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We present a stochastic simple chemostat model in which the dilution rate was influenced by white noise. The long time behavior
of the system is studied. Mainly, we show how the solution spirals around the washout equilibrium and the positive equilibrium of
deterministic system under different conditions. Furthermore, the sufficient conditions for persistence in themean of the stochastic
system and washout of the microorganism are obtained. Numerical simulations are carried out to support our results.

1. Introduction

Modeling microbial growth is a problem of special interest in
mathematical biology and theoretical ecology. One particular
class of models includes deterministic models of microbial
growth in the chemostat. Equations of the basic chemostat
model with a single species and a single substrate take the
form

𝑑𝑆

𝑑𝑡
= (𝑆
0
− 𝑆)𝐷 −

𝑥

𝛾
𝑝 (𝑆) ,

𝑑𝑥

𝑑𝑡
= 𝑥 (𝑝 (𝑆) − 𝐷) ,

(1)

where 𝑆(𝑡) and𝑥(𝑡), respectively, denote concentrations of the
nutrient and the microbial biomass, and all the parameters
are positive constants; 𝑆0 denotes the feed concentration
of the nutrient and 𝐷 denotes the volumetric dilution rate
(flow rate/volume). The function 𝑝(𝑆) denotes the microbial
growth rate and a typical choice for𝑝(𝑆) is𝑝(𝑆) = (𝑚𝑆)/(𝑎+𝑆)
[1]. The stoichiometric yield coefficient 𝛾 denotes the ratio
of microbial biomass produced to the mass of the nutrient
consumed.

The dynamics of the basic model is simple. If 𝛾 is constant
and 𝑝(𝑆) is a monotonically increasing function, then the
microorganism can either become extinct or persist at an
equilibrium level [2–5]. The particular outcome depends
solely on the break-even concentration 𝜆 where 𝑝(𝜆) = 𝐷.

Specifically, if 𝜆 < 𝑆0, the organism persists, and if 𝜆 ≥ 𝑆0, it
becomes extinct.

Note that the modeling process that leads to (1) relies on
the fact that the stochastic effects can be neglected or averaged
out, thanks to the law of large numbers. This is possible only
at macroscopic scale, for large population sizes, and under
homogeneity conditions. At all other scales or when the
homogeneity conditions are not met, random effects cannot
be neglected, just as that stated in Campillo et al. [6]: “This
is the case at microscopic scale, in small population size,
as well as all scales preceding the one where (1) is valid.
This is also when the homogeneity condition is not met,
for example, in unstirred conditions. Also the accumulation
of small perturbations in the context of multispecies could
not be neglected. Moreover, whereas the experimental results
observed in well mastered laboratory conditions match
closely the ODE theoretical behavior, a noticeable difference
may occur in operational.” So, even if the description (1) is
sufficient for a number of applications of interest, it does
not account for the stochastic aspects of the problem (see
Campillo et al. [6] for more details on this respect).

In fact, ecosystem dynamics is inevitably affected by
environmental white noise which is an important component
in realism. It is therefore useful to reveal how the noise
affects the ecosystem dynamics. As amatter of fact, stochastic
biological systems and stochastic epidemic models have
recently been studied by many authors; see [7–16]. We also
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refer the readers to Imhof and Walcher [7] for the reason
why the stochastic effects should be considered in chemostat
modeling.

Taking into account the effect of randomly fluctuating
environment, we introduce randomness into model (1) by
replacing the dilution rate𝐷 by𝐷 → 𝐷 + 𝛼�̇�(𝑡), where �̇�(𝑡)
is a white noise (i.e., 𝐵(𝑡) is a Brownian motion) and 𝛼 ≥ 0
represents the intensity of noise. This is only a first step in
introducing stochasticity into the model. Ideally we would
also like to introduce stochastic environmental variation into
the other parameters such as the feed nutrient concentration
𝑆
0 and the microbial growth rate 𝑝(𝑆), but to do this would
make the analysis too difficult. As a result, model (1) becomes
the following system of stochastic differential equation:

𝑑𝑆 = [(𝑆
0
− 𝑆)𝐷 −

𝑥

𝛾
𝑝 (𝑆)] 𝑑𝑡 + 𝛼 (𝑆

0
− 𝑆) 𝑑𝐵 (𝑡) ,

𝑑𝑥 = 𝑥 (𝑝 (𝑆) − 𝐷) 𝑑𝑡 − 𝛼𝑥𝑑𝐵 (𝑡) .

(2)

To the best of our knowledge, a very little amount of work has
been done with the above model. Motivated by this, in this
paper, we will investigate the long time behavior of model (2)
with 𝑝(𝑆) taking the Holling II functional response function,
that is, 𝑝(𝑆) = (𝑚𝑆)/(𝑎 + 𝑆).

We should point out that a few papers have already
addressed the stochastic modeling of the chemostat [6, 7, 17–
19]. Here we only mention a recent paper by Imhof and
Walcher [7]. They introduced a variant of the deterministic
single-substrate chemostat model for which the persistence
of all species is possible. To derive a stochastic model they
considered a discrete-timeMarkov process with jumps corre-
sponding to the deterministic system added with a centered
Gaussian term, letting the time step converges to zero leads
to a system of stochastic differential equations. They proved
that random effects may lead to extinction in scenarios
where the deterministic model predicts persistence; they also
established some stochastic persistence results.Obviously, the
model they considered is different from our model (2). We
also refer the readers to Campillo et al. [6] for other works on
the stochastic modeling of the chemostat.

The organization of this paper is as follows. The model
and some basic results about the model are presented in
the next section. In Section 3, the long time behavior of the
stochastic model, including the asymptotic behavior around
the positive equilibrium point and that around the extinction
equilibrium point, is analyzed. An extinction result on the
model is presented in Section 4. Finally, in Section 5, simu-
lations and discussions are presented.

2. The Model and Some Fundamental Results

Assuming in model (2) that 𝑝(𝑆) takes the Holling II func-
tional response function, that is,𝑝(𝑆) = (𝑚𝑆)/(𝑎+𝑆), consider
the following stochastic chemostat model:

𝑑𝑆 = [(𝑆
0
− 𝑆)𝐷 −

𝑚𝑆𝑥

𝑎 + 𝑆
] 𝑑𝑡 + 𝛼 (𝑆

0
− 𝑆) 𝑑𝐵 (𝑡) ,

𝑑𝑥 = 𝑥(
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑑𝑡 − 𝛼𝑥𝑑𝐵 (𝑡) ,

(3)

where 𝑆(𝑡) and 𝑥(𝑡) have the similar biological meanings as
in model (1), and all parameters are positive constants. 𝑆0,
𝐷, and 𝛼 play similar roles as in model (2), and 𝑚 and 𝑎 are
the maximal growth rates of the organism and theMichaelis-
Menten (or half saturation) constant, respectively; the yield
coefficient 𝛾 has been scaled out by scaling.

As 𝑆(𝑡) and 𝑥(𝑡) in (3) are concentrations of the substrate
and the microorganism at time 𝑡, respectively, we are only
interested in the positive solutions. Moreover, in order for a
stochastic differential equation to have a unique global (i.e.,
no explosion in a finite time) solution for any given initial
value, the coefficients of the equation are generally required
to satisfy the linear growth condition and local Lipschitz
condition. However, the coefficients of (3) do not satisfy the
linear growth condition, though they are locally Lipschitz
continuous, so the solution of model (3) may explode at a
finite time [20, 21]. In the following, by using the comparison
theorem for stochastic equation (see [8, 22]), we first show the
solution of model (3) is positive and global.

Theorem 1. For any given initial value (𝑆
0
, 𝑥
0
) ∈ R2
+
, there is a

unique positive solution (𝑆(𝑡), 𝑥(𝑡)) to model (3) on 𝑡 ≥ 0, and
the solution will remain in R2

+
with probability one, namely,

(𝑆(𝑡), 𝑥(𝑡)) ∈ R2
+
for all 𝑡 ≥ 0 almost surely.

Proof. Since the coefficients of model (3) are locally Lipschitz
continuous for any given initial value (𝑆

0
, 𝑥
0
) ∈ R2
+
, there is a

unique positive local solution (𝑆(𝑡), 𝑥(𝑡)) on 𝑡 ∈ [0, 𝜏
𝑒
), where

𝜏
𝑒
is the explosion time (i.e., themoment atwhich the solution

tends to infinity). Next, we show that 𝜏
𝑒
= ∞.

Since the solution is positive, we have

𝑑𝑆 ≤ (𝑆
0
− 𝑆) (𝐷𝑑𝑡 + 𝛼𝑑𝐵 (𝑡)) ,

𝑑𝑥 ≤ 𝑥 (𝑚 − 𝐷) 𝑑𝑡 − 𝛼𝑥𝑑𝐵 (𝑡) .

(4)

Denote by Φ(𝑡) the solution of the following stochastic
differential equation:

𝑑Φ = (𝑆
0
− Φ) (𝐷𝑑𝑡 + 𝛼𝑑𝐵 (𝑡)) ,

Φ (0) = 𝑆
0
,

(5)

and Ψ(𝑡) the solution of the equation

𝑑Ψ = (𝑚 − 𝐷)Ψ𝑑𝑡 − 𝛼Ψ𝑑𝐵 (𝑡) ,

Ψ (0) = 𝑥
0
.

(6)

By the comparison theorem for stochastic equations, we have
𝑆(𝑡) ≤ Φ(𝑡), 𝑥(𝑡) ≤ Ψ(𝑡), and 𝑡 ∈ [0, 𝜏

𝑒
), a.s.

Similarly, we can get

𝑑𝑆 ≥ [(𝑆
0
− 𝑆)𝐷 − 𝑚Ψ]𝑑𝑡 + 𝛼 (𝑆

0
− 𝑆) 𝑑𝐵 (𝑡) ,

𝑑𝑥 ≥ −𝑥 (𝐷𝑑𝑡 + 𝛼𝑑𝐵 (𝑡)) .

(7)

Denote by 𝜑 the solution of stochastic differential equation

𝑑𝜑 = [(𝑆
0
− 𝜑)𝐷 − 𝑚Ψ]𝑑𝑡 + 𝛼 (𝑆

0
− 𝜑) 𝑑𝐵 (𝑡) ,

𝜑 (0) = 𝑆
0
,

(8)
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and 𝜓 the solution of the equation

𝑑𝜓 = −𝜓 (𝐷𝑑𝑡 + 𝛼𝑑𝐵 (𝑡)) ,

𝜓 (0) = 𝑥0.

(9)

We have that 𝑆(𝑡) ≥ 𝜑(𝑡), 𝑥(𝑡) ≥ 𝜓(𝑡), 𝑡 ∈ [0, 𝜏
𝑒
), a.s.

To sum up, we have that

𝜑 (𝑡) ≤ 𝑆 (𝑡) ≤ Φ (𝑡) ,

𝜓 (𝑡) ≤ 𝑥 (𝑡) ≤ Ψ (𝑡) ,
𝑡 ∈ [0, 𝜏

𝑒
) , a.s. (10)

Noting that (5)–(9) are all linear stochastic differential equa-
tions, Φ(𝑡), Ψ(𝑡), 𝜑(𝑡), and 𝜓(𝑡) can be explicitly solved from
them, separately. Obviously, they are all positive and globally
existent for all 𝑡 ∈ [0,∞). From (10), we can have that 𝜏

𝑒
= ∞.

The proof is thus completed.

The following theorem shows that the solution (𝑆(𝑡), 𝑥(𝑡))
of model (3) with any positive initial value is uniformly
bounded in mean.

Theorem 2. For any given initial value (𝑆
0
, 𝑥
0
) ∈ R2

+
, the

solution (𝑆(𝑡), 𝑥(𝑡)) of model (3) has the property:

lim
𝑡→∞

𝐸 (𝑆 (𝑡) + 𝑥 (𝑡)) = 𝑆
0
. (11)

Proof. Define the function 𝑉(𝑡) = 𝑆(𝑡) + 𝑥(𝑡), by the Itô
formula, we get

𝑑𝑉 = (𝑆
0
− 𝑉 (𝑆, 𝑥)) (𝐷𝑑𝑡 + 𝛼𝑑𝐵) . (12)

Integrating both sides from 0 to 𝑡, and then taking expecta-
tions, yields

𝐸𝑉 (𝑡) = 𝑉 (0) + ∫

𝑡

0

(𝑆
0
− 𝐸𝑉 (𝑠))𝐷𝑑𝑠. (13)

Consequently,

𝑑𝐸𝑉 (𝑡)

𝑑𝑡
= (𝑆
0
− 𝐸𝑉 (𝑡))𝐷. (14)

It is clear that

lim
𝑡→∞

𝐸𝑉 (𝑡) = 𝑆
0
. (15)

Thus, we complete the proof of Theorem 2.

3. The Long Time Behavior of Model (3)
When 𝛼 = 0, model (3) becomes its corresponding determin-
istic system

𝑑𝑆 = [(𝑆
0
− 𝑆)𝐷 −

𝑚𝑆𝑥

𝑎 + 𝑆
] 𝑑𝑡,

𝑑𝑥 = 𝑥(
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑑𝑡.

(16)

We have known that the dynamic behavior of model (16)
is completely determined by the break-even concentration

𝜆 = 𝐷𝑎/(𝑚−𝐷).Model (16) always has awashout equilibrium
𝐸
0
= (𝑆
0
, 0). When 𝜆 ≥ 𝑆

0, 𝐸0 is globally asymptotically
stable, and when 0 < 𝜆 < 𝑆

0, 𝐸0 loses its stability and
a globally asymptotically stable positive equilibrium 𝐸

∗
=

(𝑆
∗
, 𝑥
∗
) appears, where 𝑆∗ = 𝜆 and 𝑥∗ = 𝑆0 − 𝜆.

When 𝛼 ̸= 0, 𝐸0 is still an equilibrium of model (3) but 𝐸∗
is not; that is to say, model (3) has no positive equilibrium.
It is natural to ask whether the microorganism will persist or
go to extinction in the chemostat. In this section we mainly
use the way of estimating the oscillation around 𝐸∗ (or 𝐸0)
to reflect how the solution of model (3) spirals around 𝐸∗ (or
𝐸
0). In the following part of this section, we always denote 𝛿

0

by

𝛿
0
= 𝐷 −

𝛼
2

2
. (17)

3.1. Asymptotic Behavior around the Washout Equilibrium 𝐸0.
As mentioned above, system (16) always has an equilibrium
𝐸
0 which is globally asymptotically stable provided 𝜆 ≥ 𝑆0. It

is natural to ask whether the solutions of system (3) will be
close to 𝐸0. We have the following theorem.

Theorem 3. If 𝜆 ≥ 𝑆
0 and 𝛿

0
> 0, then the washout

equilibrium 𝐸
0 of system (3) is stochastically asymptotically

stable in the large.

Proof. Define a function 𝑉 : R2
+
→ R
+
by

𝑉 (𝑆, 𝑥) = (𝑆 + 𝑥 − 𝑆
0
)
2

+
4𝛿
0
𝑎

𝑚
𝑥. (18)

Obviously, the function 𝑉 is positive definite, and

𝑑𝑉 = 𝐿𝑉𝑑𝑡 − 𝛼 [2(𝑆 + 𝑥 − 𝑆
0
)
2

+
4𝛿
0
𝑎

𝑚
𝑥]𝑑𝐵, (19)

where,

𝐿𝑉 = −2𝐷(𝑆 + 𝑥 − 𝑆
0
)
2

+ 𝛼
2
(𝑆
0
− 𝑆)
2

− 2𝛼
2
(𝑆
0
− 𝑆) 𝑥

+ 𝛼
2
𝑥
2
+
4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑥

= −2𝛿
0
(𝑆 + 𝑥 − 𝑆

0
)
2

+
4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑥

= −2𝛿
0
[(𝑆 − 𝑆

0
)
2

+ 𝑥
2
] +

4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑥

− 4𝛿
0
(𝑆 − 𝑆

0
) 𝑥.

(20)

We will show that for all solutions (𝑆(𝑡), 𝑥(𝑡)) of system (3)
with initial value (𝑆

0
, 𝑥
0
) ∈ R2
+
,

𝐿𝑉 ≤ −
2𝛿
0
𝑎
2

(𝑎 + 𝑆0)
2
[(𝑆 − 𝑆

0
)
2

+ 𝑥
2
] . (21)
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Suppose first that 𝜆 ≥ 𝑆0, then

𝑚𝑆

𝑎 + 𝑆
− 𝐷 ≤

𝑚𝑆

𝑎 + 𝑆
−
𝑚𝑆
0

𝑎 + 𝑆0
≤
𝑚

𝑎
(𝑆 − 𝑆

0
) . (22)

Obviously,

4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑥 − 4𝛿

0
(𝑆 − 𝑆

0
) 𝑥 ≤ 0. (23)

It then follows from (20) that

𝐿𝑉 ≤ −2𝛿
0
[(𝑆 − 𝑆

0
)
2

+ 𝑥
2
] . (24)

Suppose next that 𝑆 ≤ 𝑆0; noting also that 𝜆 ≥ 𝑆0, we have

𝑚𝑆

𝑎 + 𝑆
− 𝐷 ≤

𝑚𝑆

𝑎 + 𝑆
−
𝑚𝑆
0

𝑎 + 𝑆0
≤

𝑚𝑎

(𝑎 + 𝑆0)
2
(𝑆
0
− 𝑆) . (25)

Therefore,

4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑥 − 4𝛿

0
(𝑆 − 𝑆

0
) 𝑥

≤ 4𝛿
0
[1 −

𝑎
2

(𝑎 + 𝑆0)
2
] (𝑆
0
− 𝑆) 𝑥

≤ 2𝛿
0
[1 −

𝑎
2

(𝑎 + 𝑆0)
2
] [(𝑆 − 𝑆

0
)
2

+ 𝑥
2
] .

(26)

It follows from (20) that

𝐿𝑉 ≤ −
2𝛿
0
𝑎
2

(𝑎 + 𝑆0)
2
[(𝑆 − 𝑆

0
)
2

+ 𝑥
2
] . (27)

To sum up, (21) holds. That is to say, 𝐿𝑉 is negative defi-
nite. ByTheoremA in the appendix, the washout equilibrium
𝐸
0 of system (3) is stochastically asymptotically stable in the

large. The proof of Theorem 3 is thus completed.

3.2. Asymptotic Behavior around the Positive Equilibrium 𝐸∗

Theorem 4. If 0 < 𝜆 < 𝑆0 and 𝛿
0
> 0, then for any solution

(𝑆(𝑡), 𝑥(𝑡)) of system (3) with initial value (𝑆
0
, 𝑥
0
) ∈ R2
+
,

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

[(𝑆 (𝑠) − 𝑆
∗
)
2
+ (𝑥 (𝑠) − 𝑥

∗
)
2
] 𝑑𝑠

≤
2(𝑎 + 𝑆

∗
+ 4𝑥
∗
)
2
𝑥
∗

𝑚𝑎
𝛼
2
.

(28)

Proof. The proof is inspired by the method of Imhof and
Walcher [7]. Define a function 𝑉 : R2

+
→ R
+
by

𝑉 (𝑆, 𝑥) = (𝑆 + 𝑥 − 𝑆
0
)
2

+
4𝛿
0
𝑎

𝑚
(𝑥 − 𝑥

∗
− 𝑥
∗ ln 𝑥

𝑥∗
) .

(29)

Obviously, the function 𝑉 is positive definite. Using Itô’s
formula we get

𝑑𝑉 = 𝐿𝑉𝑑𝑡 − 2𝛼 [(𝑆 + 𝑥 − 𝑆
0
)
2

+
2𝛿
0
𝑎

𝑚
(𝑥 − 𝑥

∗
)] 𝑑𝐵, (30)

where

𝐿𝑉 = − 2𝛿
0
(𝑆 + 𝑥 − 𝑆

0
)
2

+
4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷) (𝑥 − 𝑥

∗
) +

2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗

= − 2𝛿
0
[(𝑆 − 𝑆

∗
)
2
+ (𝑥 − 𝑥

∗
)
2
] +

2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗

+
4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷) (𝑥 − 𝑥

∗
)

− 4𝛿
0
(𝑆 − 𝑆

∗
) (𝑥 − 𝑥

∗
) .

(31)

Wewill show that for all solutions (𝑆(𝑡), 𝑥(𝑡))with initial value
(𝑆
0
, 𝑥
0
) ∈ R2
+
,

𝐿𝑉 ≤ −
𝛿
0
𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2
[(𝑆 − 𝑆

∗
)
2
+ (𝑥 − 𝑥

∗
)
2
]

+
2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗
.

(32)

Suppose first that (𝑆− 𝑆∗)(𝑥−𝑥∗) ≥ 0, then (𝑚𝑆/(𝑎+𝑆)−
𝐷)(𝑥 − 𝑥

∗
) ≥ 0 and

(
𝑚𝑆

𝑎 + 𝑆
− 𝐷) (𝑥 − 𝑥

∗
) =



𝑚𝑆

𝑎 + 𝑆
− 𝐷



𝑥 − 𝑥
∗

≤
𝑚

𝑎

𝑆 − 𝑆
∗
𝑥 − 𝑥

∗

=
𝑚

𝑎
(𝑆 − 𝑆

∗
) (𝑥 − 𝑥

∗
) .

(33)

Obviously,

4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷) (𝑥 − 𝑥

∗
) − 4𝛿

0
(𝑆 − 𝑆

∗
) (𝑥 − 𝑥

∗
) ≤ 0.

(34)

By (31) we have

𝐿𝑉 ≤ −2𝛿
0
[(𝑆 − 𝑆

∗
)
2
+ (𝑥 − 𝑥

∗
)
2
] +

2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗
. (35)

Suppose next that (𝑆 − 𝑆∗)(𝑥 − 𝑥∗) < 0 and 𝑆 > 𝑆∗ + 4𝑥∗
(which implies that 𝑆 − 𝑆∗ > 0, 𝑥 − 𝑥∗ < 0), then

−4𝛿
0
(𝑆 − 𝑆

∗
) (𝑥 − 𝑥

∗
) = 4𝛿

0
(𝑆 − 𝑆

∗
) (𝑥
∗
− 𝑥)

≤ 4𝛿
0
(𝑆 − 𝑆

∗
) 𝑥
∗

≤ 𝛿
0
(𝑆 − 𝑆

∗
)
2
.

(36)

By (31), we have

𝐿𝑉 ≤ −𝛿
0
(𝑆 − 𝑆

∗
)
2
− 2𝛿
0
(𝑥 − 𝑥

∗
)
2
+
2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗

≤ −𝛿
0
[(𝑆 − 𝑆

∗
)
2
+ (𝑥 − 𝑥

∗
)
2
] +

2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗
.

(37)
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Finally, if (𝑆 − 𝑆∗)(𝑥 − 𝑥∗) < 0 and 𝑆 ≤ 𝑆∗ + 4𝑥∗, then
4𝛿
0
𝑎

𝑚
(
𝑚𝑆

𝑎 + 𝑆
− 𝐷) (𝑥 − 𝑥

∗
) − 4𝛿

0
(𝑆 − 𝑆

∗
) (𝑥 − 𝑥

∗
)

= 4𝛿
0

𝑆 − 𝑆
∗
𝑥 − 𝑥

∗ −
4𝛿
0
𝑎

𝑚



𝑚𝑆

𝑎 + 𝑆
− 𝐷



𝑥 − 𝑥
∗

≤ 4𝛿
0

𝑆 − 𝑆
∗
𝑥 − 𝑥

∗ −
4𝛿
0
𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2

𝑆 − 𝑆
∗
𝑥 − 𝑥

∗

= 4𝛿
0
[1 −

𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2
]
𝑆 − 𝑆
∗
𝑥 − 𝑥

∗

≤ 2𝛿
0
[1 −

𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2
] [(𝑆 − 𝑆

∗
)
2
+ (𝑥 − 𝑥

∗
)
2
] .

(38)

By (31) we have

𝐿𝑉 ≤ −
2𝛿
0
𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2
[(𝑆 − 𝑆

∗
)
2
+ (𝑥 − 𝑥

∗
)
2
]

+
2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗
.

(39)

To sum up, (32) holds. Therefore,

𝑑V ≤ {−
𝛿
0
𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2
[(𝑆 − 𝑆

∗
)
2
+ (𝑥 − 𝑥

∗
)
2
]

+
2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗
}𝑑𝑡

− 2𝛼 [(𝑆 + 𝑥 − 𝑆
0
)
2

+
2𝛿
0
𝑎

𝑚
(𝑥 − 𝑥

∗
)] 𝑑𝐵.

(40)

Integrating both sides from 0 to 𝑡 yields

𝑉 (𝑡) − 𝑉 (0) ≤ ∫

𝑡

0

{−
𝛿
0
𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2

× [(𝑆 (𝑠) − 𝑆
∗
)
2
+ (𝑥 (𝑠) − 𝑥

∗
)
2
]

+
2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗
}𝑑𝑠 +𝑀 (𝑡) ,

(41)

where𝑀(𝑡) = −2𝛼 ∫t
0
[(𝑆(𝑠)+𝑥−𝑆

0
)
2
+(2𝛿
0
𝑎/𝑚)(𝑥(𝑠)−𝑥

∗
)]𝑑𝐵.

Obviously,𝑀(𝑡) is a local continuous martingale. From (3),
we can get

𝑑 (𝑆 + 𝑥 − 𝑆
0
)

= (𝑆
0
− 𝑆 − 𝑥)𝐷𝑑𝑡 + (𝑆

0
− 𝑆 − 𝑥) 𝛼𝑑𝐵

= (𝑆 + 𝑥 − 𝑆
0
) (−𝐷𝑑𝑡 − 𝛼𝑑𝐵) .

(42)

It follows that

𝑆 + 𝑥 − 𝑆
0
= (𝑆
0
+ 𝑥
0
− 𝑆
0
) exp{(−𝐷 − 𝛼

2

2
) 𝑡 − 𝛼𝐵 (𝑡)}

≤ 𝐶 exp {−𝛼𝐵 (𝑡)} ,
(43)

where 𝐶 = |𝑆
0
+ 𝑥
0
− 𝑆
0
|. Thus we have that

⟨𝑀 (𝑡) ,𝑀 (𝑡)⟩𝑡

= 4𝛼
2
∫

𝑡

0

[(𝑆 (𝑠) + 𝑥 (𝑠) − 𝑆
0
)
2

+
2𝛿
0
𝑎

𝑚
(𝑥 (𝑠) − 𝑥

∗
)]

2

𝑑𝑠

≤ 4𝛼
2
∫

𝑡

0

[𝐶
2 exp {−2𝛼min

0≤𝑠≤𝑡

𝐵 (𝑠)} +
2𝛿
0
𝑎

𝑚

×(𝑥
∗
+ 𝑆
0
+ 𝐶 exp {−𝛼min

0≤𝑠≤𝑡

𝐵 (𝑠)})]

2

𝑑s,
(44)

which implies that

lim sup
𝑡→∞

⟨𝑀 (𝑡) ,𝑀 (𝑡)⟩𝑡

𝑡
< ∞. (45)

By Strong Law of Large Numbers (see Mao [21]), we obtain

lim
𝑡→∞

𝑀(𝑡)

𝑡
= 0 a.s. (46)

It follows from (41) that

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

{−
𝛿
0
𝑎
2

(𝑎 + 𝑆∗ + 4𝑥∗)
2

× [(𝑆 (𝑠) − 𝑆
∗
)
2
+ (𝑥 (𝑠) − 𝑥

∗
)
2
]

+
2𝛿
0
𝑎

𝑚
𝛼
2
𝑥
∗
}𝑑𝑠 ≥ 0,

(47)

namely,

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

[(𝑆 (𝑠) − 𝑆
∗
)
2
+ (𝑥 (𝑠) − 𝑥

∗
)
2
] 𝑑𝑠

≤
2(𝑎 + 𝑆

∗
+ 4𝑥
∗
)
2
𝑥
∗

𝑎𝑚
𝛼
2
.

(48)

This completes the proof of Theorem 4.

Remark 5. Theorems 3 and 4 show that the solutions of
system (3) will fluctuate, respectively, around𝐸0 and𝐸∗ when
𝛼 is small enough such that 𝛿

0
> 0 (i.e., 𝛼 < √2𝐷).

3.3. Persistence of System (3). From the result of Theorem 4,
we conclude that system (3) is persistent when 𝛼 is small,
which implies the persistence of microorganism. L. S. Chen
and J. Chen in [23] proposed the definition of persistence in
the mean for the deterministic system. Here, we also use this
definition for the stochastic system (see also Ji et al. [24]).

Definition 6. System (3) is said to be persistent in the mean,
if

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑆 (𝑠) 𝑑𝑠 > 0, lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥 (𝑠) 𝑑𝑠 > 0 a.s.

(49)



6 Abstract and Applied Analysis

Theorem 7. Let (𝑆(𝑡), 𝑥(𝑡)) be the solution of system (3) with
initial value (𝑆

0
, 𝑥
0
) ∈ R2
+
. If 0 < 𝜆 < 𝑆0, 𝛿

0
> 0, and

𝛼
2
< min{

𝑎𝑚(𝑆
∗
)
2

2(𝑎 + 𝑆∗ + 4𝑥∗)
2
𝑥∗
,

𝑎𝑚𝑥
∗

2(𝑎 + 𝑆∗ + 4𝑥∗)
2
} , (50)

then system (3) is persistent in the mean.

Proof. Obviously, (28) holds. It follows that

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

(𝑆 (𝑠) − 𝑆
∗
)
2
𝑑𝑠 ≤

2(𝑎 + 𝑆
∗
+ 4𝑥
∗
)
2
𝑥
∗

𝑎𝑚
𝛼
2 a.s.,

(51)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

(𝑥 (𝑠) − 𝑥
∗
)
2
𝑑𝑠 ≤

2(𝑎 + 𝑆
∗
+ 4𝑥
∗
)
2
𝑥
∗

𝑎𝑚
𝛼
2 a.s.

(52)

Noting also that

2(𝑆
∗
)
2
− 2𝑆
∗
𝑆 = 2𝑆

∗
(𝑆
∗
− 𝑆) ≤ (𝑆

∗
)
2
+ (𝑆 − 𝑆

∗
)
2
, (53)

we have

𝑆 ≥
𝑆
∗

2
−
(𝑆 − 𝑆

∗
)
2

2𝑆∗
. (54)

It follows from (54), (50), and (51) that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑆 (𝑠) 𝑑𝑠

≥
𝑆
∗

2
− lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

(𝑆 (𝑠) − 𝑆
∗
)
2

2𝑆∗
𝑑𝑠

≥
𝑆
∗

2
−
2(𝑎 + 𝑆

∗
+ 4𝑥
∗
)
2
𝑥
∗

2𝑎𝑚𝑆∗
𝛼
2
> 0 a.s.

(55)

Similarly, we have

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥 (𝑠) 𝑑𝑠

≥
𝑥
∗

2
− lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

(𝑥 (𝑠) − 𝑥
∗
)
2

2𝑥∗
𝑑𝑠

≥
𝑥
∗

2
−
2(𝑎 + 𝑆

∗
+ 4𝑥
∗
)
2
𝑥
∗

2𝑎𝑚𝑥∗
𝛼
2
> 0 a.s.

(56)

Therefore, system (3) is persistent in the mean.

4. Washout of the Organism in the Chemostat

The following theorem shows that sufficiently large noise
can make the microorganism extinct exponentially with
probability one in a simple chemostat.

Theorem 8. For any given initial value (𝑆
0
, 𝑥
0
) ∈ R2

+
, the

solution (𝑆(𝑡), 𝑥(𝑡)) of system (3) has the property:

lim sup
𝑡→∞

ln𝑥 (𝑡)
𝑡

≤ (𝑚 − 𝐷) −
1

2
𝛼
2
. (57)

Proof. Define the function 𝑉(𝑥) = ln𝑥; by the Itô formula,
we get

𝑑𝑉 =
1

𝑥
𝑑𝑥 −

1

2𝑥2
(𝑑𝑥)
2

= (
𝑚𝑆

𝑎 + 𝑆
− 𝐷)𝑑𝑡 − 𝛼𝑑𝐵 −

1

2
𝛼
2
𝑑𝑡

≤ (𝑚 − 𝐷 −
1

2
𝛼
2
)𝑑𝑡 − 𝛼𝑑𝐵.

(58)

Integrating both sides from 0 to 𝑡 yields

ln𝑥 (𝑡) − ln𝑥 (0) ≤ (𝑚 − 𝐷 − 1
2
𝛼
2
) 𝑡 − 𝛼𝐵 (𝑡) . (59)

Dividing 𝑡 on the both sides and letting 𝑡 → ∞, we have

lim sup
𝑡→∞

ln𝑥 (𝑡)
𝑡

≤ (𝑚 − 𝐷) −
1

2
𝛼
2
. (60)

The proof of Theorem 8 is completed.

Remark 9. In fact, we can see from the proof of Theorem 8
that only the boundedness of𝑝(𝑆) = 𝑚𝑆/(𝑎 + 𝑆) is used. So,
Theorem 8 holds true for amuch larger class bounded growth
rate functions, for example, 𝑝(𝑆) = 𝑚𝑆/(𝑎 + 𝑏𝑆 + 𝑆2) (see also
Figure 4).

5. Simulations and Discussions

In order to confirm the results above, we numerically simulate
the solution of system (3) and system (16) with the initial
(𝑆
0
, 𝑥
0
) = (0.7, 0.3). The numerical simulation is given by the

following Milstein scheme [25]. Consider the discretization
of system (3) for 𝑡 = 0, Δ𝑡, 2Δ𝑡, . . . , 𝑛Δ𝑡:

𝑆
𝑖+1
= 𝑆
𝑖
+ [(𝑆

0
− 𝑆
𝑖
)𝐷 −

𝑚𝑆
𝑖
𝑥
𝑖

𝑎 + 𝑆
𝑖

]Δ𝑡

+ 𝛼 (𝑆
0
− 𝑆
𝑖
)√Δ𝑡𝜉

𝑖
,

𝑥
𝑖+1
= 𝑥
𝑖
+ 𝑥
𝑖
(
𝑚𝑆
𝑖

𝑎 + 𝑆
𝑖

− 𝐷)Δ𝑡 − 𝛼𝑥
𝑖
√Δ𝑡𝜉
𝑖
,

(61)

where time increment Δ𝑡 > 0, and 𝜉i is 𝑁(0, 1)-distributed
independent random variables which can be generated
numerically by pseudorandom number generators. In Fig-
ures 1–4, we will use the blue lines and the red lines to
represent the solutions of deterministic system (16) and those
of stochastic system (3), respectively.

By Theorem 3, we expect that the washout equilibrium
𝐸
0 of system (3) is globally asymptotically stable under the

conditions 𝜆 ≥ 𝑆
0 and 𝛿

0
> 0. In Figure 1, we choose

parameters 𝑆0 = 1, 𝑚 = 2, 𝑎 = 0.6, 𝐷 = 1.3, and 𝛼 = 0.2
in Figure 1(a). We can compute that 𝜆 = 39/35 > 1 = 𝑆0 and
𝛿
0
= 1.28 > 0. Then the washout equilibrium 𝐸

0 of systems
(3) and (16) is globally asymptotically stable (see Figure 1(a)).
Furthermore, to watch the influence of the intensity of noise
on the dynamics of system (3), we take 𝛼 = 0.5 in Figure 1(b).
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Figure 1: Deterministic and stochastic trajectories of simple chemostat model for initial condition 𝑆
0
= 0.7; 𝑥

0
= 0.3; and 𝑆0 = 1, 𝑚 = 2,

𝑎 = 0.6, and𝐷 = 1.3. (a) 𝛼 = 0.2, (b) 𝛼 = 0.5.

We can see that the solutions of system (3) with 𝛼 = 0.5 tend
to the washout equilibrium faster than that of system (3) with
𝛼 = 0.2.

Next, we consider the effect of stochastic fluctuations of
environment on the positive equilibrium of the correspond-
ing deterministic system. As mentioned in the Section 2,
there is a positive equilibrium 𝐸

∗ of system (16) when 0 <
𝜆 < 𝑆

0, and it is globally asymptotically stable. Besides,
Theorem 4 tells us that the difference between the perturbed
solution and 𝐸∗ is related to white noise under the conditions
0 < 𝜆 < 𝑆

0 and 𝛿
0
> 0. In systems (3) and (16), we

choose parameters 𝑆0 = 1, 𝑚 = 2, 𝑎 = 0.6, and 𝐷 = 0.8.
As for the washout equilibrium 𝐸

0, we take 𝛼 = 0.1 in
Figure 2(a) and 𝛼 = 0.02 in Figure 2(b). We can compute
that 𝜆 = 0.4 < 1 = 𝑆0 and 𝛿

0
= 0.795 > 0 in Figure 2(a)

and 𝛿
0
= 0.7998 > 0 in Figure 2(b). As expected, the

solutions of system (3) are oscillating around the positive
equilibrium 𝐸∗ for a long time (see Figure 2). Besides, we can
observe that with white noise getting weaker, the fluctuation

around 𝐸
∗ gets smaller, which supports the result of

Theorem 4.
Theorem 8 shows that the microorganism will be washed

out eventually under the condition 𝛼2 > 2(𝑚 − 𝐷) even if
system (16) has a positive equilibrium. As an example, we
choose parameters 𝑆0 = 1, 𝑚 = 2, 𝑎 = 0.6, and 𝐷 = 0.8

in systems (3) and (16). We can compute that 𝜆 = 0.4 <

1 = 𝑆
0; thus system (16) will persist. But when 𝛼 is large

enough, for example, we take 𝛼 = 1.55, we can compute that
𝛼
2
= 2.4025 > 2.4 = 2(𝑚 − 𝐷), and the microorganism will

die out (see Figure 3). This shows that strong noise may lead
to the extinction of the species in the chemostat.

To further confirm thatTheorem 8 holds for amuch lager
class of growth rate function (i.e., Remark 9), we take 𝑝(𝑆) as
theHolling IV functional response function𝑝(𝑆) = (𝑚𝑆)/(𝑎+
𝑏𝑆 + 𝑆

2
) instead of 𝑝(𝑆) = 𝑚𝑆/(𝑎 + 𝑆) and all parameters

have the similar values as above except for 𝑏 = 0.4 in systems
(3) and (16). Numerical simulations show that they have the
similar dynamics as for 𝑝(𝑆) = 𝑚𝑆/(𝑎 + 𝑆) (see Figure 4).
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Figure 2: Deterministic and stochastic trajectories of simple chemostat model for initial condition 𝑆
0
= 0.7; 𝑥

0
= 0.3; and 𝑆0 = 1, 𝑚 = 2,

𝑎 = 0.6, and𝐷 = 0.8. (a) 𝛼 = 0.1, (b) 𝛼 = 0.02.

Some interesting questions deserve further investigation.
One may propose more realistic but complex models, such as
incorporating the colored noise into the system. Moreover, it
is interesting to study other parameters perturbation.

Appendix

For the completeness of the paper, we list some basic theory
in stochastic differential equations (see [21, 26, 27]). Let
(Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃) be a complete probability space with a

filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right
continuous and F

0
contains all 𝑃-null sets). Let 𝐵(𝑡) be the

standard Brownianmotions defined on this probability space.
Denote

R
𝑛

+
= {𝑥 ∈ R

𝑛
: 𝑥i > 0 ∀1 ≤ 𝑖 ≤ 𝑛} ,

R
𝑛

+
= {𝑥 ∈ R

𝑛
: 𝑥i ≥ 0 ∀1 ≤ 𝑖 ≤ 𝑛} .

(A.1)

In general, consider 𝑛-dimensional stochastic differential
equation

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , on 𝑡 ≥ 𝑡
0
,

(𝐴)

with initial value 𝑥(𝑡
0
) = 𝑥
0
∈ R𝑛. Assume that the assump-

tions of the existence-and-uniqueness theorem are fulfilled.
Hence, for any given initial 𝑥

0
, (𝐴) has a unique global

solution that is denoted by 𝑥(𝑡; 𝑡
0
, 𝑥
0
). Assume furthermore

that

𝑓 (0, 𝑡) = 0, 𝑔 (0, 𝑡) = 0, ∀𝑡 ≥ 𝑡
0
. (A.2)

So (𝐴) has the solution 𝑥(𝑡) ≡ 0 corresponding to the initial
value 𝑥

0
= 0. This solution is called the trivial solution or

equilibrium position.
Denote by 𝐶2,1(R𝑛 × [𝑡

0
,∞];R

+
) the family of all non-

negative functions 𝑉(𝑥, 𝑡) defined on R𝑛 × [𝑡
0
,∞] such that
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Figure 3: Deterministic and stochastic trajectories of simple chemostat model for initial condition 𝑆
0
= 0.7; 𝑥

0
= 0.3; and 𝑆0 = 1, 𝑚 = 2,

𝑎 = 0.6,𝐷 = 0.8, and 𝛼 = 1.55.
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Figure 4: Deterministic and stochastic trajectories of chemostat model with Holling IV functional response function for initial condition
𝑆
0
= 0.7; 𝑥

0
= 0.3; and 𝑆0 = 1,𝑚 = 2, 𝑎 = 0.6, 𝑏 = 0.4,𝐷 = 0.8, and 𝛼 = 1.55.

they are continuously twice differentiable in 𝑥 and once in 𝑡.
Define the differential operator 𝐿 associated with (𝐴) by

𝐿 =
𝜕

𝜕𝑡
+

𝑛

∑

𝑖=1

𝑓
𝑖
(𝑥, 𝑡)

𝜕

𝜕𝑥i
+
1

2

𝑛

∑

𝑖,𝑗=1

[𝑔
𝑇
(𝑥, 𝑡) 𝑔 (𝑥, 𝑡)]

𝑖𝑗

𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

.

(A.3)

If 𝐿 acts on a function 𝑉 ∈ 𝐶2,1(R𝑛 × [𝑡
0
,∞];R

+
), then

𝐿𝑉 (𝑥, 𝑡) = 𝑉
𝑡
(𝑥, 𝑡) + 𝑉

𝑥
(𝑥, 𝑡) 𝑓 (𝑥, 𝑡)

+
1

2
trace [𝑔𝑇 (𝑥, 𝑡) 𝑉

𝑥𝑥
(𝑥, 𝑡) 𝑔 (𝑥, 𝑡)] .

(A.4)
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Definition A. (i) The trivial solution of (𝐴) is said to be
stochastically stable or stable in probability if for every pair
of 𝜀 ∈ (0, 1) and 𝑟 > 1, there exists a 𝜂 = 𝜂(𝜀, 𝑟, 𝑡

0
) > 0 such

that

𝑃 {
𝑥 (𝑡; 𝑡0, 𝑥0)

 < 𝑟 ∀𝑡 ≥ 𝑡0} ≥ 1 − 𝜀, (A.5)

whenever |𝑥
0
| < 𝜂. Otherwise, it is said to be stochastically

unstable.
(ii) The trivial solution is said to be stochastically asymp-

totically stable if it is stochastically stable and, moreover, for
every 𝜀 ∈ (0, 1), there exists a 𝜂

0
= 𝜂
0
(𝜀, 𝑡
0
) > 0 such that

𝑃{ lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} ≥ 1 − 𝜀, (A.6)

whenever |𝑥
0
| < 𝜂
0
.

(iii)The trivial solution is said to be stochastically asymp-
totically stable in the large if it is stochastically asymptotically
stable and, moreover, for all 𝑥

0
∈ R𝑛,

𝑃{ lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} = 1. (A.7)

Theorem A. If there exists a positive-definite decreasing radi-
ally unbounded function𝑉(𝑥, 𝑡) ∈ 𝐶2,1(R𝑛×[𝑡

0
,∞];R

+
), such

that 𝐿𝑉(𝑥, 𝑡) is negativedefinite, then the trivial solution of (𝐴)
is stochastically asymptotically stable in the large.
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