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This paper shows the controller design for a second-order plant with unknown varying behavior in the parameters and in the
disturbance. The state adaptive backstepping technique is used as control framework, but important modifications are introduced.
The controller design achieves mainly the following two benefits: upper or lower bounds of the time-varying parameters of the
model are not required, and the formulation of the control and update laws and stability analysis are simpler than closely related
works that use the Nussbaum gain method. The controller has been developed and tested for a DC motor speed control and it has
been implemented in a Rapid Control Prototyping system based on Digital Signal Processing for dSPACE platform. The motor
speed converges to a predefined desired output signal.

1. Introduction

An important challenge for controller design plants is the
unknown time-varying behavior of its parameters (cf [1–3]).
The state adaptive backstepping (SAB) of [4] is an important
framework to design this kind of controllers (see [5–9]). In
the adaptive controllers that are based on the SAB and do
not use the Nussbaum gain method, the transient behavior of
the tracking error is upper bounded by an unknown positive
constant, as can be noticed from [5, 10–13]. Such constant
bound is the function of (i) constant upper bounds of varying
bounded plant model parameters, (ii) constant plant model
parameters, (iii) user-defined parameters of the update laws,
and (iv) the initial values of the plant model states. In
addition, it does not involve integral terms that depend on
Nussbaum functions.Therefore, the constant upper bound of
the tracking error can bemade small by choosing large values
of the update law gains. This would ensure that the tracking
error takes on small values. To handle the effect of unknown
varying behavior of plant model parameters, the robustness
and Nussbaum gain techniques are usually combined with
SAB control schemes.

The robust-SAB control schemes involve a control law
with a compensation term and a modification of the update
law, for example, the projection type modification (see [14,
15]), or the 𝜎modification (see [16–19]). The main drawback
of this technique is the following:
(D1) upper or lower bounds of the plant coefficients are

required to be known to achieve the asymptotic
convergence of the tracking error to a residual set of
user-defined size.

On the other hand, neural networks allow to represent
part of the nonlinear behavior of real systems and can
take into account the time-varying behavior. In the case of
completely unknown systems, they represent the whole plant
model terms. Usually, the use of neural networks leads to
approximation error, which is nonlinear and possibly time
varying. The effect of this term has been tackled by means
of robust adaptive control schemes based on the Lyapunov or
the Lyapunov-like function; see [15, 19]. Those adaptive con-
trollers exhibit some drawbacks, as shown in the following.
In [19], a nonlinear system in control affine strict-feedback
form is considered, and a neural network SAB control scheme
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is designed. The unknown state-dependent terms are repre-
sented by RBF neural networks, with unknown coefficients
and known basis functions. The following assumptions are
made: (i) the mentioned coefficients are unknown and upper
bounded by known positive constants, and (ii) the identi-
fication error is upper bounded by an unknown constant.
The update laws allow to tackle the effect of the unknown
coefficients of the RBF representation. In that paper, the
stability analysis indicates that the Lyapunov function con-
verges to a residual set whose size depends on both the upper
bound of the identification error and the upper bound of the
coefficients of the RBF representation.Therefore, the tracking
error converges to a residual set whose size depends on those
bounds. Hence, those upper boundsmust be known to obtain
the convergence of the tracking error to a residual set of
user-defined size. In [15] a nonlinear system in control affine
state space form is considered, and a neural network based
on output adaptive backstepping (OAB) is considered. The
unknown nonlinear state-dependent terms are represented
by neural networks with unknown coefficients and known
basis functions. The following assumptions are made: (i)
the coefficients of representation are unknown and constant,
and (ii) the identification error term is upper bounded by
a constant. The projection type update laws allow to tackle
the effect of the unknown coefficients of representation. In
that paper, the stability analysis indicates that the Lyapunov
function converges to a residual set whose size depends on
the upper bound of the identification error term. Therefore,
the tracking error converges to a residual set whose size
also depends on the identification error. Hence, the main
drawback of the mentioned adaptive control schemes is the
following:

(D2) the upper bound of the identification error termmust
be known to achieve the convergence of the tracking
error to a residual set of user-defined size.

As can be noticed from [20–24], Nussbaum-SAB control
schemes are usually based on the schemes in [25–27] which
are in turn based on the Universal Stabilizer that was
originally presented in [28] and discussed in [29, pages 335–
338]. As can be concluded from [20, 21], a proper design
of the Nussbaum-SAB control scheme overcomes the main
drawback of the mentioned 𝜎 and projection based robust-
SAB control schemes, as upper or lower bounds of the
plant model parameters are not required to be known, and
the convergence of the tracking error to a residual set of
user-defined size is guaranteed. Other recent Nussbaum-SAB
control schemes indicate that the Nussbaum gain technique
exhibits the following drawback:

(D3) the upper bound of the transient behavior of the
Lyapunov function depends on integral terms that
involve Nussbaum functions and have the time as the
upper limit of the integral operation (see [24, page
477], [20, page 1791], [6, page 856], and [30, page
4639]). Therefore, the upper bound of the transient
behavior of the tracking error depends on such
integral terms, so that the tracking error may take on
overly large values.

This is in agreement with the violent behavior mentioned in
[29, page 337]. In addition, some of the control schemes that
use this technique have the following drawbacks: (i) some
upper or lower bounds of the plant coefficients are required to
be known in order to guarantee the asymptotic convergence
of the tracking error to a residual set of user-defined size as
in [25, 30], and (ii) the control or update laws involve signum
type signals as in [24, 31].

SAB control schemes have been developed and applied
to motors, and some of them include the incorporation
of the Nussbaum and robustness techniques. In [5] an
adaptive controller is designed for a linear motor drive.
The mathematical model used to describe the motor is in
controllable form, and the friction coefficients are assumed
constant and unknown. Nevertheless, the upper bound of
the disturbance term and the upper and lower bounds of
the friction coefficients are required to be known. In [6] an
adaptive controller based on the Nussbaum gain technique
and the 𝜎 modification of the update law is designed for a
class of SISO systems and applied to a DC motor turning a
robotic load. Each differential equation of the SISO system
involves an additive and unknown disturbance-like term,
which is upper bounded by a known nonnegative function
with unknown coefficients.Nevertheless, the upper and lower
bounds of the plant model parameters must be known to
guarantee the convergence of the tracking error to a residual
set of user-defined size, and the upper bound of the transient
behavior of the tracking error depends on integral terms
that involve the Nussbaum functions. The last drawback is
common in Nussbaum adaptive control schemes. In [7], an
adaptive controller is designed for the position control of
an 𝑥-𝑦-Θ motion control stage using a linear ultrasonic
motor.The friction force includes the static friction, Coulomb
friction, and viscous friction.The idea is to control the 𝑥-axis,
𝑦-axis, and Θ-axis, separately. A lumped uncertainty term
results from the unknown parameter variations and external
force disturbances.The lumped uncertainty is represented by
means of an adaptive fuzzy neural network.The identification
error is defined as the difference between the real value of
the lumped parameter and the representation based on the
Sugeno adaptive fuzzy neural network. Such identification
error is handled by means of an updated parameter provided
by an additional update law and an input compensator. The
Lyapunov function includes a quadratic form depending on
the difference between the identification error and its updated
value. Nevertheless, the time derivative of the Lyapunov
function neglects the time derivative of the identification
error; see page 681. It amounts to assume that the identifi-
cation error is constant or zero in the Lyapunov function.
In [8], a linear induction motor is considered and the goal
is to control the mover position. The friction force and
the unknown time varying model parameters are lumped
into an unknown term whose upper bound is constant and
unknown. The lumped unknown term is represented by a
radial basis function network (RBFN), estimated in real time.
The reconstructed error is defined as the difference between
the lumped term and the representation based on RBFN.
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The effect of the reconstructed error is tackled by means of
an updated parameter provided by an additional updating
law.The Lyapunov function involves a quadratic form for the
difference between the reconstructed error and its updated
parameter. The drawback is that the time derivative of the
reconstructed error is neglected in the time derivative of the
Lyapunov function, which is not realistic and could degrade
the robustness of the controller. In summary, the main
drawbacks of the above control schemes are the following:

(D4) upper and lower bounds of plant model parameters
and lumped plant model terms are required to be
known;

(D5) the upper bound of the transient behavior of the
tracking error depends on integral terms that involve
Nussbaum functions;

(D6) the time derivative of identification error is neglected
in the time derivative of the Lyapunov function.

In the present work, an adaptive controller is developed
for a permanent magnet DC motor. The state adaptive back-
stepping (SAB) of [4] is used as the basic framework for the
controller design. In order to handle the unknown varying
model parameters, significant modifications are introduced
in the approach, on the basis of the modifications appearing
in [32]. The main modifications are as follows: (i) use a
truncated version of the quadratic form that depends on the
backstepping states, and (ii) develop a convergence analysis
based on the truncated version of the quadratic form. Using
the scheme proposed in this paper, the following benefits are
obtained:

(RC1) the resulting upper bound of the transient behavior
of the tracking error is constant and does not depend
on integral terms involving Nussbaum functions, so
that the transient behavior of the tracking error can
be rendered small by properly choosing the controller
parameters;

(RC2) none of the exact values of the plantmodel parameters
are required to be known;

(RC3) none of the upper bounds of the plant model param-
eters are required to be known;

(RC4) the tracking error converges to a residual set whose
size is user defined, despite the lack of knowledge on
both the exact values and the upper bounds of the
plant model parameters;

(RC5) discontinuous signals are avoided in the control and
update laws;

(RC6) the time derivative of the Lyapunov function does not
neglect the time derivative of any varying parameter.

The controller was applied to a permanent magnet DC
motor whose voltage input is supplied by a buck power
converter. With the aim to obtain a good agreement between
simulations and experimental set-up, the numerical sim-
ulation includes realistic characteristics such as internal
resistances, discretization, and time delay. The controller was
implemented in a digital platform. The control design pro-
cedure and the stability analysis indicate that the drawbacks
(D1), (D2), (D3), (D4), (D5), and (D6) are overcome, as the
benefits (RC1) to (RC6) of the control scheme in [32] are
achieved in the presentwork. In addition, the bounded nature
of all the closed loop signals is guaranteed.

This paper is organized as follows. In Section 2 the plant
model used to design the controller and the goal of the control
are presented. In Section 3 the design of the controller is
developed. In Section 4 the bounded nature of the closed
loop signals and the convergence of the tracking error are
proven. In Section 5 numerical and experimental results are
presented, and finally, Section 6 is devoted to conclusions.

2. Plant Model and Control Goal

The linear model corresponding to a DC permanent magnet
motor is given by
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The state variables are the armature current 𝑖
𝑎
and the motor

speed 𝑊
𝑚
. The control input is 𝑢 = V

𝑐
(i.e., the capacitor

voltage supplied by the buck converter) and the output of
the system is 𝑦 = 𝑊

𝑚
. 𝑘
𝑒
; [V/rad/s] is the voltage constant,

𝐿
𝑎
[mH] is the armature inductance, 𝑅

𝑎
[Ω] is the armature

resistance,𝐵 [N⋅m/rad/s] is the viscous friction coefficient, 𝐽
𝑒𝑞

[kg⋅m2] is the inertiamoment, 𝑘
𝑡
[N⋅m/A] is themotor torque

constant,𝑇fric [N⋅m] is the friction torque, and𝑇
𝐿
[N⋅m] is the

load torque.

Remark 1. The only objective of the buck converter is to
supply the voltage value obtained from the controller law.
For this reason it is not taken into account in the controller
design.

The following assumptions for the model (1) are made:
(Ai) the parameters 𝑇

𝐿
and 𝐽
𝑒𝑞

vary with time but they are
upper and lower bounded by unknown constants, (Aii) the
parameters 𝐵, 𝑘

𝑡
, 𝑅
𝑎
, 𝐿
𝑎
, 𝑘
𝑒
are unknown and constant, and

(Aiii) 𝑊
𝑚
and 𝑖
𝑎
are measured. The plant model (1) can be

rewritten as

�̇�
1
= −𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
, (2)

�̇�
2
= −𝑎
4
𝑥
1
− 𝑎
5
𝑥
2
+ 𝑏𝑢, (3)

𝑥
1
= 𝑊
𝑚
, 𝑥
2
= 𝑖
𝑎
, 𝑢 = V

𝑐
, 𝑦 = 𝑊

𝑚
, (4)



4 Abstract and Applied Analysis

where 𝑎
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unknown and time varying, but they are upper and lower
bounded by unknown constants:
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where 𝑒(𝑡) is the tracking error;𝑦
𝑑
is the desired output𝑊

𝑚 ref
is the reference value which is user defined; 𝑎

𝑚1
, 𝑎
𝑚𝑜
, and 𝐶

𝑏𝑒

are user-defined positive constants; and Ω
𝑒
is a residual set.

The objective of the control design is to formulate a control
law for the plant model (1) subject to assumptions (Ai) to
(Aiii), and such that (Cgi) the tracking error 𝑒 asymptotically
converges to the residual set Ω

𝑒
, (Cgii) the controller does

not involve discontinuous signals, (Cgiii) the control law
provides bounded values, and (Cgiv) the closed loops signals
are bounded.

3. Control Design

In this section a controller for the plant defined by (1) and
subject to assumptions (Ai) to (Aiii) is developed taking into
account the control goals (Cgi) to (Cgiv) defined previously.
The procedure is based on the state adaptive backstepping of
[4], but important modifications are introduced in order to
handle the unknown time-varying plant model parameters.
The controller is developed such that the tracking error
𝑒 converges to a residual set whose size is user defined.
Indeed, the control and update laws are formulated such that
the time derivative of the Lyapunov-like function is upper
bounded by a function with the following characteristics:
(TDi) the function is nonpositive, (TDii) the function is zero
if the quadratic form that depends on 𝑧

1
and 𝑧

2
is lower

than a prespecified constant size, and (TDiii) the function is
negative if such quadratic form is larger than a prespecified
constant. If the time derivative of the Lyapunov-like function
is upper bounded by a functionwith such properties, then the
asymptotic convergence of the tracking error to a residual set
of user-defined size is guaranteed.

Discontinuous signals are avoided in the controller design
because such signalsmay imply (see [33, 34]) loss of trajectory
unicity, sliding motion of trajectories along the discontinuity
surface that may lead to chattering (see [34, pages 282-
283]), and input chattering, which is an undesired component
of large commutation rate in the control input (see [34,
page 292]). Large commutation rate may lead to high power
consumption and wear of mechanical components (cf. [35,
36]). Adaptive control based on the direct Lyapunov method
involving discontinuous signals needs a rigorous analysis
which includes ensuring that trajectory unicity is preserved
and developing the Filippov’s construction for the case in
which sliding motion occurs, in order to avoid chattering.
Therefore, it is advisable to avoid discontinuous signals in the
controller design.

With the aim to compute the controller the following
steps are developed: (i) define the first state 𝑧

1
as the differ-

ence between the output and the desired output and differen-
tiate it with respect to time, (ii) define a quadratic function𝑉

𝑧
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that depends on 𝑧
1
and differentiate it with respect to time;

(iii) introduce upper bounds for the time-varying model
coefficients, and parameterize them in terms of parameter
and regression vectors; (iv) express the parameter vector in
terms of updating error and updated parameters, and define
the state 𝑧

2
; (v) differentiate 𝑧

2
with respect to time, define a

quadratic function 𝑉
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2

that depends on 𝑧
2
, and differentiate

it with respect to time; (vi) introduce upper bounds for the
time-varying model coefficients, and parameterize them in
terms of parameter and regression vectors; (vii) express the
parameter vector in terms of updating error and updated
parameter, and formulate the control law; and (viii) formulate
the Lyapunov-like function and differentiate it with respect to
time, and formulate the update laws.
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Differentiating (9) with respect to time and using (2) the
following is obtained:
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The term −𝑐
1
𝑧
2

1
has been added to obtain asymptotic conver-

gence of the tracking error later. The unknown time-varying
behavior of 𝑎

1
, 𝑎
2
, and 𝑎

3
is a significant obstacle for the

controller design; for this reason the bounds defined in (5),
(6), and (7) will be introduced in Step 3 using the Young’s
inequality and parameterizations.
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Step 3. Because𝑎
1
and𝑎
3
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should be expressed in terms of their upper bounds, and these
bounds should be expressed in terms of updated parameters
and updating errors. Properties defined in (5) and (7) yield
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Substituting (13) into (12) and arranging terms the following
is obtained:
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Equation (14) implies that the possible definition of 𝑧
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.

(15)

The lower bound𝜇
𝑙2
and the constant 𝑐

𝑎
have been introduced

in order to complete the proof of stability and boundedness
of the closed loop signals later. For compactness, the terms
involving the unknown constants 𝜇

3
and 𝜇

1
can be arranged

in an unknown constant vector 𝜃
1
. Substituting (15) into (12)

and parameterizing, the following is obtained:

�̇�
𝑧
1

≤ −𝑐
1
𝑧
2

1
+

3𝑐
2

𝑎

2

+ 𝑧
1
𝑎
2
𝑥
2

+

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
(

𝜇
2

3

𝜇
𝑙2

+

𝜇
2

1

𝜇
𝑙2

𝑥
2

1
+

1

𝜇
𝑙2

(𝑐
1
𝑧
1
− �̇�
𝑑
)
2

)

= −𝑐
1
𝑧
2

1
+

3𝑐
2

𝑎

2

+ 𝑧
1
𝑎
2
𝑥
2
+ 𝜑
⊤

1
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
,

(16)

where

𝜑
1
= [1, 𝑥

2

1
, (𝑐
1
𝑧
1
− �̇�
𝑑
)
2

]

⊤

, (17)

𝜃
1
= [

𝜇
2

3

𝜇
𝑙2

,

𝜇
2

1

𝜇
𝑙2

,

1

𝜇
𝑙2

]

⊤

, (18)

where 𝜃
1
is an unknown constant parameter vector and 𝜑

1
is

the known regressor vector.

Step 4. Since 𝜃
1
is unknown, it should be expressed in

terms of updated parameter vector and updating error. The
parameter vector 𝜃

1
can be rewritten as

𝜃
1
=
̂
𝜃
1
−
̃
𝜃
1
, (19)

where

̃
𝜃
1
=
̂
𝜃
1
− 𝜃
1
=
̂
𝜃
1
− [

𝜇
2

3

𝜇
𝑙2

,

𝜇
2

1

𝜇
𝑙2

,

1

𝜇
𝑙2

]

⊤

, (20)

and ̂𝜃
1
is the updated parameter vector provided by the

updating law which will be defined later, and ̃
𝜃
1
is the

updating error. Substituting (19) into (16) and using (6) yield

�̇�
𝑧
1

≤ −𝑐
1
𝑧
2

1
+

3𝑐
2

𝑎

2

+𝑧
1
𝑎
2
𝑥
2
+𝜑
⊤

1

̂
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
−𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
.

(21)

The updated parameter vector ̂𝜃
1
is nonnegative as will be

shown later. Using this fact and (6) it follows that

�̇�
𝑧
1

≤ −𝑐
1
𝑧
2

1
+

3𝑐
2

𝑎

2

+𝑧
1
𝑎
2
𝑥
2
+𝜑
⊤

1

̂
𝜃
1

1

2𝑐
2

𝑎

𝑎
2
𝑧
2

1
−𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
,

(22)

notice that 𝑎
2
is common to the terms involving 𝑥

2
and ̂𝜃

1
.

Thus, 𝑧
1
𝑎
2
is as a common factor of those terms and the new

state 𝑧
2
is defined by

𝑧
2
= 𝑥
2
+ 𝜑
⊤

1

̂
𝜃
1

1

2𝑐
2

𝑎

𝑧
1
. (23)

Replacing (23) into (22) yields

�̇�
𝑧
1

≤ −𝑐
1
𝑧
2

1
+

3𝑐
2

𝑎

2

+ 𝑧
1
𝑎
2
𝑧
2
− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
. (24)

Remark 2. The definition of the state 𝑧
2
is significantly dif-

ferent with respect to that of the basic adaptive backstepping
scheme of [4]. Indeed, 𝑧

2
involves the vector ̂𝜃

1
, and such

vector is multiplied by 𝑧
1
.

Remark 3. Important modifications have been developed
until now, that is, the introduction of the upper bounds of
𝑎
1
and 𝑎
3
(see (13)), the application of the Young’s inequality

(see (15)), and the parameterization including the constant𝜇
𝑙2

(see (16)) are some of them.
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Step 5. Differentiating (23) with respect to time, the following
is obtained:

�̇�
2
= �̇�
2
+ �̇�
⊤

1

̂
𝜃
1

1

2𝑐
2

𝑎

𝑧
1
+ 𝜑
⊤

1

̇
̂
𝜃
1

1

2𝑐
2

𝑎

𝑧
1
+ 𝜑
⊤

1

̂
𝜃
1

1

2𝑐
2

𝑎

�̇�
1
, (25)

where �̇�
1
= [0, 2𝑥

1
�̇�
1
, 2(𝑐
1
𝑧
1
− �̇�
𝑑
)(𝑐
1
�̇�
1
− �̈�
𝑑
)]
⊤. �̇�
2
can be

rewritten as

�̇�
2
= �̇�
2
+ 𝜑
1𝑏
�̇�
1
+ 𝜑
1𝑐
, (26)

where

𝜑
1𝑏
=

1

2𝑐
2

𝑎

(2 (𝑥
1

̂
𝜃
1[2]

+ 𝑐
1
(𝑐
1
𝑧
1
− �̇�
𝑑
)
̂
𝜃
1[3]
) 𝑧
1
+ 𝜑
⊤

1

̂
𝜃
1
) ,

𝜑
1𝑐
= − 2 (𝑐

1
𝑧
1
− �̇�
𝑑
) (𝑐
1
�̇�
𝑑
+ �̈�
𝑑
)
̂
𝜃
1[3]

1

2𝑐
2

𝑎

𝑧
1

+ 𝜑
⊤

1

̇
̂
𝜃
1

1

2𝑐
2

𝑎

𝑧
1
− 𝜑
⊤

1

̂
𝜃
1

1

2𝑐
2

𝑎

�̇�
𝑑
.

(27)

Introducing (2) and (3) into (26) yields

�̇�
2
= −𝑎
4
𝑥
1
− 𝑎
5
𝑥
2
+ 𝜑
1𝑏
(−𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
) + 𝜑
1𝑐
+ 𝑏𝑢.

(28)

The following quadratic form that depends on 𝑧
1
and 𝑧

2
is

chosen:

𝑉
𝑧
= (

1

2

) (𝑧
2

1
+ 𝑧
2

2
) . (29)

Differentiating with respect to time and introducing (24) and
(28) the following is obtained:

�̇�
𝑧
= 𝑧
1
�̇�
1
+ 𝑧
2
�̇�
2
= �̇�
𝑧
1

+ 𝑧
2
�̇�
2

(30)

≤ −𝑐
1
𝑧
2

1
+

3

2

𝑐
2

𝑎
+ 𝑧
1
𝑎
2
𝑧
2
− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1

+𝑧
2
[−𝑎
4
𝑥
1
−𝑎
5
𝑥
2
+𝜑
1𝑏
(−𝑎
1
𝑥
1
+𝑎
2
𝑥
2
−𝑎
3
) +𝜑
1𝑐
+𝑏𝑢] .

(31)

The term −𝑐
2
𝑧
2

2
is added and subtracted in order to obtain

asymptotic convergence of the tracking error:

�̇�
𝑧
≤ −𝑐
1
𝑧
2

1
− 𝑐
2
𝑧
2

2
+

3

2

𝑐
2

𝑎

+ 𝑧
2
[𝑎
2
𝑧
1
− 𝑎
4
𝑥
1
− 𝑎
5
𝑥
2

+ 𝜑
1𝑏
(−𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
) +𝜑
1𝑐
+ 𝑐
2
𝑧
2
+ 𝑏𝑢]

− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
.

(32)

The control input 𝑢 is defined as follows:

𝑢 = 𝑢
𝑎
+ 𝑢
𝑏
, (33)

where 𝑢
𝑎
is a user-defined constant. In particular, an adequate

choice of 𝑢
𝑎
could prevent saturations of the control input; for

this reason the value of 𝑢
𝑎
should be taken from its normal

operation range. 𝑢
𝑏
is established by means of the controller

design. Substituting (33) into (32) yields

�̇�
𝑧
≤ −𝑐
1
𝑧
2

1
− 𝑐
2
𝑧
2

2
+

3

2

𝑐
2

𝑎

+ 𝑧
2
[𝑎
2
𝑧
1
− 𝑎
4
𝑥
1
− 𝑎
5
𝑥
2

+ 𝜑
1𝑏
(−𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
) +𝑏𝑢

𝑎
+ 𝜑
1𝑐
+ 𝑐
2
𝑧
2
]

+ 𝑏𝑢
𝑏
𝑧
2
− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
.

(34)

Step 6. Since 𝑎
1
, 𝑎
2
, and 𝑎

3
are unknown and time varying

they should be expressed in terms of their upper bounds.
In view of (5), (6), and (7) the term involving the squared
brackets can be rewritten as

𝑧
2
[𝑎
2
𝑧
1
− 𝑎
4
𝑥
1
− 𝑎
5
𝑥
2

+ 𝜑
1𝑏
(−𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
) +𝑏𝑢

𝑎
+ 𝜑
1𝑐
+ 𝑐
2
𝑧
2
]

≤




𝑧
2





(𝑎
4





𝑥
1





+ 𝑎
5





𝑥
2





+ 𝜇
2
(




𝑧
1





+




𝑥
2
𝜑
1𝑏





)

+ 𝜇
1





𝑥
1
𝜑
1𝑏





+ 𝜇
3





𝜑
1𝑏





+𝑏




𝑢
𝑎





+




𝜑
1𝑐
+ 𝑐
2
𝑧
2





) .

(35)

Substituting (35) into (34) yields

�̇�
𝑧
≤ −𝑐
1
𝑧
2

1
− 𝑐
2
𝑧
2

2
+

3

2

𝑐
2

𝑎

+ 𝑧
2
[𝑏𝑢
𝑏
+ sgn (𝑧

2
)

× (𝑎
4





𝑥
1





+𝑎
5





𝑥
2





+𝜇
2
(




𝑧
1





+




𝑥
2
𝜑
1𝑏





)+𝜇
1





𝑥
1
𝜑
1𝑏






+ 𝜇
3





𝜑
1𝑏





+ 𝑏





𝑢
𝑎





+




𝜑
1𝑐
+ 𝑐
2
𝑧
2





)]

− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
.

(36)

This expression indicates that the possible control rule for
𝑢
𝑏
would involve the discontinuous signal sgn(𝑧

2
). This can

be remedied by using the Young’s inequality, so that the
term |𝑧

2
| appearing in the right side of (35) leads to 𝑧2

2
. For

compactness (35) can be rewritten as

𝑧
2
[𝑎
2
𝑧
1
− 𝑎
4
𝑥
1
− 𝑎
5
𝑥
2
+ 𝜑
1𝑏
(−𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
)

+𝑏𝑢
𝑎
+ 𝜑
1𝑐
+ 𝑐
2
𝑧
2
]

≤ √𝑏




𝑧
2





𝜑
⊤

𝜃
2
,

(37)
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where

𝜑 = [




𝑥
1





,




𝑥
2





,




𝑧
1






+




𝑥
2
𝜑
1𝑏





,




𝑥
1
𝜑
1𝑏





,




𝜑
1𝑏





,




𝑢
𝑎





,




𝜑
1𝑐
+ 𝑐
2
𝑧
2





]
⊤

,

𝜃
2
=

1

√𝑏

[𝑎
4
, 𝑎
5
, 𝜇
2
, 𝜇
1
, 𝜇
3
, 𝑏, 1]
⊤

(38)

𝜑 is the regression vector whose entries are known, and 𝜃
2

is the parameter vector, whose entries are positive, constant,
and unknown.The constant√𝑏 has been introduced in order
to handle the unknown constant parameter 𝑏 appearing in the
term 𝑏𝑢

𝑏
𝑧
2
.

Step 7. Because the parameter vector 𝜃
2
is unknown, it should

be expressed in terms of updated parameter vector and
updating error. The parameter 𝜃

2
can be rewritten as

𝜃
2
=
̂
𝜃
2
−
̃
𝜃
2
, (39)

where

̃
𝜃
2
=
̂
𝜃
2
−

1

√𝑏

[𝑎
4
, 𝑎
5
, 𝜇
2
, 𝜇
1
, 𝜇
3
, 𝑏, 1] , (40)

where ̂𝜃
2
is the updated parameter vector provided by the

update law which will be defined later, and ̃𝜃
2
is the updating

error. Substituting (39) into (37) yields

𝑧
2
[𝑎
2
𝑧
1
− 𝑎
4
𝑥
1
− 𝑎
5
𝑥
2
+ 𝜑
1𝑏
(−𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
)

+𝑏𝑢
𝑎
+ 𝜑
1𝑐
+ 𝑐
2
𝑧
2
]

≤ √𝑏




𝑧
2





𝜑
⊤̂
𝜃
2
− √𝑏





𝑧
2





𝜑
⊤̃
𝜃
2
.

(41)

Arranging the term √𝑏|𝑧
2
|𝜑
⊤̂
𝜃
2
and applying the Young’s

inequality (cf. [37, page 123]) yield

√𝑏




𝑧
2





𝜑
⊤̂
𝜃
2
= 𝑐
𝑐

1

𝑐
𝑐

√𝑏




𝑧
2





𝜑
⊤̂
𝜃
2
≤

𝑐
2

𝑐

2

+

1

2𝑐
2

𝑐

𝑏𝑧
2

2
(𝜑
⊤̂
𝜃
2
)

2

.

(42)

The constant 𝑐
𝑐
is added to prove the stability. Substituting

(42) into (41) yield

𝑧
2
[𝑎
2
𝑧
1
− 𝑎
4
𝑥
1
− 𝑎
5
𝑥
2
+ 𝜑
1𝑏
(−𝑎
1
𝑥
1
+ 𝑎
2
𝑥
2
− 𝑎
3
)

+𝑏𝑢
𝑎
+ 𝜑
1𝑐
+ 𝑐
2
𝑧
2
]

≤

𝑐
2

𝑐

2

+

1

2𝑐
2

𝑐

𝑏𝑧
2

2
(𝜑
⊤̂
𝜃
2
)

2

− √𝑏




𝑧
2





𝜑
⊤̃
𝜃
2
.

(43)

Substituting (43) into (34) and arranging yield

�̇�
𝑧
≤ −𝑐
1
𝑧
2

1
− 𝑐
2
𝑧
2

2
+

3

2

𝑐
2

𝑎
+

𝑐
2

𝑐

2

+ 𝑏𝑧
2
(𝑢
𝑏
+

1

2𝑐
2

𝑐

𝑧
2
(𝜑
⊤̂
𝜃
2
)

2

)

− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
− √𝑏





𝑧
2





𝜑
⊤̃
𝜃
2
.

(44)

The following expression can be used for 𝑢
𝑏
:

𝑢
𝑏
= −

1

2𝑐
2

𝑐

𝑧
2
(𝜑
⊤̂
𝜃
2
)

2

. (45)

In view of (33), the control law for 𝑢 is

𝑢 = 𝑢
𝑎
−

1

2𝑐
2

𝑐

𝑧
2
(𝜑
⊤̂
𝜃
2
)

2

. (46)

Substituting (46) into (44) the following is obtained:

�̇�
𝑧
≤ −2min {𝑐

1
, 𝑐
2
} 𝑉
𝑧
+

3

2

𝑐
2

𝑎
+

𝑐
2

𝑐

2

− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1
− √𝑏





𝑧
2





𝜑
⊤̃
𝜃
2
.

(47)

To handle the effect of the constant (3/2)𝑐2
𝑎
+ (1/2)𝑐

2

𝑐
, the

following quadratic-like function is defined:

𝑉
𝑧
=

{

{

{

(

1

2

) (√𝑉
𝑧
− √𝐶

𝑏V𝑧)
2 if 𝑉

𝑧
≥ 𝐶
𝑏V𝑧,

0 otherwise,
(48)

𝐶
𝑏V𝑧 = (

1

2

)𝐶
2

𝑏𝑒
. (49)

The term 𝑉
𝑧
is defined in (29). Function defined by (48) and

(49) has the following properties:

𝑉
𝑧
≥ 0,

𝑉
𝑧
≤ 3𝐶
𝑏V𝑧 + 3𝑉𝑧,

𝑉
𝑧
,

𝜕𝑉
𝑧

𝜕𝑉
𝑧

are locally Lipschitz continuous.

(50)

Differentiating (48) with respect to time the following is
obtained:

𝑑𝑉
𝑧

𝑑𝑡

=

𝜕𝑉
𝑧

𝜕𝑉
𝑧

�̇�
𝑧
, (51)

where

𝜕𝑉
𝑧

𝜕𝑉
𝑧

=

{
{

{
{

{

1

2

√𝑉
𝑧
− √𝐶

𝑏V𝑧

√𝑉
𝑧

, if 𝑉
𝑧
≥ 𝐶
𝑏V𝑧,

0, otherwise.
(52)

From (52) it follows that 𝜕𝑉
𝑧
/𝜕𝑉
𝑧
is nonnegative, so that it

can be introduced in both sides of (47) without changing the
sense of the inequality:

𝜕𝑉
𝑧

𝜕𝑉
𝑧

�̇�
𝑧
≤ −2min {𝑐

1
, 𝑐
2
} 𝑉
𝑧

𝜕𝑉
𝑧

𝜕𝑉
𝑧

+ (

3

2

𝑐
2

𝑎
+

𝑐
2

𝑐

2

)

𝜕𝑉
𝑧

𝜕𝑉
𝑧

− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1

𝜕𝑉
𝑧

𝜕𝑉
𝑧

− √𝑏




𝑧
2





𝜑
⊤̃
𝜃
2

𝜕𝑉
𝑧

𝜕𝑉
𝑧

.

(53)
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Combining (51) and (53) yields

𝑑𝑉
𝑧

𝑑𝑡

≤ −2min {𝑐
1
, 𝑐
2
} 𝑉
𝑧

𝜕𝑉
𝑧

𝜕𝑉
𝑧

+ (

3

2

𝑐
2

𝑎
+

𝑐
2

𝑐

2

)

𝜕𝑉
𝑧

𝜕𝑉
𝑧

− 𝜑
⊤

1

̃
𝜃
1

1

2𝑐
2

𝑎

𝜇
𝑙2
𝑧
2

1

𝜕𝑉
𝑧

𝜕𝑉
𝑧

− √𝑏




𝑧
2





𝜑
⊤̃
𝜃
2

𝜕𝑉
𝑧

𝜕𝑉
𝑧

.

(54)

Step 8. The following Lyapunov-like function is defined:

𝑉 = 𝑉
𝑧
+ 𝑉
𝜃
, (55)

𝑉
𝜃
= (

1

2

) 𝜇
𝑙2

̃
𝜃

⊤

1
Γ
−1

1

̃
𝜃
1
+ (

1

2

)√𝑏
̃
𝜃

⊤

2
Γ
−1

2

̃
𝜃
2
, (56)

where ̃𝜃
1
and ̃𝜃
2
are defined in (20) and (40), respectively. To

compute �̇�, the time derivative of 𝑉
𝜃
is computed as

�̇�
𝜃
=

𝜇
𝑙2

2

{
̇
̃
𝜃

⊤

1
Γ
−1

1

̃
𝜃
1
+
̃
𝜃
1
Γ
−1

1

̇
̃
𝜃
1
} +

√𝑏

2

{
̇
̃
𝜃

⊤

2
Γ
−1

2

̃
𝜃
2
+
̃
𝜃
2
Γ
−1

2

̇
̃
𝜃
2
}

= 𝜇
𝑙2

̃
𝜃

⊤

1
Γ
−1

1

̇
̂
𝜃
1
+ √𝑏

̃
𝜃

⊤

2
Γ
−1

2

̇
̂
𝜃
2
.

(57)

Now, differentiating (55) with respect to time and using (54)
and (57) yield

�̇� =
̇
𝑉
𝑧
+ �̇�
𝜃
≤ −2min {𝑐

1
, 𝑐
2
} 𝑉
𝑧

𝜕𝑉
𝑧

𝜕𝑉
𝑧

+ (

3

2

𝑐
2

𝑎
+

𝑐
2

𝑐

2

)

𝜕𝑉
𝑧

𝜕𝑉
𝑧

+ 𝜇
𝑙2

̃
𝜃

⊤

1
(−𝜑
1

1

2𝑐
2

𝑎

𝑧
2

1

𝜕𝑉
𝑧

𝜕𝑉
𝑧

+ Γ
−1

1

̇
̂
𝜃
1
)

+ √𝑏
̃
𝜃

⊤

2
(−





𝑧
2





𝜑

𝜕𝑉
𝑧

𝜕𝑉
𝑧

+ Γ
−1

2

̇
̂
𝜃
2
) .

(58)

To tackle the effect of the terms involving the updating errors
̃
𝜃
1
and ̃𝜃
2
the following update laws are formulated:

̇
̂
𝜃
1
= Γ
1
𝜑
1

1

2𝑐
2

𝑎

𝑧
2

1

𝜕𝑉
𝑧

𝜕𝑉
𝑧

with ̂𝜃
1
(𝑡
0
) ≥ 0,

̇
̂
𝜃
2
= Γ
2





𝑧
2





𝜑

𝜕𝑉
𝑧

𝜕𝑉
𝑧

with ̂𝜃
2
(𝑡
0
) ≥ 0,

(59)

where Γ
1
and Γ

2
are diagonal matrices whose elements are

user-defined positive constants. From (17) and (52) it follows
that𝜑

1
= |𝜑
1
| ≥ 0 and 𝜕𝑉

𝑧
/𝜕𝑉
𝑧
≥ 0 such that ̂𝜃

1
(𝑡) = |

̂
𝜃
1
| ≥ 0.

Substituting (59) into (58) yields

�̇� ≤ −

𝜕𝑉
𝑧

𝜕𝑉
𝑧

(2min {𝑐
1
, 𝑐
2
} 𝑉
𝑧
−

3

2

𝑐
2

𝑎
−

𝑐
2

𝑐

2

)

= −min {𝑐
1
, 𝑐
2
}

𝜕𝑉
𝑧

𝜕𝑉
𝑧

(2𝑉
𝑧
−

1

2

3𝑐
2

𝑎
+ 𝑐
2

𝑐

min {𝑐
1
, 𝑐
2
}

) .

(60)

Although the control law (46) and the update laws (59) have
been formulated, the values of the constants 𝑐

𝑎
and 𝑐
𝑐
have not

been defined. The constants 𝑐
𝑎
and 𝑐
𝑐
are positive constants

defined by the user and they must satisfy

3𝑐
2

𝑎
+ 𝑐
2

𝑐
≤ 2min {𝑐

1
, 𝑐
2
} 𝐶
𝑏V𝑧. (61)

A simple choice that satisfies the above requirement is

𝑐
𝑎
= 𝑐
𝑐
= (

1

2

)𝐶
𝑏𝑒
√min {𝑐

1
, 𝑐
2
}. (62)

From (52) the following is obtained:

𝜕𝑉
𝑧

𝜕𝑉
𝑧

= 0 for 𝑉
𝑧
≤ 𝐶
𝑏V𝑧,

𝜕𝑉
𝑧

𝜕𝑉
𝑧

> 0 for 𝑉
𝑧
> 𝐶
𝑏V𝑧.

(63)

From (63), (61), and (60) it follows that

�̇� ≤ 0 = −𝑐
1
𝑉
𝑧

𝜕𝑉
𝑧

𝜕𝑉
𝑧

, if 𝑉
𝑧
≤ 𝐶
𝑏V𝑧,

�̇� ≤ −min {𝑐
1
, 𝑐
2
}

𝜕𝑉
𝑧

𝜕𝑉
𝑧

𝑉
𝑧
≤ 0, if 𝑉

𝑧
≥ 𝐶
𝑏V𝑧.

(64)

Finally, the combination of the above expressions yields

�̇� ≤ −min {𝑐
1
, 𝑐
2
}

𝜕𝑉
𝑧

𝜕𝑉
𝑧

𝑉
𝑧
. (65)

The developed controller involves the control law (46) and
the update laws (59).The signals and parameters necessary to
implement it are 𝑧

1
, 𝑧
2
, 𝜑
1
, 𝜑, 𝜑
1𝑏
, 𝜑
1𝑐
, 𝜕𝑉
𝑧
/𝜕𝑉
𝑧
, 𝑉
𝑧
, and 𝑉

𝑧

which are given by (9), (23), (17), (38), (27), (52), (29), and
(48), respectively. In addition, 𝑐

1
, 𝑐
2
, the diagonal elements of

Γ
1
and Γ
2
, 𝑐
𝑎
, 𝑐
𝑐
, and 𝑢

𝑎
are user-defined positive constants. In

particular, 𝑐
𝑎
and 𝑐
𝑐
must satisfy (61), 𝐶

𝑏V𝑧 = (1/2)𝐶
2

𝑏𝑒
where

𝐶
𝑏𝑒
is a user-defined positive constant.

Remark 4. Expression (65) indicates that �̇� fulfills conditions
(TDi), (TDii), and (TDiii) mentioned at the beginning of
Section 3.

Remark 5. The developed controller has the following bene-
fits. (i) it does not use upper or lower bounds of coefficients
of model (2) and (3). Indeed, the controller does not use any
of the constants 𝑏

𝑚𝑥
, 𝜇
𝑙1
, 𝜇
1
, 𝜇
2
, 𝜇
3
, and 𝜇

4
. This implies less

modeling effort. (ii) It does not involve discontinuous signals.
This implies that the vector field of the closed loop system
is locally Lipschitz continuous, so that trajectory unicity is
preserved and sliding motion is absent according to [33].
The locally Lipschitz nature of 𝜕𝑉

𝑧
/𝜕𝑉
𝑧
is important to avoid

discontinuous signals in the update law.
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Remark 6. The main elements to handle the unknown vary-
ing nature of coefficients 𝑎

1
, 𝑎
2
, and 𝑎

3
are as follows: (i)

introduce the constant 𝜇
𝑙2
in the parametrization in (16), (17),

and (18); (ii) introduce the relationship between 𝜇
𝑙2
and 𝑎

2

provided by (6) in (24); (iii) express 𝑎
1
, 𝑎
2
, and 𝑎

3
in terms

of their upper bounds in (35); (iv) introduce the constant
√𝑏 in the unknown parameter vector 𝜃

2
(see (37) and (38));

(v) apply the Young’s inequality to the term √𝑏|𝑧
2
|𝜑
⊤̂
𝜃
2
(see

(42)); and (vi) formulate the function𝑉
𝑧
which is a truncated

version of the quadratic form 𝑉
𝑧
(see (48)). The vanishing

of 𝜕𝑉
𝑧
/𝜕𝑉
𝑧
allows preserving the decreasing nature of the

Lyapunov-like function, as can be noticed from (65). The
continuous nature of the derivative of 𝑉

𝑧
with respect to 𝑉

𝑧

allows to avoid discontinuous signals in the update law.

Remark 7. The effect of a low value of 𝐶
𝑏𝑒
is analyzed at the

following. From (59), (52), (49), and (61) it follows that a low
value of 𝐶

𝑏𝑒
implies the following facts: (i) the term 𝜕𝑉

𝑧
/𝜕𝑉
𝑧

is nonzero for longer time lapses, and consequently the
update law (59) is active for longer time lapses; the updated
parameter ̂𝜃

2
increases during longer time lapses, which leads

to reach larger values; (ii) the constant 𝐶
𝑏V𝑧 is smaller, and

consequently the values of√𝑉
𝑧
−√𝐶
𝑏V𝑧, 𝜕𝑉𝑧/𝜕𝑉𝑧,

̇
̂
𝜃
2
, and ̂𝜃

2

increase; and (iii) the chosen values of 𝑐
𝑎
and 𝑐
𝑐
have to be

lower in order to accomplish condition (61). Therefore, the
term 𝑐

−2

𝑐
(𝜑
⊤̂
𝜃
2
)
2 becomes larger and from (46) it follows that

𝑢 − 𝑢
𝑎
takes on larger values, which is interpreted as a bigger

control effort.

The developed controller achieves some of the benefits
mentioned in introduction. Sections 4.1 and 4.2 complete the
proof of the other proposed benefits.

4. Boundedness Analysis

In this section it is proven that the closed loop signals
are bounded if the developed controller is used; also the
convergence of the tracking error to a residual set is proven.

4.1. Boundedness of the Closed Loop Signals

Theorem 8 (boundedness of the closed loop signals). Con-
sider the plant model given by (1) which is subject to assump-
tions (Ai) to (Aiii). The signals 𝑧

1
and 𝑧
2
are defined in (9) and

(23); 𝜑
1
, 𝜑
1𝑏
, 𝜑
1𝑐
, and 𝜑 are defined in (17), (27), and (38),

respectively; the signals 𝑉
𝑧
, 𝑉
𝑧
, and 𝜕𝑉

𝑧
/𝜕𝑉
𝑧
are defined in

(29), (48), and (52), respectively; the constant 𝐶
𝑏V𝑧 is defined

by (49) and the constants 𝑐
𝑎
and 𝑐
𝑐
satisfy (61). If the controller

defined in (46) and (59) is applied, then the signals 𝑧
1
, 𝑧
2
, ̂𝜃
1
,

̂
𝜃
2
, and 𝑢 remain bounded.

Proof. From (65) it follows that

�̇� ≤ 0, 𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡
𝑜
)) , (66)

where

𝑉 (𝑥 (𝑡
𝑜
)) = 𝑉

𝑧𝑜
+ 𝑉
𝜃𝑜
, (67)

𝑉
𝑧𝑜
=

{

{

{

(

1

2

) (√𝑉
𝑧𝑜
− √𝐶

𝑏V𝑧) if 𝑉
𝑧𝑜
≥ 𝐶
𝑏V𝑧,

0 otherwise,
(68)

𝑉
𝑧𝑜
= (

1

2

) (𝑧
1
(𝑡
𝑜
)
2

+ 𝑧
2
(𝑡
𝑜
)
2

) , (69)

𝑉
𝜃𝑜
= (

1

2

) 𝜇
𝑙1
(
̂
𝜃
1
(𝑡
𝑜
) − 𝜃
1
)

⊤

Γ
−1

1
(
̂
𝜃
1
(𝑡
𝑜
) − 𝜃
1
)

+ (

1

2

)√𝑏(
̂
𝜃
2
(𝑡
𝑜
) − 𝜃
2
)

⊤

Γ
−1

2
(
̂
𝜃
2
(𝑡
𝑜
) − 𝜃
2
) .

(70)

From (66) and (55) it follows that

𝑉
𝑧
+ 𝑉
𝜃
≤ 𝑉 (𝑥 (𝑡

𝑜
)) , 𝑉

𝑧
≤ 𝑉 (𝑥 (𝑡

𝑜
)) , 𝑉
𝜃
≤ 𝑉 (𝑥 (𝑡

𝑜
)) .

(71)

Using (56) the following is obtained: ̃𝜃
1
∈ 𝐿
∞

and ̃𝜃
2
∈ 𝐿
∞
;

consequently ̂𝜃
1
∈ 𝐿
∞
and ̂𝜃
2
∈ 𝐿
∞
.The upper bound for the

tracking error is defined as follows. Solving (48) for 𝑉
𝑧
yields

𝑉
𝑧
= (√2𝑉

𝑧
+ √𝐶

𝑏V𝑧)

2

, if 𝑉
𝑧
> 0,

𝑉
𝑧
≤ 𝐶
𝑏V𝑧, otherwise.

(72)

Using (71) yields

𝑉
𝑧
≤ (√2𝑉 (𝑥 (𝑡

𝑜
)) + √𝐶

𝑏V𝑧)

2

, if 𝑉
𝑧
> 0,

𝑉
𝑧
≤ 𝐶
𝑏V𝑧 ≤ (

√2𝑉 (𝑥 (𝑡
𝑜
)) + √𝐶

𝑏V𝑧)

2

, if 𝑉
𝑧
= 0.

(73)

Both expressions of (73) can be combined to obtain

𝑉
𝑧
≤ (√𝐶

𝑏V𝑧 +
√2𝑉 (𝑥 (𝑡

𝑜
)))

2

. (74)

Introducing (29) yields

√𝑧
2

1
+ 𝑧
2

2
≤ √2(√𝐶

𝑏V𝑧 +
√2𝑉 (𝑥 (𝑡

𝑜
))) , (75)

where 𝑉(𝑥(𝑡
𝑜
)) is defined in (67). Therefore 𝑧

1
∈ 𝐿
∞

and
𝑧
2
∈ 𝐿
∞
. Because 𝑒 = 𝑧

1
, then

|𝑒| ≤ √𝑧
2

1
+ 𝑧
2

2
≤ √2(√𝐶

𝑏V𝑧 +
√2𝑉 (𝑥 (𝑡

𝑜
))) , (76)

which is an upper bound for the transient behavior of the
tracking error 𝑒.

In the following it is proven that 𝑢 is bounded. From (9),
(23), 𝑧

1
∈ 𝐿
∞
, 𝑧
2
∈ 𝐿
∞
, ̂𝜃
1
∈ 𝐿
∞
, and ̂𝜃

2
∈ 𝐿
∞
it follows that

𝑥
1
∈ 𝐿
∞

and 𝑥
2
∈ 𝐿
∞
. Therefore from (17), (27), and (38)

it follows that 𝜑
1
∈ 𝐿
∞
, 𝜑
1𝑏
∈ 𝐿
∞
, 𝜑
1𝑐
∈ 𝐿
∞
, and 𝜑 ∈ 𝐿

∞
.

Finally from (46) it follows that 𝑢 ∈ 𝐿
∞
.

Remark 9. Notice that the upper bound of (76) does not
involve integral terms, which is an important advantage with
respect to controllers that involve theNussbaum gainmethod
(see [20, 21]).



10 Abstract and Applied Analysis

Digital PWM
controller

dSPACE
Simulink PWM

Backstepping
controller

A/D

Software
(dSPACE )

Hardware

Gate Buck
converter

DC
motor

sensor
𝑊𝑚 , 𝑖𝑎𝐶𝑏𝑒 , Γ1

𝑊𝑚 ref , 𝑐1,

Figure 1: Block diagram of the proposed system.

4.2. Convergence Analysis. Now it is proven that the devel-
oped controller induces asymptotic convergence of the track-
ing error 𝑒 to the residual set Ω

𝑒
, where Ω

𝑒
= {𝑒 : |𝑒| ≤ 𝐶

𝑏𝑒
},

with 𝐶
𝑏𝑒
defined by the user.

Theorem 10 (convergence of the tracking error). Consider
the plant model given by (1) which is subject to assumptions
(Ai) to (Aiii); the signals 𝑧

1
, 𝑧
2
, 𝜑
1
, 𝜑
1𝑏
, 𝜑
1𝑐
, 𝜑, 𝑉

𝑧
, 𝑉
𝑧
, and

𝜕𝑉
𝑧
/𝜕𝑉
𝑧
are defined by (9), (23), (17), (27), (38), (29), (48),

and (52), respectively; the constant 𝐶
𝑏V𝑧 is defined in (49) and

the constants 𝑐
𝑎
, 𝑐
𝑐
satisfy (61). If the controller given by (46)

and (59) is applied, then the tracking error 𝑒 asymptotically
converges to a residual set Ω

𝑒
, where Ω

𝑒
= {𝑒 : |𝑒| ≤ 𝐶

𝑏𝑒
}.

Proof. In view of (52), inequality (65) can be rewritten as

�̇� ≤ −𝑐
1
𝑓
𝑑
≤ 0, (77)

𝑓
𝑑
=

{

{

{

(

1

2

) (√𝑉
𝑧
− √𝐶

𝑏V𝑧)√𝑉𝑧, if 𝑉
𝑧
≥ 𝐶
𝑏V𝑧,

0, otherwise.
(78)

It can be noticed that the term 𝜕𝑓
𝑑
/𝜕𝑉
𝑧
is not continuous,

because it involves an abrupt change at 𝑉 = 𝐶
𝑏V𝑧; for this

reason the Barbalat’s lemma cannot be applied on 𝑓
𝑑
. To

remedy that, (77) can be expressed in terms of a functionwith
continuous derivative as follows:

�̇� ≤ −𝑐
1
𝑓
𝑑
≤ −𝑐
1
𝑓
𝑔
≤ 0 ∀𝑡 ≥ 𝑡

𝑜
, (79)

where

𝑓
𝑔
=

{

{

{

(

1

2

) (√𝑉
𝑧
− √𝐶

𝑏V𝑧)
2

, if 𝑉
𝑧
≥ 𝐶
𝑏V𝑧,

0, otherwise.
(80)

Arranging and integrating (79) the following is obtained:

𝑐
1
∫

𝑡

𝑡
𝑜

𝑓
𝑔
𝑑𝜏 ≤ 𝑉 (𝑥 (𝑡

𝑜
)) − 𝑉 (𝑥 (𝑡)) ,

𝑉 (𝑥 (𝑡)) + 𝑐
1
∫

𝑡

𝑡
𝑜

𝑓
𝑔
𝑑𝜏 ≤ 𝑉 (𝑥 (𝑡

𝑜
)) .

(81)

Therefore 𝑓
𝑔
∈ 𝐿
1
. In order to apply the Barbalat’s lemma

it is necessary to prove that 𝑓
𝑔
∈ 𝐿
∞

and ̇
𝑓
𝑔
∈ 𝐿
∞
. Since

𝑉
𝑧
∈ 𝐿
∞

it follows from (80) that 𝑓
𝑔
∈ 𝐿
∞
. Differentiating

(80) with respect to time yields

̇
𝑓
𝑔
=

𝜕𝑓
𝑔

𝜕𝑉
𝑧

�̇�
𝑧
, (82)

𝜕𝑓
𝑔

𝜕𝑉
𝑧

=

{
{

{
{

{

√𝑉
𝑧
− √𝐶

𝑏V𝑧

2√𝑉
𝑧

, if 𝑉
𝑧
≥ 𝐶
𝑏V𝑧,

0, otherwise.
(83)

Notice that 𝜕𝑓
𝑔
/𝜕𝑉
𝑧
is continuous with respect to 𝑉

𝑧
. Since

𝑉
𝑧
∈ 𝐿
∞

then 𝜕𝑓
𝑔
/𝜕𝑉
𝑧
∈ 𝐿
∞
. Because 𝑧

1
∈ 𝐿
∞
, 𝑧
2
∈

𝐿
∞
, 𝑥
1
∈ 𝐿
∞
, 𝑥
2
∈ 𝐿
∞
, and 𝑢 ∈ 𝐿

∞
it follows from

(10) and (25) that �̇�
1
∈ 𝐿
∞

and �̇�
2
∈ 𝐿
∞
. Thus, from

(30) it follows that �̇�
𝑧
∈ 𝐿
∞
. Because 𝜕𝑓

𝑔
/𝜕𝑉
𝑧
∈ 𝐿
∞

and �̇�
𝑧
∈ 𝐿
∞

then it follows from (82) that ̇
𝑓
𝑔
∈ 𝐿
∞
.

Because 𝑓
𝑔
∈ 𝐿
∞

and ̇
𝑓
𝑔
∈ 𝐿
∞

the Barbalat’s lemma (cf.
[38, page 76]) indicates that 𝑓

𝑔
asymptotically converges to

zero. From (80) it follows that 𝑉
𝑧
converges to ΩV𝑧, where

ΩV𝑧 = {𝑉𝑧 : 𝑉𝑧 ≤ 𝐶𝑏V𝑧}. Furthermore, from (29) it follows
that 𝑧

1
asymptotically converges to Ω

𝑧
1

, where Ω
𝑧
1

= {𝑧
1
:

|𝑧
1
| ≤ √2𝐶

𝑏V𝑧}. Since 𝐶𝑏V𝑧 = (1/2)𝐶
2

𝑏𝑒
and 𝑧

1
= 𝑒, then

𝑒 asymptotically converges to Ω
𝑒
, where Ω

𝑒
= {𝑒 : |𝑒| ≤

𝐶
𝑏𝑒
}.

Remark 11. The tracking error 𝑒 converges to a residual set
whose size is user defined and not altered by the varying
parameters.

5. Numerical and Experimental Results

In this section numerical and experimental results are shown.
Figure 1 shows the block diagram of the system under study.
This system is divided into two major groups: the first one is
composed by all hardware parts, including physical and elec-
tronic components; the second one is related to software and
is implemented in a dSPACE platform, where the acquisition
signals and the control technique are performed.



Abstract and Applied Analysis 11

The hardware is composed of a permanent magnet DC
motor (PMDC) with rated power 250Watts, rated Volts
42VDC, rated current 6Amps, and 4000RPM of maximum
speed. For the acquisition of motor speed𝑊

𝑚
, a 1000 pulses

per turn encoder was used. A series resistance was used
to measure the armature current (𝑖

𝑎
). The digital part and

the backstepping control technique are implemented in the
control and development card dSPACE DS1104. This card is
programmed from Matlab/Simulink platform and it has a
graphical display interface calledControlDesk.The controller
is implemented in Simulink and is downloaded to the DSP.
The sampling rate for all variables (𝑊

𝑚
and 𝑖
𝑎
) is set to

4 kHz.The state variable 𝑖
𝑎
is 12-bit resolution; the controlled

variable 𝑊
𝑚

is sensed by an encoder which has 28-bit
resolution and the duty cycle (𝑑) is 10-bit resolution. At each
sampling time (250 𝜇s) the controller uses the measured𝑊

𝑚

and 𝑖
𝑎
to calculate the duty cycle 𝑑, as follows: (i) the control

input 𝑢 = 𝜐
𝑐
is determined according to the control and

update laws based on the proposed procedure (see Section 4),
(ii) the duty cycle 𝑑 is computed from 𝑑 = 𝑢/𝐸, and (iii) the
duty cycle 𝑑 is transformed into a PWMC pulse signal. To
obtain simulation results the parameters of DCmotor (𝐵, 𝐽

𝑒𝑞
,

𝑘
𝑡
, 𝑘
𝑒
, 𝑇fric, 𝑅𝑎, and 𝐿𝑎) and backstepping controller (𝐶

𝑏𝑒
, 𝑐
1
,

𝑐
2
, Γ
1
, Γ
2
, 𝑢
𝑎
, and𝑊

𝑚 ref) are entered to the control block by
the user, as constant parameters. The load torque 𝑇

𝐿
is time

varying and unknown.
Figure 2 shows a sketch of the Simulink benchmark. The

controller uses the measurements of 𝑊
𝑚
and 𝑖
𝑎
to compute

𝑢 = 𝜐
𝑐
, the duty cycle applied to buck converter is given

by 𝑑 = 𝑢/𝐸. The zero-order hold, quantizer, and delay
are included in order to model the signal acquisition and
the analog to digital signal conversion. The motor and buck
converter parameters used in simulationwere experimentally
measured and are presented in Table 1. Recall that the values
of the motor parameters (𝑅

𝑎
, 𝐿
𝑎
, 𝐵, 𝐽
𝑒𝑞
, 𝑘
𝑡
, 𝑘
𝑒
, 𝑇fric, and 𝑇𝐿)

and the converter parameters (𝐸,𝑉
𝑓𝑑
, 𝑟
𝑠
, 𝑟
𝐿
, 𝐶, and 𝐿) are not

used by the control or update laws, neither in simulation nor
experimentation.

Figure 3 shows the desired output 𝑦
𝑑
and the measured

and simulated output𝑊
𝑚
when𝑊

𝑚 ref = 200 rad/s. In Figures
4(a) and 4(b), the numerical and experimental tracking errors
𝑒 = 𝑊

𝑚
− 𝑦
𝑑
are shown. It can be seen that in simulation

the error converges to a residual set Ω
𝑒
= 5 rad/s (whose size

is given by 𝐶
𝑏𝑒
= 5) and in experiment there is a bit error,

probably due to quantization effects, delays, or unmodeled
dynamics. Nevertheless, experimental and numerical results
agree.

Figure 5 shows the numerical and experimental con-
troller performance when 𝑊

𝑚 ref changes from 200 rad/s to
300 rad/s at 𝑡 = 1 s. As in previous example, |𝑒| < 5 rad/s in
steady state for simulation case and in experimental case the
results are very close to this bound.

Figure 6 shows the results when the load torque 𝑇
𝐿
+𝑇fric

changes from 0.1639N⋅m to 0.101N⋅m at 𝑡 = 1 s. Notice that
the controller achieves successfully tracking error, and the
steady state bound is very close to the given value𝐶

𝑏𝑒
= 5. An

estimator for the torque was added only with the aim to show
simulation and real values of load torque, but this estimator
does not work in the controller.

Table 1: Simulation and experimentation parameters.

Parameter Value
𝐸: input voltage 40V
𝑟
𝑠
: internal resistance of the source and

MOSFET 0.84Ω

𝑉
𝑓𝑑
: diode forward voltage 1.1 V

𝐿: inductance 2.473mH
𝑟
𝐿
: internal resistance of the inductor 1.695Ω

𝐶: capacitance 46.27 𝜇F
𝑅
𝑎
: armature resistance 2.7289Ω

𝐿
𝑎
: armature inductance 1.17mH

𝐵: viscous friction coefficient 0.000138N⋅m/rad/s
𝐽
𝑒𝑞
: moment of inertia 0.000115 kg⋅m2

𝑘
𝑡
: motor torque constant 0.0663N⋅m/A

𝑘
𝑒
: voltage constant 0.0663V/rad/s

𝑇fric: friction torque 0.0284N⋅m
𝑇
𝐿
: load torque variableN⋅m

𝑊
𝑚 ref : reference speed 200 and 300 rad/s

𝐹
𝑐
: switching frequency 4 kHz

𝐹
𝑠
: sampling frequency 4 kHz

1𝑇
𝑝
: unit time delay 250 𝜇s

𝑊
𝑚
: motor speed 28 bits resolution

𝑖
𝑎
: motor current 12 bits resolution
𝑑: duty cycle 10 bits resolution
Zero-order hold: fixed step discrete time 250 𝜇s
𝐼
3
: unity matrix of dimension 3

𝐼
7
: unity matrix of dimension 7

Γ
1
: updating gain 0.0003𝐼

3

Γ
2
: updating gain 0.0003𝐼

7

𝐶
𝑏𝑒
: user-defined constant 5

𝑐
1
and 𝑐
2
: user-defined gains 1

𝑐
𝑎
and 𝑐
𝑐
: user-defined gains 2.5

𝑢
𝑎
: initial control action defined by the

user 30V

It can be noticed from Remark 7 that low values of 𝐶
𝑏𝑒

lead to high control effort. For this reason, a small error
region (low value of𝐶

𝑏𝑒
) causes saturation and faster response

of the actuator. In case that the actuator cannot respond
quickly, the condition of error region is not satisfied and the
control design is not completely successful. In this way, the
definition of 𝐶

𝑏𝑒
is a compromise between requirements of

the output and actuator performance.

6. Conclusions

In all simulations, output error converges to a residual set
defined by the user when the designed controller in this
paper is applied to the plant. Small differences between
experiment and theoretic results (Figures 4 and 5) are mainly
due to hardware considerations and aspects related to the
implementation which was not taken into account in the
controller design. Some of them are delay in the control
action, quantization effects which do not guarantee continu-
ous control signal, noise and delays in themeasured variables,
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Figure 2: Sketch of the Simulink benchmark for simulation of the controller and motor system.
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Figure 3: Simulated and experimental controller performance when𝑊
𝑚 ref = 200 rad/s.

and inaccuracy in the sensors. Nevertheless, starting from
a complete unknown model, experiments and simulations
show a high agreement, and experimental results validate the
control technique, even in the cases when the set point is
changed 50% of its initial value, and in the case when the

load is changed 37% of its initial value. The designer must
take into account the differences between experiments and
simulations, prior to defining the error region.

The controller design based on the state adaptive back-
stepping involves a state transformation that provides two
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Figure 4: (a) Simulated and (b) experimental results for the tracking error when𝑊
𝑚 ref = 200 rad/s.
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Figure 5: Simulated and experimental results when𝑊
𝑚 ref changes from 200 rad/s to 300 rad/s at 𝑡 = 1 s. (a), (c) simulated results. (b), (d)

experimental results.
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Figure 6: Simulated and experimental results when the load torque 𝑇
𝐿
+ 𝑇fric changes from 0.1639N⋅m to 0.101N⋅m at 𝑡 = 1 s. (a), (c), (e)

simulated results. (b), (d), (f) experimental results.

new states. The main elements to handle the unknown
varying behavior of moment of inertia and load torque are
introducing the upper bound of the model coefficients and
introducing the lower bound of model coefficient 𝑎

2
in the

parameterization.
With the aim to apply Lyapunov theory to demonstrate

the stability of the controlled system a truncated quadratic

function was formulated (Lyapunov-like function), in such
a way that its magnitude and time derivative vanish when
the new states reach a target region, which implied adequate
properties of its time derivative.

The controller design and proof of boundedness and
convergence properties are simpler in comparison to current
works that use the Nussbaum gain technique.
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