 𝜉 + 𝜔) = 𝐺

𝑖
(𝑡, 𝑠), 𝜕𝐺

𝑖
(𝑡, 𝜉)/𝜕𝑡 =

𝑎
𝑖
(𝑡)𝐺
𝑖
(𝑡, 𝜉), 𝐺

𝑖
(𝑡, 𝑡) − 𝐺

𝑖
(𝑡, 𝑡 + 𝜔) = 1. In view of (H

1
), we

also define for 1 ≤ 𝑖 ≤ 𝑛

𝛼
𝑖
:= min
0≤𝑡≤𝜉≤𝜔





𝐺
𝑖
(𝑡, 𝜉)




=

1

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

− 1

,

𝛽
𝑖
:= max
0≤𝑡≤𝜉≤𝜔





𝐺
𝑖
(𝑡, 𝜉)




=

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

𝑒
∫
𝜔

0
𝑎𝑖(𝑢)𝑑𝑢

− 1

,

𝛼 = min
1≤𝑖≤𝑛

𝛼
𝑖
, 𝛽 = max

1≤𝑖≤𝑛

𝛽
𝑖
, 𝜎 =

𝛼

𝛽

∈ (0, 1) .

(43)

Let 𝑋 = {𝑦 = (𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇
∈ 𝑃𝐶(𝑅, 𝑅

𝑛
) |

𝑦(𝑡 + 𝜔) = 𝑦(𝑡)} with the norm ‖𝑦‖ = ∑𝑛
𝑖=1
|𝑦
𝑖
|
0
, |𝑦
𝑖
|
0
=

sup
𝑡∈[0,𝜔]

|𝑦
𝑖
(𝑡)|. It is easy to verify that (𝑋, ‖ ⋅ ‖) is a Banach

space. Define 𝑃 to be a cone in𝑋 by

𝑃 = {𝑦 = (𝑦
1
(𝑡) , 𝑦
2
(𝑡) , . . . , 𝑦

𝑛
(𝑡))
𝑇

∈ 𝑋 : 𝑦
𝑖
(𝑡)

≥ 𝛿




𝑦
𝑖




0
, 𝑡 ∈ [0, 𝜔] } .

(44)

We easily verify that 𝑃 is a cone in 𝑋. We define an operator
𝐴 : 𝑃 → 𝑋 as follows:

(𝐴𝑦) (𝑡) = ((𝐴𝑦)
1
(𝑡) , (𝐴𝑦)

2
(𝑡) , . . . , (𝐴𝑦)

𝑛
(𝑡))
𝑇

, (45)

where

(𝐴𝑦)
𝑖
(𝑡) = ∫

𝑡+𝜔

𝑡

𝐺
𝑖
(𝑡, 𝜉) (𝜙𝑦)

𝑖
(𝜉) 𝑑𝑠, (46)

where

(0𝑦)
𝑖
(𝑡) = 𝑦

𝑖
(𝑡)
[

[

𝐵
𝑖
(𝑡) 𝑦
𝑖
(𝑡) −

𝑛

∑

𝑗=1

𝐶
𝑖𝑗
(𝑡) 𝑦
𝑖
(𝜉 − 𝜏

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐷
𝑖𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛾

𝑖𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
(𝑡) ∫

0

−𝜎𝑖𝑗

𝑓
𝑖𝑗
(𝑠) 𝑦
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

,

𝑖 = 1, 2, . . . , 𝑛.

(47)

The proof of the following lemmas and theorems is similar to
those in the Section 2, so we all omit the details here.

Lemma 10. Assume that (H
1
)–(H
4
) hold. Then the solutions

of (2) are defined on [−𝜏,∞) and are positive.

Lemma 11. Assume that (H
1
)–(H
4
) hold. Then 𝐴 : 𝐸 → 𝐸 is

well defined.

Lemma 12. The operator 𝐴 : 𝐸 → 𝐸 is continuous and com-
pletely continuous.

Lemma 13. Assume that (H
1
)–(H
4
) hold.The existence of pos-

itive 𝜔-periodic solution of (8) is equivalent to that of nonzero
fixed point of 𝐴 in 𝑃.

Theorem 14. Assume (H
1
)–(H
4
). Moreover, if the condition

𝑙
0
= min
1≤𝑖≤𝑛

{

{

{

𝐵
𝑖
+

𝑛

∑

𝑗=1

(−𝐶
𝑖𝑗
+ 𝐷
𝑖𝑗
+ 𝐸
𝑖𝑗
)

}

}

}

> 0 (48)

holds, then the system (2) has at least one positive 𝜔-periodic
solution.

4. Applications

In this section, as some applications of our main results, we
will consider some special cases of systems (1) and (2), which
have been investigated extensively in the literature.

Application 1. We consider the following periodic single-
species population growth models with periodic delay and
impulse:

𝑦


(𝑡) = 𝑦 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑦 (𝑡) − 𝑏 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))] ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜃
𝑘
𝑦 (𝑡
𝑘
) , 𝑘 ∈ 𝑍

+
,

(49)

which is a special case of system (1), and where 𝑎(𝑡), 𝑏(𝑡),
𝜏(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) are𝜔-periodic.Thus fromTheorem 9wehave

the following.

Theorem 15. Assume that (H
1
)–(H
4
) hold. Then condition:

𝑅
1
= 𝐴 + 𝐵 > 0 (50)

is necessary and sufficient for system (49) to have at least one
positive 𝜔-periodic solution, where

𝐴 (𝑡) = 𝑎 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑘
) ,

𝐵 (𝑡) = 𝑏 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏(𝑡)

(1 + 𝜃
𝑘
) .

(51)

Application 2. We consider the following periodic single-
species population growth models with periodic delay and
impulse:

𝑦


(𝑡) = 𝑦 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) 𝑦 (𝑡) + 𝑏 (𝑡) 𝑦 (𝑡 − 𝜏 (𝑡))] ,

𝑡 ∈ 𝑅, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑦 (𝑡
𝑘
) = 𝜃
𝑘
𝑦 (𝑡
𝑘
) , 𝑘 ∈ 𝑍

+
,

(52)
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which is a special case of system (2), and where 𝑎(𝑡), 𝑏(𝑡),
𝜏(𝑡) ∈ 𝐶(𝑅, 𝑅

+
) are 𝜔-periodic. Thus from Theorem 14 we

have the following.

Theorem 16. Assume that (H
1
)–(H
4
) hold. Moreover, if the

condition

𝑅
2
= 𝐴 − 𝐵 > 0 (53)

holds, the system (52) has at least one positive 𝜔-periodic solu-
tion, where

𝐴 (𝑡) = 𝑎 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑘
) ,

𝐵 (𝑡) = 𝑏 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏(𝑡)

(1 + 𝜃
𝑘
) .

(54)

Application 3.Westudy the following two-species competitive
system with impulses:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑦
1
(𝑡) − 𝑐

1
(𝑡) 𝑦
2
(𝑡)] ,

𝑦


2
(𝑡) = 𝑦

2
(𝑡) [𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦
2
(𝑡) − 𝑐

2
(𝑡) 𝑦
1
(𝑡)] ,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑦
𝑖
(𝑡
𝑘
) = 𝜃
𝑘
𝑦 (𝑡
𝑘
) , 𝑖 = 1, 2, 𝑘 ∈ 𝑍

+
, 𝑡 = 𝑡

𝑘
,

(55)

which is a special case of system (1), and where 𝑎
𝑖
(𝑡), 𝑐
𝑖
(𝑡) ∈

𝐶(𝑅, 𝑅
+
) are 𝜔-periodic. Thus from Theorem 9 we have the

following.

Theorem 17. Assume that (H
1
)–(H
4
) hold. Then condition

𝑅
3
= min
1≤𝑖≤2

{𝐴
𝑖
+ 𝐶
𝑖
} > 0 (56)

is necessary and sufficient for system (55) to have at least one
positive 𝜔-periodic solution, where

𝐴
𝑖
(𝑡) = 𝑎

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑘
) ,

𝐶
𝑖
(𝑡) = 𝑐

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑘
) ,

𝑖 = 1, 2.

(57)

Application 4. We study the following two-species competi-
tive system with impulses:

𝑦


1
(𝑡) = 𝑦

1
(𝑡) [𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑦
1
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
1𝑗
(𝑡) 𝑦
1
(𝑡 − 𝜏
𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜌

𝑗
(𝑡))
]

]

,

𝑦


2
(𝑡) = 𝑦

2
(𝑡)
[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦
2
(𝑡)

−

𝑛

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑐
2𝑗
(𝑡) 𝑦
1
(𝑡 − 𝜎

𝑗
(𝑡))
]

]

,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑦
𝑖
(𝑡
𝑘
) = 𝜃
𝑘
𝑦 (𝑡
𝑘
) , 𝑖 = 1, 2, 𝑘 ∈ 𝑍

+
, 𝑡 = 𝑡

𝑘
,

(58)

which is a special case of system (1), and where 𝑎
𝑖
(𝑡),

𝑏
𝑖𝑗
(𝑡), 𝑐
𝑖𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
), 𝑖 = 1, 2, are 𝜔-periodic. Thus from

Theorem 9 we have the following.

Theorem 18. Assume that (H
1
)–(H
4
) hold. Then condition

𝑅
4
= min
1≤𝑖≤2

{𝐴
𝑖
+

𝑛

∑

𝑖=1

(𝐵
𝑖𝑗
+ 𝐶
𝑖𝑗
)} > 0 (59)

is necessary and sufficient for system (58) to have at least one
positive 𝜔-periodic solution, where

𝐴
𝑖
(𝑡) = 𝑎

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑘
) ,

𝐵
1𝑗
(𝑡) = 𝑏

1𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝐵
2𝑗
(𝑡) = 𝑏

2𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜂𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝐶
1𝑗
(𝑡) = 𝐶

1𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜌𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝐶
2𝑗
(𝑡) = 𝑐

2𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜎𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝑖 = 1, 2.

(60)

Application 5.Westudy the following two-species competitive
system with impulses:

𝑦


1
(𝑡) = 𝑦

1
(𝑡)
[

[

𝑟
1
(𝑡) − 𝑎

1
(𝑡) 𝑦
1
(𝑡)

+

𝑛

∑

𝑗=1

𝑏
1𝑗
(𝑡) 𝑦
1
(𝑡 − 𝜏
𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑐
1𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜌

𝑗
(𝑡))
]

]

,
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𝑦


2
(𝑡) = 𝑦

2
(𝑡)
[

[

𝑟
2
(𝑡) − 𝑎

2
(𝑡) 𝑦
2
(𝑡)

+

𝑛

∑

𝑗=1

𝑏
2𝑗
(𝑡) 𝑦
2
(𝑡 − 𝜂

𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑐
2𝑗
(𝑡) 𝑦
1
(𝑡 − 𝜎

𝑗
(𝑡))
]

]

,

𝑡 ̸= 𝑡
𝑘
,

Δ𝑦
𝑖
(𝑡
𝑘
) = 𝜃
𝑘
𝑦 (𝑡
𝑘
) , 𝑖 = 1, 2, 𝑘 ∈ 𝑍

+
, 𝑡 = 𝑡

𝑘
,

(61)

which is a special case of system (2), and where 𝑎
𝑖
(𝑡),

𝑏
𝑖𝑗
(𝑡), 𝑐
𝑖𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
), 𝑖 = 1, 2, are 𝜔-periodic. Thus from

Theorem 14 we have the following.

Theorem 19. Assume that (H
1
)–(H
4
) hold. Moreover, if the

condition

𝑅
5
= min
1≤𝑖≤2

{𝐴
𝑖
+

𝑛

∑

𝑖=1

(−𝐵
𝑖𝑗
+ 𝐶
𝑖𝑗
)} > 0 (62)

holds, the system (61) has at least one positive 𝜔-periodic solu-
tion, where

𝐴
𝑖
(𝑡) = 𝑎

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑘
) ,

𝐵
1𝑗
(𝑡) = 𝑏

1𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝐵
2𝑗
(𝑡) = 𝑏

2𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜂𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝐶
1𝑗
(𝑡) = 𝐶

1𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜌𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝐶
2𝑗
(𝑡) = 𝑐

2𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜎𝑗(𝑡)

(1 + 𝜃
𝑘
) ,

𝑖 = 1, 2.

(63)

Application 6.We investigate the following n-species compet-
itive systems with impulses:

𝑥


𝑖
(𝑡) = 𝑥

𝑖
(𝑡)
[

[

𝑎
𝑖
(𝑡) − 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)) −

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝑡)

× ∫

0

−𝜎𝑖𝑗

𝐾
𝑖𝑗
(𝑠) 𝑥
𝑗
(𝑡 + 𝑠) 𝑑𝑠

]

]

, 𝑡 ̸= 𝑡
𝑘
,

𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
) = 𝜃
𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 ∈ 𝑍

+
,

(64)

which is a special case of system (1), and where 𝑎
𝑖
(𝑡), 𝑏
𝑖
(𝑡),

𝑐
𝑖𝑗
(𝑡), 𝑑
𝑖𝑗
(𝑡), 𝜏
𝑖𝑗
(𝑡) ∈ 𝐶(𝑅, 𝑅

+
), 𝑖 = 1, 2, . . . , 𝑛, are 𝜔-periodic.

Moreover, 𝐾
𝑖𝑗
∈ 𝑃𝐶, 𝜎

𝑖𝑗
> 0 is a constant and ∫0

−𝜎𝑖𝑗

𝐾
𝑖𝑗
(𝑠)𝑑𝑠 =

1. Thus fromTheorem 9 we have the following.

Theorem 20. Assume that (𝐻
1
)–(𝐻
4
) hold. Then condition

𝑅
6
= min
1≤𝑖≤2

{𝐵
𝑖
+

𝑛

∑

𝑖=1

(𝐶
𝑖𝑗
+ 𝐷
𝑖𝑗
)} > 0 (65)

is necessary and sufficient for system (64) to have at least one
positive 𝜔-periodic solution, where

𝐵
𝑖
(𝑡) = 𝑏

𝑖
(𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ,

𝐶
𝑖𝑗
(𝑡) = 𝐶

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
) ,

𝐷
𝑖𝑗
(𝑡) = 𝑑

𝑖𝑗
(𝑡) ∏

0<𝑡𝑘<𝑡−𝜎𝑖𝑗

(1 + 𝜃
𝑖𝑘
) .

(66)

Remark 21. We apply the main results obtained in the previ-
ous section to study some examples which have some biologi-
cal implications. A very basic and important ecological prob-
lem associated with the study of population is that of the exis-
tence of positive periodic solutions which play the role played
by the equilibrium of the autonomous models, meaning that
the species is in an equilibrium state. FromTheorems 15–20,
we see that under the appropriate conditions, the impulsive
perturbations do not affect the existence of periodic solution
of systems.
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