
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 612342, 8 pages
http://dx.doi.org/10.1155/2013/612342

Research Article
Third-Order Leader-Following Consensus in a Nonlinear
Multiagent Network via Impulsive Control

Xiaomei Li,1 Zhongjun Ma,1 Chunhai Li,1 and Jinde Cao2

1 School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, China
2Department of Mathematics, Southeast University, Nanjing 210096, China

Correspondence should be addressed to Zhongjun Ma; mzj1234402@163.com

Received 15 June 2013; Accepted 24 August 2013

Academic Editor: Qiankun Song

Copyright © 2013 Xiaomei Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many facts indicate that the impulsive control method is a finer method, which is simple, efficient, and low in cost, for achieving
consensus. In this paper, based on graph theory, Lyapunov stability theory, and matrix theory, a novel impulsive control protocol
is given to realize the consensus of the multiagent network. Numerical simulations are performed to verify the theoretical results.

1. Introduction

In the past few years, consensus of multiagent networks
has been intensively studied in many fields, such as biolog-
ical, social, mathematical, and physical sciences ones [1–5].
Generally speaking, consensus refers to designing a system
algorithm or protocol such that all agents asymptotically
reach an agreement on their states. In particular, leader-
following consensus means that there exists a virtual leader
which specifies an objective for all agents to follow. Recently,
some first-order and second-order leader-following consen-
sus problems were discussed by lots of researchers [6–10],
and then some novel system algorithms were given via some
different control methods, such as pinning control, delay
coupling control, adaptive control, and impulsive control
[9–14]. In addition, Qin et al. considered consensus in the
second-order multiagent system with communication delay
in [15, 16]. Particularly, some multiagent networks cannot be
controlled continuously. At this time, the impulsive control
becomes a more desirable alternative. The impulsive control
is low in cost and then has been widely applied inmany fields,
such as information science, system control, life science,
communication security, and space techniques [17–19]. In
the above senses, the impulsive control is very effective for
achieving consensus of a multiagent network.

In some real networks, the connections between part
nodes are sometimes a failure, and then the network topology

may dynamically change over time. Therefore, it is indis-
pensable to consider the case that the network topology is
switching. As much as we know, most of the relevant studies
focus on second-order consensus for multiagent networks
[11, 12]. When the agent states are influenced by speeds,
positions, and accelerations, it is necessary and significative to
research the third-order consensus problem of a multiagent
network with switching topology. At present, just few works
considered the third-order consensus problem. In [20], adap-
tive third-order leader-following consensus of a nonlinear
multiagent network with perturbations was addressed, with-
out using the impulsive control method. In [11], impulsive
consensus problem of second-order multiagent network with
switching topologies was investigated, without considering
its own dynamics. In this paper, we consider the third-
order consensus problem in a multiagent network with the
aforementioned four characters, that is, leader-following,
own dynamics, switching topology, and impulsive control. By
using the graph theory, Lyapunov stability theory, andmatrix
theory, some sufficient conditions are obtained to realize the
third-order leader-following consensus.

The rest of this paper is designed as follows. Some
necessary preliminaries are stated in Section 2.The consensus
of a multiagent network is discussed in Section 3. Numer-
ical examples are given to verify the theoretical results in
Section 4. Finally, in Section 5, conclusions are presented.
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2. Preliminaries

2.1. Multiagent Network. Information exchange among
agents can be modeled by an interaction graph. Let 𝐺 =

{𝑉, 𝐸, 𝐴} be a weighted diagraph with a node set 𝑉 =

{1, . . . , 𝑁}, an edge set 𝐸 ⊆ 𝑉 × 𝑉, and a weight adjacency
matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

. A directed edge denoted by (𝑖, 𝑗)
means that 𝑗 has access to node 𝑖; that is, node 𝑗 can
receive information from node 𝑖. The elements of matrix 𝐴
are defined such that 𝑎

𝑖𝑗
> 0 for (𝑗, 𝑖) ∈ 𝐸, while 𝑎

𝑖𝑗
= 0

for (𝑗, 𝑖) ∉ 𝐸. Let 𝑎
𝑖𝑖
= 0 for 𝑖 ∈ 𝑉. The set ℵ

𝑖
=

{𝑗 ∈ 𝑉 | (𝑗, 𝑖) ∈ 𝐸} is used as the neighbor set of node 𝑖. When
the communication topology is switching, the neighbor set
is time-varying, and then ℵ

𝑖
(𝑡) = {𝑗 ∈ 𝑉 : 𝑎

𝑖𝑗
(𝑡) > 0}. Let

𝑎
𝑖𝑗 (𝑡) = {

1, 𝑗 ∈ ℵ
𝑖 (𝑡) ,

0, otherwise.
(1)

The out-degree of node 𝑖 is defined by deg(𝑖) = ∑
𝑁

𝑗=1
𝑎
𝑖𝑗
=

∑
𝑗∈ℵ𝑖

𝑎
𝑖𝑗
= 𝑑
𝑖
. If the degree matrix of digraph 𝐺 is 𝐷 =

diag(𝑑
1
, . . . , 𝑑

𝑁
), then the Laplacian matrix of digraph 𝐺 is

𝐿 = 𝐷 − 𝐴.
A directed path from node 𝑖 to node 𝑗 in the directed

graph 𝐺 is a sequence of edges (𝑖, 𝑗
1
), (𝑗
1
, 𝑗
2
), . . . , (𝑗

𝑙
, 𝑗) with

distinct nodes 𝑗
𝑘
, 𝑘 = 1, . . . , 𝑙. A digraph 𝐺 has a directed

spanning tree if there exists at least one node called root
which has a directed path to all the other nodes.

For a leader-follower multiagent network, suppose that
the leader (labeled by 0) is denoted by node 0, and the
followers are denoted by the nodes 1, 2, . . . , 𝑁. The graph 𝐺
is consisting of the leader and the followers with commu-
nication topology. The connection weight between the 𝑖th
follower and the leader is represented by 𝑏

𝑖
, 𝑖 ∈ 𝑉. If the 𝑖th

follower is connected to the leader, then 𝑏
𝑖
> 0; otherwise,

𝑏
𝑖
= 0. Let 𝐵 = diag{𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑁
}.

Following, we address the multiagent network with
switching topology. The set Ω = {𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑚
} is used as a

set of the graphs with all possible topology, which includes
all possible graphs (involving 𝑁 agents and a leader). We
define a switching signal 𝜏 : [0, +∞) → P = {1, 2, . . . , 𝑚},
which determines the topology structure that corresponds to
the network. When the topology is switching, the Laplacian
matrix 𝐿 and the matrix 𝐵 are also switching, which are
denoted by 𝐿

𝜏(𝑡)
and 𝐵

𝜏(𝑡)
.

The following assumptions are needed to derive our main
results.

Assumption 1 (see [21]). Assume that there exists a constant
𝛾 > 0, such that the vector-valued function 𝑓 satisfies the
condition

(𝑢 − 𝑤)
𝑇
(𝑓 (𝑡, 𝑥, V, 𝑢) − 𝑓 (𝑡, 𝑦, 𝑧, 𝑤))

≤ 𝛾 ((𝑥 − 𝑦)
𝑇
(𝑥 − 𝑦) + (V − 𝑧)𝑇 (V − 𝑧)

+(𝑢 − 𝑤)
𝑇
(𝑢 − 𝑤) )

(2)

for any 𝑥, 𝑦, 𝑧, 𝑢, V, 𝑤 ∈ 𝑅𝑛.

2.2. Impulsive Control System. Impulsive control systems can
be classified into three types based on the characteristics of
plants and control laws [22].

A type-I impulsive control system [22] is given by

𝑋̇ = F (𝑡, 𝑋) , 𝑡 ̸= 𝜏
𝑘 (𝑋) ,

Δ𝑋 = U (𝑘, 𝑌) , 𝑡 = 𝜏
𝑘 (𝑋) ,

𝑌 = G (𝑡, 𝑋) ,

(3)

where 𝑋 and 𝑌 are the state variable and the output,
respectively.U(𝑘, 𝑌) is the impulsive control law. In this kind
of system, the control input is implemented by the “sudden
jumps” of some state variables.

Definition 2 (see [22]). For 𝑡 ̸= 𝜏
𝑘
(𝑋), we define the time

derivative of the function 𝑉(𝑡, 𝑋) with respect to system (3)
as

𝑉̇ (𝑡, 𝑋) ≜
𝜕𝑉 (𝑡, 𝑋)

𝜕𝑡
+
𝜕𝑉 (𝑡, 𝑋)

𝜕𝑋
F (𝑡, 𝑋) . (4)

Type-II and type-III impulsive control systems and more
theoretical results are present in [22].

In this paper, a type-I impulsive control system is consid-
ered.

3. Main Results

Consider that a nonlinear multiagent network consists of 𝑁
agents with third-order dynamics:

𝑥̇
𝑖 (𝑡) = V

𝑖 (𝑡) , V̇
𝑖 (𝑡) = 𝑢𝑖 (𝑡) ,

𝑢̇
𝑖 (𝑡) = 𝑓 (𝑡, 𝑥𝑖 (𝑡) , V𝑖 (𝑡) , 𝑢𝑖 (𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

(5)

where 𝑥
𝑖
= (𝑥
𝑖1
, . . . , 𝑥

𝑇

𝑖𝑛
) ∈ 𝑅

𝑛, V
𝑖
= (V
𝑖1
, . . . , V

𝑖𝑛
)
𝑇
∈ 𝑅
𝑛,

and 𝑢
𝑖
= (𝑢
𝑖1
, . . . , 𝑢

𝑖𝑛
)
𝑇
∈ 𝑅
𝑛 are the position, velocity, and

acceleration states of the 𝑖th agent, respectively, and 𝑓 =

(𝑓
1
, . . . , 𝑓

𝑛
)
𝑇
∈ 𝑅
𝑛 is a nonlinear vector-valued continuous

function used to describe the self-dynamics of the 𝑖th agent.
The virtual leader of the multiagent network (5) is an

isolated agent described by

𝑥̇
0 (𝑡) = V

0 (𝑡) , V̇
0 (𝑡) = 𝑢0 (𝑡) ,

𝑢̇
0 (𝑡) = 𝑓 (𝑡, 𝑥0 (𝑡) , V0 (𝑡) , 𝑢0 (𝑡)) ,

(6)

where 𝑥
0
∈ 𝑅
𝑛, V
0
∈ 𝑅
𝑛, and 𝑢

0
∈ 𝑅
𝑛 are the position, velocity,

and acceleration of the virtual leader, respectively.
For 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
), the state variables 𝑥

𝑖
(𝑡), V
𝑖
(𝑡), 𝑢(𝑡) of the

system (5) do dynamically change with ordinary differential
equations. And at the moment 𝑡

𝑘
, if the 𝑥

𝑖
(𝑡), V
𝑖
(𝑡), 𝑢(𝑡)

supervise the impulsive control, then it can result in the jump.
Based on the above senses and the impulsive controller of [11]
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and applying impulsive control to (5), we have the following
consensus scheme for the multiagent system:

𝑥̇
𝑖 (𝑡) = V

𝑖 (𝑡) , (𝑡 ̸= 𝑡
𝑘
) ,

V̇
𝑖 (𝑡) = 𝑢𝑖 (𝑡) , (𝑡 ̸= 𝑡

𝑘
) ,

𝑢̇
𝑖 (𝑡) = 𝑓 (𝑡, 𝑥𝑖 (𝑡) , V𝑖 (𝑡) , 𝑢𝑖 (𝑡)) , (𝑡 ̸= 𝑡

𝑘
) ,

Δ𝑥
𝑖
(𝑡
𝑘
) ≜ 𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
𝑖
(𝑡
−

𝑘
)

= 𝐶
𝑘
( ∑

𝑗∈ℵ𝑖(𝑡𝑘)

𝑎
𝑖𝑗
(𝑡
𝑘
) (𝑥
𝑖
(𝑡
𝑘
) − 𝑥
𝑗
(𝑡
𝑘
))

+𝑏
𝑖
(𝑡
𝑘
) (𝑥
𝑖
(𝑡
𝑘
) − 𝑥
0
(𝑡
𝑘
))) ,

ΔV
𝑖
(𝑡
𝑘
) ≜ V
𝑖
(𝑡
+

𝑘
) − V
𝑖
(𝑡
−

𝑘
)

= 𝐶
𝑘
( ∑

𝑗∈ℵ𝑖(𝑡𝑘)

𝑎
𝑖𝑗
(𝑡
𝑘
) (V
𝑖
(𝑡
𝑘
) − V
𝑗
(𝑡
𝑘
))

+𝑏
𝑖
(𝑡
𝑘
) (V
𝑖
(𝑡
𝑘
) − V
0
(𝑡
𝑘
))) ,

Δ𝑢
𝑖
(𝑡
𝑘
) ≜ 𝑢
𝑖
(𝑡
+

𝑘
) − 𝑢
𝑖
(𝑡
−

𝑘
)

= 𝐶
𝑘
( ∑

𝑗∈ℵ𝑖(𝑡𝑘)

𝑎
𝑖𝑗
(𝑡
𝑘
) (𝑢
𝑖
(𝑡
𝑘
) − 𝑢
𝑗
(𝑡
𝑘
))

+𝑏
𝑖
(𝑡
𝑘
) (𝑢
𝑖
(𝑡
𝑘
) − 𝑢
0
(𝑡
𝑘
))) ,

𝑥
𝑖
(𝑡
+

0
) = 𝑥
𝑖
(𝑡
0
) , (𝑡

0
≥ 0) , 𝑥

𝑖
(𝑡
−

𝑘
) = 𝑥
𝑖
(𝑡
𝑘
) ,

V
𝑖
(𝑡
+

0
) = V
𝑖
(𝑡
0
) , (𝑡

0
≥ 0) , V

𝑖
(𝑡
−

𝑘
) = V

𝑖
(𝑡
𝑘
) ,

𝑢
𝑖
(𝑡
+

0
) = 𝑢
𝑖
(𝑡
0
) , (𝑡

0
≥ 0) , 𝑢

𝑖
(𝑡
−

𝑘
) = 𝑢
𝑖
(𝑡
𝑘
) ,

(7)

where Δ𝑥
𝑖
(𝑡
𝑘
), ΔV
𝑖
(𝑡
𝑘
), Δ𝑢
𝑖
(𝑡
𝑘
) are the jump of the position,

velocity, and acceleration of the 𝑖th follower agent at the
moment 𝑡

𝑘
, respectively, 𝑥

𝑖
(𝑡
+

𝑘
) = lim

ℎ→0
+𝑥
𝑖
(𝑡
𝑘
+ ℎ), 𝑥

𝑖
(𝑡
−

𝑘
) =

lim
ℎ→0

−𝑥
𝑖
(𝑡
𝑘
+ ℎ), V

𝑖
(𝑡
+

𝑘
) = lim

ℎ→0
+V
𝑖
(𝑡
𝑘
+ ℎ), V

𝑖
(𝑡
−

𝑘
) =

lim
ℎ→0

−V
𝑖
(𝑡
𝑘
+ ℎ), 𝑢

𝑖
(𝑡
+

𝑘
) = lim

ℎ→0
+𝑢
𝑖
(𝑡
𝑘
+ ℎ), 𝑢

𝑖
(𝑡
−

𝑘
) =

lim
ℎ→0

−𝑢
𝑖
(𝑡
𝑘
+ ℎ), 𝐶

𝑘
∈ 𝑅
𝑛×𝑛 is the impulsive controller gain

at the moment 𝑡
𝑘
, the moments of impulsive satisfy 0 ≤ 𝑡

0
<

𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< 𝑡
𝑘+1

< ⋅ ⋅ ⋅ , and lim
𝑘→+∞

𝑡
𝑘
= +∞,

Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝜌 < +∞ is the impulsive interval, where
𝑘 = 1, 2, . . ..

Let 𝑥
𝑖
(𝑡) − 𝑥

0
(𝑡) = 𝑥

𝑖
(𝑡), V
𝑖
(𝑡) − 𝑥

0
(𝑡) = V̂

𝑖
(𝑡), 𝑢
𝑖
(𝑡) −

𝑢
0
(𝑡) = 𝑢̂

𝑖
(𝑡), 𝑥(𝑡) = (𝑥

𝑇

1
(𝑡), 𝑥
𝑇

2
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇, V̂(𝑡) =

(V̂𝑇
1
(𝑡), V̂𝑇
2
(𝑡), . . . , V̂𝑇

𝑁
(𝑡))
𝑇, 𝑢̂(𝑡) = (𝑢̂

𝑇

1
(𝑡), 𝑢̂
𝑇

2
(𝑡), . . . , 𝑢̂

𝑇

𝑁
(𝑡))
𝑇,

𝑒(𝑡) = (𝑥
𝑇
(𝑡), V̂𝑇(𝑡), 𝑢̂𝑇(𝑡))𝑇; then the error system with (6)

and (7) can be written as

̇𝑒 (𝑡) = 𝐻𝑒 (𝑡) + 𝑊, (𝑡 ̸= 𝑡
𝑘
) ,

Δ𝑒 (𝑡
𝑘
) = 𝐶
𝑘
𝑒 (𝑡
𝑘
) ,

𝑒 (𝑡
+

0
) = 𝑒 (𝑡

0
) ,

(8)

where

𝐻 = (

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

) ,

𝑊 = (

𝑂
𝑛𝑁×1

𝑂
𝑛𝑁×1

𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡) , 𝑢 (𝑡)) − 1𝑁
⊗𝑓 (𝑡, 𝑥

0 (𝑡) , V0 (𝑡) , 𝑢0 (𝑡))

) ,

𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡) , 𝑢 (𝑡))

= (𝑓
𝑇
(𝑡, 𝑥
1 (𝑡) , V1 (𝑡) , 𝑢1 (𝑡)) , . . . ,

𝑓
𝑇
(𝑡, 𝑥
𝑁 (𝑡) , V𝑁 (𝑡) , 𝑢𝑁 (𝑡)))

𝑇

,

1
𝑁
= (1, . . . , 1)

𝑇
∈ 𝑅
𝑁
,

𝐶
𝑘
= diag ((𝐿

𝜏(𝑘)
+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶
𝑘
, (𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶
𝑘
,

(𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶
𝑘
) ,

(9)

𝐿
𝜏(𝑘)

and 𝐵
𝜏(𝑘)

are associated with the switching interconnec-
tion graph at time 𝑡

𝑘
, 𝜏(𝑘) ∈ P.

Definition 3. Denote 𝑒
𝑥𝑖
(𝑡) = ‖𝑥

𝑖
(𝑡) − 𝑥

0
(𝑡)‖, 𝑒V𝑖(𝑡) = ‖V𝑖(𝑡) −

V
0
(𝑡)‖ and 𝑒

𝑢𝑖
(𝑡) = ‖𝑢

𝑖
(𝑡) − 𝑢

0
(𝑡)‖. The multiagent network

(7) with the virtual leader (6) is said to achieve third-order
leader-following consensus if the solution of (8) satisfies
lim
𝑡→+∞

𝑒
𝑥𝑖
(𝑡) = 0, lim

𝑡→+∞
𝑒V𝑖(𝑡) = 0, and lim

𝑡→+∞
𝑒
𝑢𝑖
(𝑡) =

0, 𝑖 = 1, 2, . . . , 𝑁 for any initial condition.
Basing on graph theory, Lyapunov function method,

matrix theory, and the proof of Theorem 1 in [11], we have
the following theorem.

Theorem 4. Under Assumption 1, if there exists 0 < 𝜑 < 1

such that

𝛿
𝑘
𝑒
𝜇(Δ𝑡𝑘) < 𝜑, (10)

where 𝛿
𝑘
and 𝜇 are the maximum eigenvalues of matrices

(𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
)
𝑇

(𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
) , (11)

(

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

𝑂
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

) , (12)

respectively, then the third-order leader-following consensus in
the multiagent network (7) is achieved.
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Proof. Consider the following Lyapunov function:

𝑉 (𝑒 (𝑡)) = 𝑒
𝑇
(𝑡) 𝑒 (𝑡) . (13)

For any 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], the time derivative of 𝑉(𝑒(𝑡)) along the

trajectory of (8) is

D𝑉 (𝑒 (𝑡)) = ( ̇𝑒 (𝑡))𝑇𝑒 (𝑡) + 𝑒𝑇 (𝑡) ̇𝑒 (𝑡)

= 𝑒
𝑇
(𝑡) (𝐻 + 𝐻

𝑇
) 𝑒 (𝑡) + 2𝑊

𝑇
𝑒 (𝑡)

= 𝑒
𝑇
(𝑡) (𝐻 + 𝐻

𝑇
) 𝑒 (𝑡)

+ 2𝑢̂
𝑇
(𝑡) (𝐹 (𝑡, 𝑥 (𝑡) , V (𝑡) , 𝑢 (𝑡)) − 1𝑁

⊗𝑓 (𝑡, 𝑥
0 (𝑡) , V0 (𝑡) , 𝑢0 (𝑡)))

= 𝑒
𝑇
(𝑡) (𝐻 + 𝐻

𝑇
) 𝑒 (𝑡)

+ 2

𝑁

∑

𝑖=1

𝑢̂
𝑇

𝑖
(𝑡) (𝑓 (𝑡, 𝑥𝑖 (𝑡) , V𝑖 (𝑡) , 𝑢𝑖 (𝑡))

−𝑓 (𝑡, 𝑥
0 (𝑡) , V0 (𝑡) , 𝑢0 (𝑡)))

≤ 𝑒
𝑇
(𝑡) (𝐻 + 𝐻

𝑇
) 𝑒 (𝑡)

+ 2𝛾

𝑁

∑

𝑖=1

(𝑥
𝑇

𝑖
(𝑡) 𝑥𝑖 (𝑡)

+V̂𝑇
𝑖
(𝑡) V̂𝑖 (𝑡) + 𝑢̂

𝑇

𝑖
(𝑡) 𝑢̂𝑖 (𝑡))

= 𝑒
𝑇
(𝑡) (𝐻 + 𝐻

𝑇
) 𝑒 (𝑡)

+ 𝑒
𝑇
(𝑡)(

2𝛾𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

)𝑒 (𝑡)

= 𝑒
𝑇
(𝑡)(

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

0
𝑛𝑁×𝑛𝑁

𝐼
𝑛𝑁×𝑛𝑁

2𝛾𝐼
𝑛𝑁×𝑛𝑁

)𝑒 (𝑡)

≤ 𝜇𝑉 (𝑒 (𝑡)) .

(14)

Moreover, for any 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
],

0 ≤ 𝑉 (𝑒 (𝑡)) ≤ 𝑉 (𝑡
+

𝑘−1
) 𝑒
𝜇(𝑡−𝑡𝑘−1). (15)

For 𝑡 = 𝑡+
𝑘
, similar to the proof of Theorem 1 in [11], we

have

𝑉 (𝑒 (𝑡
+

𝑘
)) = 𝑒

𝑇
(𝑡
+

𝑘
) 𝑒 (𝑡
+

𝑘
)

= (𝑒 (𝑡
𝑘
) + Δ𝑒 (𝑡

𝑘
))
𝑇
(𝑒 (𝑡
𝑘
) + Δ𝑒 (𝑡

𝑘
))

= 𝑒
𝑇
(𝑡
𝑘
) (𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
)
𝑇

(𝐼
3𝑛𝑁×3𝑛𝑁

+ 𝐶
𝑘
) 𝑒 (𝑡
𝑘
) ;

(16)

that is,

𝑉 (𝑒 (𝑡
+

𝑘
)) ≤ 𝛿

𝑘
𝑉 (𝑒 (𝑡

𝑘
)) . (17)

Consequently, according to (10) and (15), we obtain

𝑉 (𝑒 (𝑡
+

𝑘
)) ≤ 𝛿

𝑘
𝑉 (𝑡
+

𝑘−1
) 𝑒
𝜇(𝑡𝑘−𝑡𝑘−1) ≤ 𝜑𝑉 (𝑡

+

𝑘−1
) . (18)

By recurrence, we have

𝑉 (𝑒 (𝑡
+

𝑘
)) ≤ 𝜑

𝑘
𝑉 (𝑡
0
) . (19)

Then,

lim
𝑘→+∞

𝑉 (𝑒 (𝑡
+

𝑘
)) = 0. (20)

Using Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝜌 < +∞ and (15),

lim
𝑡→+∞

𝑉 (𝑒 (𝑡)) = 0; (21)

that is,

lim
𝑡→+∞

𝑒 (𝑡) = 0. (22)

Therefore, third-order leader-following consensus in the
multiagent network (5) is achieved under the impulsive
controllers (7).

Remark 5. According to the proof of Theorem 4, it is not
necessary that all the graphs 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑚
have directed

spanning tree.

On the basis of Gersgorin disk theorem [23], we get 𝜇 ≤
2(𝛾+1). For (𝐼

3𝑛𝑁×3𝑛𝑁
+𝐶
𝑘
)
𝑇
(𝐼
3𝑛𝑁×3𝑛𝑁

+𝐶
𝑘
) = 𝐼
3×3
⊗[(𝐼
𝑛𝑁×𝑛𝑁

+

(𝐿
𝜏(𝑘)
+𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
)
𝑇
(𝐼
𝑛𝑁×𝑛𝑁

+(𝐿
𝜏(𝑘)
+𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
)], accordingly,

𝛿
𝑘
is equal to the maximum eigenvalue of (𝐼

𝑛𝑁×𝑛𝑁
+ (𝐿
𝜏(𝑘)

+

𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
)
𝑇
(𝐼
𝑛𝑁×𝑛𝑁

+(𝐿
𝜏(𝑘)
+𝐵
𝜏(𝑘)
)⊗𝐶
𝑘
).Therefore, we have

the following Corollary 6 (recalling Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

≤ 𝜌 and
P = {1, 2, . . . , 𝑚}).

Corollary 6. Under Assumption 1, if there exists 0 < 𝜑 < 1
such that

𝛿𝑒
2(𝛾+1)𝜌

< 𝜑, (23)

where𝛿 = sup{𝛿
𝑘
}, 𝛿
𝑘
is themaximumeigenvalue of thematrix

(𝐼
𝑛𝑁×𝑛𝑁

+ (𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗ 𝐶

𝑘
)
𝑇
(𝐼
𝑛𝑁×𝑛𝑁

+ (𝐿
𝜏(𝑘)

+ 𝐵
𝜏(𝑘)
) ⊗

𝐶
𝑘
); then, the third-order leader-following consensus in the

multiagent network (7) is achieved.

4. Numerical Simulations

In this section, we give some numerical examples to verify the
theory results given in the previous section.

Consider the following nonlinear function 𝑓 for multia-
gent network:

𝑓 (𝑥
𝑖 (𝑡) , V𝑖 (𝑡) , 𝑎𝑖 (𝑡)) = (

2𝑎
𝑖2
+ (
󵄨󵄨󵄨󵄨𝑎𝑖1 + 1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑎𝑖1 − 1

󵄨󵄨󵄨󵄨)

𝑎
𝑖1
− 𝑎
𝑖2
+ 𝑎
𝑖3

−2 cos𝑥
𝑖1
+ 2 cos V

𝑖1
− 𝑎
𝑖2
− 𝑎
𝑖3

) .

(24)

It is easy to verify that the nonlinear function 𝑓 in (24)
satisfies Assumption 1. (Let 𝛾 = 5).

Following, we consider that the topology of the multia-
gent network is switching (P = {1, 2}).
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1 2 3 6

5 4

Figure 1: Spanning tree of graph 𝐺
1
.

1 3 5 2

4 6

Figure 2: Spanning tree of graph 𝐺
2
.

Example 7. Assume that the graphs 𝐺
1
, 𝐺
2
have directed

spanning trees. The directed spanning trees of 𝐺
1
, 𝐺
2
are

described in Figures 1 and 2. The corresponding matrices of
the graphs 𝐺

1
, 𝐺
1
, 𝐺
2
, 𝐺
2
are 𝐴

1
, 𝐵
1
, 𝐴
2
, 𝐵
2
, respectively,

where

𝐴
1
=(

(

0 0 1 1 0 0

1 0 1 0 0 0

0 1 0 0 0 1

1 0 0 0 1 0

1 0 0 0 0 0

0 0 1 0 1 0

)

)

,

𝐴
2
=(

(

0 0 0 1 0 1

1 0 0 0 1 0

1 1 0 0 0 0

1 0 0 0 1 0

0 1 1 0 0 0

1 0 1 0 0 0

)

)

,

𝐵
1
= diag (0, 1, 0, 1, 0, 0) , 𝐵

2
= diag (1, 0, 0, 0, 1, 0) .

(25)

In time intervals [𝑡
4𝑘−1

, 𝑡
4𝑘
), the corresponding matrices are

𝐴
2
, 𝐵
2
, 𝑘 = 1, 2, . . .. In other time intervals, the corresponding

matrices are 𝐴
1
, 𝐵
1
. We choose the impulsive gains 𝐶

𝑘1
, 𝐶
𝑘2

with topology 𝐺
1
and 𝐺

2
, respectively, as follows:

𝐶
𝑘1
= (

−0.04 0 0

0 −0.04 0

0 0 −0.04

) ,

𝐶
𝑘2
= (

−0.05 0 0

0 −0.05 0

0 0 −0.05

) .

(26)
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0.023 0.0232 0.0234
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×10
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×10
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e
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e
x2
(t)

e
x3
(t)

e
x4
(t)

e
x5
(t)

e
x6
(t)

Figure 3: Position errors 𝑒
𝑥𝑖
(𝑡) of system (7) with a directed

spanning tree.

Let the equidistant impulsive interval Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

=

0.00005. Then, 𝜌 = 0.00005. There exists 𝜑 = 0.9995, which
satisfies the inequality (23) of Corollary 6. From Figures 3, 4,
and 5, we can see that the position errors 𝑒

𝑥𝑖
(𝑡), the velocity

errors 𝑒V𝑖(𝑡), and the acceleration errors 𝑒
𝑎𝑖
(𝑡) converge to

zero quickly.

Example 8. Assume that the graphs 𝐺
1
, 𝐺
2
do not contain

directed spanning trees. Let the corresponding matrices of
the graphs 𝐺

3
, 𝐺
3
, 𝐺
4
, 𝐺
4
be 𝐴
3
, 𝐵
3
, 𝐴
4
, 𝐵
4
, respectively,

where

𝐴
3
=(

(

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

)

)

,

𝐴
4
=(

(

0 0 1 0 0 0

1 0 0 1 0 0

0 1 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

)

)

,

𝐵
3
= diag (0, 1, 1, 0, 0, 0) , 𝐵

4
= diag (0, 0, 0, 1, 1, 0) .

(27)

Similar to Example 7, in time intervals [𝑡
4𝑘−1

, 𝑡
4𝑘
), the

corresponding matrices are 𝐴
4
, 𝐵
4
, 𝑘 = 1, 2, . . ., while in

other time intervals, the corresponding matrices are 𝐴
3
, 𝐵
3
.



6 Abstract and Applied Analysis

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.5

2

2.5

3

3.5

0.02 0.025 0.03 0.035 0.04

0.023 0.0232 0.0234

t

t

×10
−4

×10
−3

e
�1
(t)

e
�2
(t)

e
�3
(t)

e
�4
(t)

e
�5
(t)

e
�6
(t)

Figure 4: Velocity errors 𝑒V𝑖(𝑡) of system (7) with a directed
spanning tree.
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Figure 5: Acceleration errors 𝑒
𝑎𝑖
(𝑡) of system (7) with a directed

spanning tree.

We choose the impulsive gain 𝐶
𝑘3
, 𝐶
𝑘4
with topology 𝐺

3
and

𝐺
4
, respectively, as follows:

𝐶
𝑘3
= (

−0.07 0 0

0 −0.07 0

0 0 −0.07

) ,

𝐶
𝑘4
= (

−0.08 0 0

0 −0.08 0

0 0 −0.08

) .

(28)
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Figure 6: Position errors 𝑒
𝑥𝑖
(𝑡) of system (7) without a directed

spanning tree.
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Figure 7: Velocity errors 𝑒V𝑖(𝑡) of system (7) without a directed
spanning tree.

Let the equidistant impulsive interval Δ𝑡
𝑘
= 𝑡
𝑘
− 𝑡
𝑘−1

=

0.00005. Then, 𝜌 = 0.00005. By some calculations, we can
know that there exists 𝜑 = 0.9995, which satisfies the
inequality (23) of Corollary 6. From Figures 6, 7, and 8, we
can see that the position errors 𝑒

𝑥𝑖
(𝑡), the velocity errors

𝑒V𝑖(𝑡), and the acceleration errors 𝑒
𝑎𝑖
(𝑡) converge to zero

quickly. It shows that the condition on a directed spanning
tree is not necessary to realize consensus of the multiagent
network (7) under the impulsive control. In addition, the
researchers considered the second-order multiagent system
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Figure 8: Acceleration errors 𝑒
𝑎𝑖
(𝑡) of system (7) without a directed

spanning tree.

with communication delay in [21, 22]. In our future work,
we will study the third-order consensus problem for the
multiagent systems with communication delay.

5. Conclusion

By using graph theory, Lyapunov stability theory, and matrix
theory, third-order leader-following consensus problem of
a nonlinear multiagent network is studied in this paper. By
designing proper impulsive controllers, a new criterion on
realizing consensus in themultiagent network with switching
topology is achieved. Finally, numerical simulations are
provided to illustrate the theoretical results. In our future
work, we will study the third-order consensus problem for
the multiagent systems with communication delay.
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