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A novel approach is brought forward for synchronization of a clustered network in this paper, the objective of which is twofold.The
first one is to study cluster synchronization by analyzing the inner coupling matrices of the individual clusters instead of the one of
the whole network. The other is to show that full synchronization can be ensured by several types of cluster synchronization, the
partitions of which are connected together. Compared with the classical method for full synchronization, our approach reduces the
network size to the cluster size and additionally obtains the thresholds for different types of cluster synchronization. As a numerical
example, cluster and full synchronization in a special clustered network are investigated through our approach. It turns out that we
obtain the same threshold for full synchronization as the one obtained by the classical method. Numerical simulations confirm the
validity of our approach.

1. Introduction

Collective behavior of complex networks has become a focal
subject due to the important and extensive applications in
various fields of science and technology. Full and cluster
synchronization are two types of typical and fundamental
collective behavior. The former means that all oscillators in
a network acquire identical behavior, while the latter means
that the coupled oscillators split into subgroups called clus-
ters, and all the oscillators in the same cluster behave in the
same fashion. Research on cluster and full synchronization
has attracted increasing attention in the past decades.

Several effective methods have been applied to study
full synchronization, which is also called complete synchro-
nization. Pecora and Carroll proposed the famous master
stability function method to study the local stability of the
synchronous state [1], while Lyapunov function method was
employed to study the global stability of the synchronous
state [2–4]. With the help of the two classical methods
mentioned above, a great deal of research has been carried
out in recent years. By imposing constraints on the coupling

strength, local stability of the synchronous states in arbitrarily
coupled systems was ensured based onGershörin disk theory
[5]. By analyzing the characters of the network topology,
connection graph stability method was put forward [2] and
applied to study synchronization in a network with time-
dependent on-off coupling, which is also called blinking
model [3]. By decomposing the space into a direct sum
of the synchronization manifold and the transverse space,
criteria were obtained for both local and global stability of
the synchronous state [4].

Cluster structures can be found to exist widely in real-
world networks such as circles of friends or colleagues in
social networks [6], compartments in food webs [7], groups
of web pages sharing identical topics in the WorldWideWeb
[8], and functional modules such as proteins having the same
function in biological networks [9]. In those clustered net-
works, cluster synchronization usually occurs firstly before
full synchronization occurs. Therefore, research on cluster
and full synchronization in clustered networks has very
obvious practical significance. Synchronization in a clustered
network composed of two BA scale-free subnetworks has
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been studied in [10]. Control schemes were proposed for syn-
chronization between two clusters, which is also called outer
synchronization [11]. With the help of the method in [4],
a criterion for cluster synchronization was obtained in [12].
Based on the criterion, cluster synchronization bifurcations
are analyzed in a globally coupled network with a parameter
[13].

However, to the best of our knowledge, most of the
previous research on cluster and full synchronization focused
on the topology of the whole network, which may be
very complex. In this paper, the complexity of a clustered
network is simplified by partitioning the whole network into
clusters under a certain hypothesis. It is proved that cluster
synchronization can be ensured by suitable inner couplings of
the clusters, and sufficient conditions, which are independent
of the outer couplings between different clusters, are obtained
theoretically. Based on this result, a novel method for full
synchronization is derived. If there exist two or several
partitions connected together along some arrangement of
all the oscillators, which imply that the intersection of the
cluster synchronization manifolds corresponding to those
partitions is equal to the full synchronization manifold,
then full synchronization occurs if cluster synchronization
corresponding to every partition is ensured. The method
declares that both cluster and full synchronization can be
studied by the inner topologies of the individual clusters.
Obviously, the network size reduction provides convenience
for the studies on synchronization in clustered networks with
great mounts of oscillators.

The rest of the paper is organized as follows. Section 2
is devoted to introducing some concerned concepts such as
partitions and cluster synchronization manifolds. Sufficient
conditions independent of the outer couplings between
different clusters are obtained for cluster synchronization in
Section 3. The tedious proof of this result is carried out in
the Appendix. The concept of partitions connected together
along some arrangement is proposed and employed to study
full synchronization in Section 4. In order to confirm the
validity of the theoretical results, numerical experiments are
carried out in Section 5.The final section is devoted to a brief
discussion of the obtained results.

2. Preliminaries

Consider a network composed of𝑚 oscillators

�̇�
𝑖
= 𝑓 (𝑥

𝑖
, 𝑡) + 𝜀

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 1, . . . , 𝑚, (1)

where 𝑥
𝑖
= (𝑥

1

𝑖
, . . . , 𝑥

𝑛

𝑖
)
⊤ is the state variable of the 𝑖th

oscillator, 𝑡 ∈ [0, +∞) is a continuous time, 𝑓 : 𝑅
𝑛
×

[0, +∞) → 𝑅
𝑛 is a continuous map, 𝜀 ≥ 0 is the coupling

strength, Γ = diag(𝛾
1
, . . . , 𝛾

𝑛
) is a nonnegative matrix, 𝐴 =

(𝑎
𝑖𝑗
)
𝑚×𝑚

is the coupling matrix with 𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
≥ 0 for 𝑖 ̸= 𝑗, and

∑
𝑚

𝑗=1
𝑎
𝑖𝑗
= 𝑠 for 𝑖 = 1, . . . , 𝑚.

Suppose that the index set {1, . . . , 𝑚} of the 𝑚 oscillators
is divided into 𝑑 nonempty subsets called clusters. Let 𝑃 =

{𝑃
1
, . . . , 𝑃

𝑑
} be its partition; that is, 𝑃

𝑖
∩ 𝑃
𝑗
= 𝜙 for 𝑖 ̸= 𝑗

and ⋃
𝑑

𝑖=1
𝑃
𝑖
= {1, . . . , 𝑚}. The following denotations are

introduced for every 𝑙 = 1, . . . , 𝑑.

(𝐷
1
) Denote the cardinal number of cluster 𝑃

𝑙
by 𝑝
𝑙
, and

denote the subscript of the cluster containing 𝑖 by �̂�;
that is, �̂� = 𝑙 if 𝑖 ∈ 𝑃

𝑙
.

(𝐷
2
) Suppose that all oscillators in the cluster 𝑃

𝑙
are

arranged adjacently; that is, 𝑃
𝑙
= {𝜎
𝑙−1

+ 1, . . . , 𝜎
𝑙
},

where 𝜎
0
= 0, 𝜎

𝑙
= 𝑝
1
+ ⋅ ⋅ ⋅ + 𝑝

𝑙
.

(𝐷
3
) Suppose that 𝑝

𝑙
≥ 2 for 1 ≤ 𝑙 ≤ 𝑑 and 𝑝

𝑙
= 1 for

𝑑 < 𝑙 ≤ 𝑑. It can be seen that for any 𝑑 < 𝑙 ≤ 𝑑,
synchronization of the oscillators corresponding to
cluster 𝑃

𝑙
always occurs for any 𝜀 ≥ 0 since 𝑃

𝑙
contains

only one oscillator.

We will discuss sufficient conditions for the 𝑝
𝑙
oscillators

corresponding to 𝑃
𝑙
to synchronize with each other, 𝑙 =

1, . . . , 𝑑. Before that, the following sets should be introduced
for every 𝑙 = 1, . . . , 𝑑.

(𝑀
1
) The synchronization submanifold of the cluster 𝑃

𝑙
is

as follows:

M (𝑃
𝑙
) = {(𝑥

⊤

𝜎𝑙−1+1
, . . . , 𝑥

⊤

𝜎𝑙
)

⊤

∈ 𝑅
𝑝𝑙𝑛

| 𝑥
𝜎𝑙−1+1

= ⋅ ⋅ ⋅ = 𝑥
𝜎𝑙
} .

(2)

(𝑀
2
) The cluster synchronization manifold of the partition
𝑃 is as follows:

M (𝑃) = M (𝑃
1
) ×M (𝑃

2
) × ⋅ ⋅ ⋅ ×M (𝑃

𝑑
) ⊂ 𝑅
𝑚𝑛
. (3)

(𝑀
3
) The transverse subspace forM(𝑃

𝑙
) is as follows:

L (𝑃
𝑙
) = {(𝑥

⊤

𝜎𝑙−1+1
, . . . , 𝑥

⊤

𝜎𝑙
)

⊤

∈ 𝑅
𝑝𝑙𝑛

|

𝑝𝑙

∑

𝑖=1

𝑥
𝜎𝑙−1+𝑖

= 0} . (4)

(𝑀
4
) The transverse space forM(𝑃) is as follows:

L (𝑃) = L (𝑃
1
) × L (𝑃

2
) × ⋅ ⋅ ⋅ × L (𝑃

𝑑
) ⊂ 𝑅
𝑚𝑛
. (5)

In case 𝑑 = 1, the synchronization manifold M(𝑃) is
called a full synchronization manifold. For simplicity, we
denote the full synchronization manifold by M and the
corresponding transverse space by L.

Definitions of cluster and full synchronization in the
network (1) are listed as follows.

(𝑆
1
) The cluster synchronization manifoldM(𝑃) is said to
be globally attractive for the network (1), or cluster
synchronization of the partition 𝑃 occurs, if, for any
initial condition (𝑥⊤

1
(0), . . . , 𝑥

⊤

𝑚
(0))
⊤,

lim
𝑡→+∞

1

𝑚

𝑑

∑

𝑙=1

∑

𝑖∈𝑃𝑙






𝑥
𝑖
− 𝑥
𝜎𝑙−1+1






= 0, (6)

where ‖ ⋅ ‖ denotes 2-norm of vectors.
(𝑆
2
) In case of 𝑑 = 1, the full synchronization manifoldM

is said to be globally attractive for the network (1); that
is, full synchronization occurs.
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3. Result on Cluster Synchronization

Before the results on cluster synchronization are carried out,
two common hypotheses in previous related research should
be introduced.

At first, a synchronizationmanifold is always supposed to
be an invariant manifold in order to discuss its attractiveness.
The following lemma gives a sufficient and necessary condi-
tion for a cluster synchronizationmanifold being an invariant
manifold.

Lemma 1 (see [12]). Partition the couplingmatrix𝐴 according
to partition 𝑃 as follows:

𝐴 =

[

[

[

[

𝐴
11

𝐴
12

⋅ ⋅ ⋅ 𝐴
1𝑑

𝐴
21

𝐴
22

⋅ ⋅ ⋅ 𝐴
2𝑑

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐴
𝑑1

𝐴
𝑑2

⋅ ⋅ ⋅ 𝐴
𝑑𝑑

]

]

]

]

, (7)

where 𝐴
𝑙𝑘

∈ 𝑅
𝑝𝑙×𝑝𝑘 ; the synchronization manifold M(𝑃) is

an invariant manifold of the network (1), if and only if every
submatrix 𝐴

𝑙𝑘
has equal-row-sum 𝑠

𝑙𝑘
, 𝑙, 𝑘 = 1, . . . , 𝑑.

According to Lemma 1, we carry out the first hypothesis
(𝐻
1
).
(𝐻
1
) Every submatrix 𝐴

𝑙𝑘
∈ 𝑅
𝑝𝑙×𝑝𝑘 in the partitioned

matrix (7) has equal-row-sum 𝑠
𝑙𝑘
; that is, for every 𝑖 ∈ 𝑃

𝑙
,

there holds ∑
𝑗∈𝑃𝑘

𝑎
𝑖𝑗

= 𝑠
𝑙𝑘
, 𝑙, 𝑘 = 1, . . . , 𝑑. In addition,

suppose that all the principal submatrices 𝐴
𝑙𝑙
, 𝑙 = 1, . . . , 𝑑,

are irreducible.
In order to study the inner couplings of the cluster 𝑃

𝑙
, we

put forward the following matrix:

𝐴 (𝑃
𝑙
) = 𝐴

𝑙𝑙
+

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝑠
𝑙𝑘
𝐼
𝑝𝑙
, (8)

where 𝐼
𝑝𝑙
∈ 𝑅
𝑝𝑙×𝑝𝑙 is an identity matrix. Then the elements of

𝐴(𝑃
𝑙
) satisfy that ∑

𝑗∈𝑃𝑙
𝑎
𝑖𝑗
= 𝑠 for 𝑖 ∈ 𝑃

𝑙
, and

𝑎
𝑖𝑗
=

{
{

{
{

{

𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗,

𝑎
𝑖𝑗
+

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝑠
𝑙𝑘
, 𝑖 = 𝑗,

(9)

where 𝑖, 𝑗 ∈ 𝑃
𝑙
, 𝑙 = 1, . . . , 𝑑. We will study the dependence of

cluster synchronization on the matrices 𝐴(𝑃
𝑙
), 𝑙 = 1, . . . , 𝑑.

Noticing the importance of the matrix 𝐴(𝑃
𝑙
), we call it a

principal quasi-submatrix of the cluster 𝑃
𝑙
since 𝐴

𝑙𝑙
is a

principal submatrix, 𝑙 = 1, . . . , 𝑑.
The second crucial hypothesis is the individual oscillator

dynamics satisfying QUAD(Δ, 𝑄, 𝑅𝑛) condition as follows
[12].

(𝐻
2
)There exists a positive-definite diagonal matrix 𝑄 =

diag(𝑞
1
, . . . , 𝑞

𝑛
), with a diagonal matrix Δ =

diag(𝛿
1
, . . . , 𝛿

𝑛
) satisfying 𝛿

𝑗
≤ 0 for 𝑗 ∈ {𝑗 : 𝛾

𝑗
= 0}

and a constant 𝜖 > 0, such that

(𝑢 − V)
⊤
𝑄 {[𝑓 (𝑢, 𝑡) − 𝑓 (V, 𝑡)] − Δ (𝑢 − V)}

≤ −𝜖(𝑢 − V)
⊤
(𝑢 − V)

(10)

holds for any 𝑢, V ∈ 𝑅𝑛 and all 𝑡 ≥ 0.
Hypothesis (𝐻

2
) means that the following two coupled

oscillators:

�̇�
1
= 𝑓 (𝑥

1
, 𝑡) +

Δ (𝑥
2
− 𝑥
1
)

2

,

�̇�
2
= 𝑓 (𝑥

2
, 𝑡) +

Δ (𝑥
1
− 𝑥
2
)

2

(11)

can synchronize when the coupling Δ/2 is made sufficiently
large.Many chaotic oscillators have been proved to satisfy the
hypothesis, such asChua circuits [14], standardHopfield neu-
ral networks [4], and 𝑥-coupled [15, 16] or 𝑦-coupled Lorenz
systems [17] in an absorbing domainB. However,many other
systems are not the case such as a lattice of 𝑥-coupled Rössler
systems, in which the stability of synchronization regime is
lost with the increasing of coupling [18].

Now, the preliminaries above, together with Lyapunov
function method, bring us to the following theorem.

Theorem 2. Suppose that hypotheses (𝐻
1
) and (𝐻

2
) hold and

that

𝜀𝜆
2
(𝑃
𝑙
) 𝛾
𝑗
+ 𝛿
𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛, (12)

where 𝜆
2
(𝑃
𝑙
) is the second-largest eigenvalue of 𝐴(𝑃

𝑙
), 𝑙 =

1, . . . , 𝑑, and the synchronization manifold M(𝑃) is globally
attractive for the network (1).

For a rigorous proof of Theorem 2, the reader is referred
to the Appendix.

As a special case, if all the row sums of 𝐴 are equal to
zero, then 𝐴(𝑃

𝑙
) also has zero row sums, and 𝜆

2
(𝑃
𝑙
) < 0,

𝑙 = 1, . . . , 𝑑. Therefore, condition (12) is equivalent to

𝜀 ≥

max
𝑗∈{𝑗:𝛾𝑗>0}

{0, 𝛿
𝑗
/𝛾
𝑗
}

min
1≤𝑙≤𝑑





𝜆
2
(𝑃
𝑙
)





. (13)

4. Result on Full Synchronization

Suppose that there are a set of partitions 𝑃(𝑘, ⋅) =

{𝑃(𝑘, 1), . . . , 𝑃(𝑘, 𝑑
𝑘
)}, 𝑘 = 1, . . . , 𝑐, satisfying hypothesis

(𝐻
1
).The following definition is put forward for the first time

to study full synchronization.

Definition 3. Rearrange the numbers 1 ⋅ ⋅ ⋅ 𝑚 as 𝑖
1
⋅ ⋅ ⋅ 𝑖
𝑚
. A set

of partitions 𝑃(𝑘), 𝑘 = 1, . . . , 𝑐, are connected together along
the arrangement 𝑖

1
⋅ ⋅ ⋅ 𝑖
𝑚
, if, for every 𝑖

𝑗
, 𝑗 = 1, . . . , 𝑚−1, there

exists a subset 𝑃(𝑘
𝑗
, 𝑙
𝑗
) such that {𝑖

𝑗
, 𝑖
𝑗+1
} ⊆ 𝑃(𝑘

𝑗
, 𝑙
𝑗
).

For example, the set {1, 2, 3, 4} has two partitions as
follows:

𝑃 (1) = {1, 2; 3, 4} , 𝑃 (2) = {1, 3; 2, 4} . (14)
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Since

{1, 2} ⊆ 𝑃 (1, 1) , {2, 4} ⊆ 𝑃 (2, 2) , {4, 3} ⊆ 𝑃 (1, 2) ,

(15)

𝑃(1) and 𝑃(2) form a set of partitions connected together
along the arrangement 1243.

From the definition above, we obtain the following
lemma.

Lemma 4. A set of partitions 𝑃(𝑘), 𝑘 = 1, . . . , 𝑐, are connected
together along some arrangement 𝑖

1
⋅ ⋅ ⋅ 𝑖
𝑚
, if and only if the

cluster synchronization manifolds of those partitions satisfy
that

𝑐

⋂

𝑘=1

M (𝑃 (𝑘)) = M. (16)

The proof of Lemma 4 is straightforward and will not be
given here.

Now, we are in a position to carry out the following
theorem on full synchronization of the network (1).

Theorem 5. There are a set of partitions 𝑃(𝑘), 𝑘 = 1, . . . , 𝑐,
connected together along some arrangement 𝑖

1
⋅ ⋅ ⋅ 𝑖
𝑚

and
satisfying hypothesis (𝐻

1
). Then under hypothesis (𝐻

2
), the

full synchronization manifold M is globally attractive for the
network (1) if

𝜀𝛾
𝑗
𝜆
2 (
𝑃 (𝑘, 𝑙)) + 𝛿𝑗

≤ 0, 𝑗 = 1, . . . , 𝑛, (17)

where 𝜆
2
(𝑃(𝑘, 𝑙)) is the second-largest eigenvalue of𝐴(𝑃(𝑘, 𝑙)),

𝑘 = 1, . . . , 𝑐, 𝑙 = 1, . . . , 𝑑
𝑘
.

The proof of Theorem 5 can be completed by combining
Theorem 2 and Lemma 4, and so it is omitted here.

As a special case, if all the row-sums of𝐴 are equal to zero,
condition (17) is equivalent to

𝜀 ≥

max
𝑗∈{𝑗:𝛾𝑗>0}

{0, 𝛿
𝑗
/𝛾
𝑗
}

min
1≤𝑘≤𝑐,1≤𝑙≤𝑑𝑘





𝜆
2 (
𝑃 (𝑘, 𝑙))






. (18)

5. Numerical Examples

Consider the system (1) composed of𝑚 neural networks

�̇�
𝑖
= −𝐷𝑥

𝑖
+ 𝑇𝑔 (𝑥

𝑖
) + 𝜀

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
, 𝑖 = 1, . . . , 𝑚, (19)

where 𝑥
𝑖
∈ 𝑅
3
, 𝐷 = Γ = 𝐼

3
, 𝑔(𝑥
𝑖
) = (𝑔(𝑥

1

𝑖
), 𝑔(𝑥
2

𝑖
), 𝑔(𝑥
3

𝑖
))
⊤,

𝑔(𝑠) = (|𝑠 + 1| − |𝑠 − 1|)/2, and

𝑇 = (

1.25 −3.2 −3.2

−3.2 1.1 −4.4

−3.2 4.4 1.0

) . (20)

With the help of matlab LMI Control Toolbox, hypothesis
(𝐻
2
) can be satisfied by taking 𝑄 = 𝐼

3
and Δ = 𝛿𝐼

3
, where

𝛿 = 5.5685 [4].

4

2 2 3

3

6

3

5

21 1

1

𝜃

𝜃𝜃

Figure 1: Topology structure corresponding to the coupling matrix
(21). The coupling weights of the edges are the values lying on them.

Define the coupling matrix 𝐴 = (𝑎
𝑖𝑗
)
6×6

as follows:

𝐴 = (

𝐴
1
𝜃𝐼
3

𝜃𝐼
3
𝐴
1

) ,

𝐴
1
= (

−3 − 𝜃 1 2

1 −4 − 𝜃 3

2 3 −5 − 𝜃

) .

(21)

The topology structure corresponding to the matrix (21)
is shown in Figure 1. It is easy to show that the following
partitions satisfy (𝐻

1
):

𝑃 (1) = {1, 2, 3; 4, 5, 6} , 𝑃 (2) = {1, 4; 2, 5; 3, 6} , (22)

the principal quasi-submatrices of which are

𝐴 (𝑃 (1, 𝑙
1
)) = 𝐴

1




𝜃=0

, 𝑙
1
= 1, 2,

𝐴 (𝑃 (2, 𝑙
2
)) = (

−𝜃 𝜃

𝜃 −𝜃
) , 𝑙

2
= 1, 2, 3,

(23)

respectively. Further calculations give rise to the eigenvalues
sets of the principal quasi-submatrices mentioned above as
follows:

𝜎 (𝐴 (𝑃 (1, 𝑙
1
))) = {0, −6 ± √3} , 𝑙

1
= 1, 2,

𝜎 (𝐴 (𝑃 (2, 𝑙
2
))) = {0, −2𝜃} , 𝑙

2
= 1, 2, 3.

(24)

Obviously, partitions 𝑃(1) and 𝑃(2) are connected
together along the arrangement 123654. According to The-
orems 2 and 5, one concludes the following.

(1) If 𝜀 ≥ 𝛿/(6 −√3), cluster synchronization of partition
𝑃(1) occurs.

(2) If 𝜀 ≥ 𝛿/(2𝜃), cluster synchronization of partition
𝑃(2) occurs.

(3) If 𝜀 ≥ max{𝛿/(6 − √3), 𝛿/(2𝜃)}, full synchronization
occurs.

These results can be seen more clearly in Figure 2, the
red solid lines in which are threshold lines of 𝜀 − 𝜃 for full
synchronization.

In order to be compared with the previous classical
results on full (complete) synchronization, the second-largest
eigenvalue of𝐴 should be obtained, and the threshold for full
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Figure 2: Thresholds for the attractiveness of the synchronization
manifoldsM(𝑃(1)),M(𝑃(2)), andM.

synchronization should be 𝜀 ≥ 𝛿/|𝜆
2
(𝐴)| [1, 4]. In fact, the

eigenvalues set of 𝐴 is

𝜎 (𝐴) = {0, −2𝜃, −6 ± √3, −6 ± √3 − 2𝜃} . (25)

Therefore, 𝜆
2
(𝐴) = max{−6 + √3, −2𝜃}. Obviously, there is a

good agreement between our result and the previous classical
results.

Define the following cluster errors:

𝑒
1
(𝑡
0
) =

1

6

3

∑

𝑖=1





𝑥
𝑖
(𝑡
0
) − 𝑥
1
(𝑡
0
)




+

1

6

6

∑

𝑖=4





𝑥
𝑖
(𝑡
0
) − 𝑥
4
(𝑡
0
)




,

𝑒
2
(𝑡
0
) =

1

6

3

∑

𝑖=1





𝑥
𝑖+3
(𝑡
0
) − 𝑥
𝑖
(𝑡
0
)




,

𝑒 (𝑡
0
) =

1

6

6

∑

𝑖=1





𝑥
𝑖
(𝑡
0
) − 𝑥
1
(𝑡
0
)




,

(26)

where 𝑡
0
= 100. Take 𝜃 = 0.1 and let 𝜀 increase from 0 to 1 step

by step. Figure 3(a) shows that the cluster error 𝑒
1
(𝑡
0
) reaches

zero firstly, while 𝑒
2
(𝑡
0
) and 𝑒(𝑡

0
) reach zero at the same value

of 𝜀. While fixing 𝜃 at 3, Figure 3(b) shows that 𝑒
2
(𝑡
0
) reaches

zero firstly, while 𝑒
1
(𝑡
0
) and 𝑒(𝑡

0
) reach zero at the same value

of 𝜀.
In fact, these results can be forecasted in Figure 2. If the

parameter 𝜃 is fixed in (0, 1.5] and if 𝜀 increases gradually,
synchronization of the partition 𝑃(1) will firstly occur, and
then synchronization of 𝑃(2) and full synchronization occur
at the same value of 𝜀 sinceM(𝑃(1))⋂M(𝑃(2)) = M. There-
fore, the effectiveness of the theoretical results is confirmed.

6. Conclusions

This paper has investigated cluster and full synchronization
in a clustered network. In order to study cluster synchroniza-
tion, we propose the concept of principal quasi-submatrices

corresponding to the individual clusters, which represent the
inner couplings of the individual clusters.Theoretically, suffi-
cient conditions independent of the outer couplings between
different clusters are obtained for cluster synchronization. In
order to study full synchronization, we propose the concept
of partitions connected together along some arrangement.
If all types of cluster synchronization of those partitions
are ensured, it is proved that full synchronization occurs.
The results are more advantageous than the classical results.
Firstly, it allows us to divide a network composed of great
amounts of oscillators into some smaller subnetworks. The
network size reduction provides convenience to reduce the
great amounts of calculations. Secondly, our approach can
be applied to study cluster synchronization corresponding to
any possible partitions. In summary, this paper has proposed
a novel, convenient, and double purpose approach for both
cluster and full synchronization in clustered networks.

Appendix

Denoting 𝜄
𝑝𝑙

= (1, . . . , 1)
⊤
∈ 𝑅
𝑝𝑙 , we define the following

cluster errors for 𝑙 = 1, . . . , 𝑑:

(𝐸
1
) 𝑥
𝑙
= (1/𝑝

𝑙
) ∑
𝑖∈𝑃𝑙

𝑥
𝑖
, 𝛿𝑥
𝑖
= 𝑥
𝑖
− 𝑥
�̂�
, 𝑖 = 1, . . . , 𝑚;

(𝐸
2
) 𝑋
𝑙
= (𝑥
⊤

𝜎𝑙−1+1
, . . . , 𝑥

⊤

𝜎𝑙
)
⊤,𝑋
𝑙
= 𝜄
𝑝𝑙
⊗ 𝑥
𝑙
, 𝛿𝑋
𝑙
= 𝑋
𝑙
− 𝑋
𝑙
;

(𝐸
3
) 𝑥 = (𝑥

⊤

1
, . . . , 𝑥

⊤

𝑚
)
⊤, 𝑥 = (𝑥

⊤

1̂
, . . . , 𝑥

⊤

�̂�
)
⊤, 𝛿𝑥 =

(𝛿𝑥
⊤

1
, . . . , 𝛿𝑥

⊤

𝑚
)
⊤.

Proof. Denote 𝐹(𝑋
𝑙
, 𝑡) = (𝑓(𝑥

𝜎𝑙−1+1
, 𝑡)
⊤
, . . . , 𝑓(𝑥

𝜎𝑙
, 𝑡)
⊤
)
⊤ and

rewrite the network (1) as follows:

𝑑𝑋
𝑙

𝑑𝑡

= 𝐹 (𝑋
𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘
. (A.1)

Therefore,

𝑑𝛿𝑋
𝑙

𝑑𝑡

=

𝑑 (𝑋
𝑙
− 𝑋
𝑙
)

𝑑𝑡

=

𝑑𝑋
𝑙

𝑑𝑡

− 𝜄
𝑝𝑙
⊗ (

1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡

)

= 𝐹 (𝑋
𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘
− 𝜄
𝑝𝑙
⊗ (

1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡

)

= 𝐹 (𝑋
𝑙
, 𝑡) − 𝐹 (𝑋

𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ) 𝛿𝑋

𝑘
+ J
𝑙
,

(A.2)

where

J
𝑙
= 𝐹 (𝑋

𝑙
, 𝑡) + 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘
− 𝜄
𝑝𝑙
⊗ (

1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡

) .

(A.3)
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Figure 3: Dependence of the cluster errors 𝑒
1
(𝑡
0
), 𝑒
2
(𝑡
0
), and 𝑒(𝑡

0
) on the coupling strength 𝜀 for the network (19) with the coupling matrix

(21).

Noticing that 𝐹(𝑋
𝑙
, 𝑡) = 𝜄

𝑝𝑙
⊗ 𝑓(𝑥

𝑙
, 𝑡) and

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ)𝑋

𝑘

=

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ) (𝜄

𝑝𝑘
⊗ 𝑥
𝑘
) =

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
𝜄
𝑝𝑘
) ⊗ (Γ𝑥

𝑘
)

=

𝑑

∑

𝑘=1

𝑠
𝑙𝑘
𝜄
𝑝𝑙
⊗ (Γ𝑥

𝑘
) = 𝜄
𝑝𝑙
⊗ (

𝑑

∑

𝑘=1

𝑠
𝑙𝑘
Γ𝑥
𝑘
) ,

(A.4)

we have

J
𝑙
= 𝜄
𝑝𝑙
⊗ (𝑓 (𝑥

𝑙
, 𝑡) +

𝑑

∑

𝑘=1

𝑠
𝑙𝑘
Γ𝑥
𝑘
−

1

𝑝
𝑙

∑

𝑖∈𝑃𝑙

𝑑𝑥
𝑖

𝑑𝑡

) . (A.5)

Let J
𝑙
= 𝜄
𝑝𝑙
⊗ 𝐽
𝑙
; it can be seen that 𝐽

𝑙
is independent of 𝑖 ∈ 𝑃

𝑙
.

In order to utilize the QUAD(Δ, 𝑄, 𝑅𝑛) condition, a
Lyapunov function is defined as follows,

𝑉 (𝛿𝑥) =

1

2

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄) 𝛿𝑋

𝑙
. (A.6)

The derivative of 𝑉 with respect to time 𝑡 is as follows:

𝑑𝑉 (𝛿𝑥)

𝑑𝑡

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)

𝑑𝛿𝑋
𝑙

𝑑𝑡

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)

× (𝐹 (𝑋
𝑙
, 𝑡)−𝐹 (𝑋

𝑙
, 𝑡)+𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗Γ) 𝛿𝑋

𝑘
+J
𝑙
) .

(A.7)

Noticing that ∑
𝑖∈𝑃𝑙

𝛿𝑥
𝑖
= 0, we have

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)J

𝑙

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄) (𝜄

𝑝𝑙
⊗ 𝐽
𝑙
)

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝜄
𝑝𝑙
⊗ 𝑄𝐽
𝑙
)

=

𝑑

∑

𝑙=1

∑

𝑖∈𝑃𝑙

𝛿𝑥
⊤

𝑖
𝑄𝐽
𝑙
=

𝑑

∑

𝑙=1

(∑

𝑖∈𝑃𝑙

𝛿𝑥
⊤

𝑖
)𝑄𝐽
𝑙
= 0.

(A.8)

which together with hypothesis (𝐻
2
) leads to

𝑑𝑉 (𝛿𝑥)

𝑑𝑡

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
(𝐼
𝑝𝑙
⊗ 𝑄)

× ( [𝐹 (𝑋
𝑙
, 𝑡) − 𝐹 (𝑋

𝑙
, 𝑡)

− (𝐼
𝑝𝑙
⊗ Δ) (𝑋

𝑙
− 𝑋
𝑙
)]

+ [ (𝐼
𝑝𝑙
⊗ Δ) (𝑋

𝑙
− 𝑋
𝑙
)

+ 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ Γ) 𝛿𝑋

𝑘
])
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≤ − 𝜖

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
𝛿𝑋
𝑙
+

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙

× [(𝐼
𝑝𝑙
⊗ 𝑄Δ) 𝛿𝑋

𝑙
+ 𝜀

𝑑

∑

𝑘=1

(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
]

≤ − 2𝜖

𝑉 (𝛿𝑥 (𝑡))

max
1≤𝑖≤𝑛

𝑞
𝑖

+ S.

(A.9)

Noticing the equality (8), that is, 𝐴
𝑙𝑙
= 𝐴
𝑙
− ∑
𝑑

𝑘=1,𝑘 ̸= 𝑙
𝑠
𝑙𝑘
𝐼
𝑝𝑙
,

where 𝐴
𝑙
= 𝐴(𝑃

𝑙
), we have

S =

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
((𝐼
𝑝𝑙
⊗ 𝑄Δ) 𝛿𝑋

𝑙
+ 𝜀 (𝐴

𝑙𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙

+ 𝜀

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
)

=

𝑑

∑

𝑙=1

𝛿𝑋
⊤

𝑙
[𝐼
𝑝𝑙
⊗ 𝑄Δ + 𝜀𝐴

𝑙
⊗ 𝑄Γ] 𝛿𝑋

𝑙

+ 𝜀

𝑑

∑

𝑙=1

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

= S
1
+ S
2
.

(A.10)

The proof will be completed by showing that S
1
≤ 0 and S

2
≤

0 as follows.
As we know, the symmetric matrix 𝐴

𝑙
has the

famous decomposition 𝐴
𝑙

= 𝑈
𝑙
Λ
𝑙
𝑈
⊤

𝑙
, where Λ

𝑙
=

diag{𝜆
1
(𝑃
𝑙
), . . . , 𝜆

𝑝𝑙
(𝑃
𝑙
)} satisfying 𝑠 = 𝜆

1
(𝑃
𝑙
) > 𝜆

2
(𝑃
𝑙
) ≥

⋅ ⋅ ⋅ ≥ 𝜆
𝑝𝑙
(𝑃
𝑙
), and 𝑈

𝑙
∈ 𝑅
𝑝𝑙×𝑝𝑙 is a unitary matrix; that is,

𝑈
𝑙
𝑈
⊤

𝑙
= 𝐼
𝑝𝑙
. The 𝑖th column of 𝑈

𝑙
is the eigenvector of 𝐴

𝑙

corresponding to the eigenvalue 𝜆
𝑖
(𝑃
𝑙
), 𝑖 = 1, . . . , 𝑝

𝑙
. By the

substitutions of variables 𝛿𝑋
𝑙
= (𝑈
𝑙
⊗ 𝐼
𝑛
)𝜉
𝑙
, 𝑙 = 1, . . . , 𝑑, we

have

S
1
=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
(𝑈
𝑙
⊗ 𝐼
𝑛
)
⊤

× [𝐼
𝑝𝑙
⊗ (𝑄Δ) + 𝜀𝐴𝑙

⊗ (𝑄Γ)] (𝑈𝑙
⊗ 𝐼
𝑛
) 𝜉
𝑙

=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
[𝐼
𝑝𝑙
⊗ (𝑄Δ) + 𝜀 (𝑈

⊤

𝑙
𝐴
𝑙
𝑈
𝑙
) ⊗ (𝑄Γ)] 𝜉𝑙

=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
[𝐼
𝑝𝑙
⊗ (𝑄Δ) + 𝜀Λ 𝑙

⊗ (𝑄Γ)] 𝜉𝑙
.

(A.11)

Noticing that the matrices 𝑄, Δ, Λ
𝑙
, and Γ are all diagonal

matrices, we obtain

S
1
=

𝑑

∑

𝑙=1

𝜉
⊤

𝑙
diag(𝜆

11
, . . . , 𝜆

1𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

, . . . , 𝜆
𝑝𝑙1
, . . . , 𝜆

𝑝𝑙𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

)𝜉
𝑙
,

(A.12)

where 𝜆
𝑖𝑗
= 𝑞
𝑗
(𝜀𝜆
𝑖
(𝑃
𝑙
)𝛾
𝑗
+ 𝛿
𝑗
), 𝑖 = 1, . . . 𝑝

𝑙
, 𝑗 = 1, . . . , 𝑛.

It is well known that the first column of 𝑈
𝑙
is 𝜄
𝑝𝑙
; then one

can conclude from the inverse substitutions of variables 𝜉
𝑙
=

(𝑈
⊤

𝑙
⊗𝐼
𝑛
)𝛿𝑋
𝑙
that 𝜉𝑗
𝑙
= ∑
𝑖∈𝑃𝑙

𝛿𝑥
𝑗

𝑖
= 0, 𝑗 = 1, . . . , 𝑛, 𝑙 = 1, . . . , 𝑑.

Therefore, condition (12) is sufficient for S
1
≤ 0.

Finally, some techniques in [2, page 164] are employed to
show that S

2
≤ 0 as follows:

S
2
= 𝜀

𝑑

∑

𝑙=1

𝑑

∑

𝑘=1,𝑘 ̸= 𝑙

𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

= 𝜀 [

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

+

𝑑−1

∑

𝑘=1

𝑑

∑

𝑙=𝑘+1

]

× 𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

𝛿𝑋
⊤

𝑙
[(𝐴
𝑙𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
− 𝑠
𝑙𝑘
(𝐼
𝑝𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

+ 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

𝛿𝑋
⊤

𝑘
[(𝐴
𝑘𝑙
⊗ 𝑄Γ) 𝛿𝑋

𝑙
− 𝑠
𝑘𝑙
(𝐼
𝑝𝑘
⊗ 𝑄Γ) 𝛿𝑋

𝑘
]

= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

(𝛿𝑋
⊤

𝑙
[

[

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

(𝑎
𝑖𝑗
𝐸
𝑝𝑙×𝑝𝑘

𝑖𝑗
⊗ 𝑄Γ) 𝛿𝑋

𝑘

−𝑠
𝑙𝑘
(∑

𝑖∈𝑃𝑙

𝐸
𝑝𝑙×𝑝𝑙

𝑖𝑖
⊗ 𝑄Γ)𝛿𝑋

𝑙
]

]

+ 𝛿𝑋
⊤

𝑘
[

[

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

(𝑎
𝑗𝑖
𝐸
𝑝𝑘×𝑝𝑙

𝑗𝑖
⊗ 𝑄Γ) 𝛿𝑋

𝑙

−𝑠
𝑘𝑙
(∑

𝑗∈𝑃𝑘

𝐸
𝑝𝑘×𝑝𝑘

𝑗𝑗
⊗ 𝑄Γ)𝛿𝑋

𝑘
]

]

) ,

(A.13)

where 𝐸𝑝𝑙×𝑝𝑘
𝑖𝑗

= 𝑒
𝑝𝑙

𝑖
⊗ 𝑒
𝑝𝑘⊤

𝑗
and 𝑒𝑝
𝑖
∈ 𝑅
𝑝 is the 𝑖th column of 𝐼

𝑝
.

Substituting 𝑠
𝑙𝑘
and 𝑠
𝑘𝑙
by (9), we have

S
2
= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑋
⊤

𝑙
[(𝐸
𝑝𝑙×𝑝𝑘

𝑖𝑗
⊗ 𝑄Γ) 𝛿𝑋

𝑘

− (𝐸
𝑝𝑙×𝑝𝑙

𝑖𝑖
⊗ 𝑄Γ) 𝛿𝑋

𝑙
]

+ 𝛿𝑋
⊤

𝑘
[(𝐸
𝑝𝑘×𝑝𝑙

𝑗𝑖
⊗ 𝑄Γ) 𝛿𝑋

𝑙

− (𝐸
𝑝𝑘×𝑝𝑘

𝑗𝑗
⊗ 𝑄Γ) 𝛿𝑋

𝑘
])
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= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑋
⊤

𝑙
[𝑒
𝑝𝑙

𝑖
⊗ 𝑄Γ (𝛿𝑥

𝑗
− 𝛿𝑥
𝑖
)]

+𝛿𝑋
⊤

𝑘
[𝑒
𝑝𝑘

𝑗
⊗ 𝑄Γ (𝛿𝑥

𝑖
− 𝛿𝑥
𝑗
)])

= 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑥
⊤

𝑖
𝑄Γ (𝛿𝑥

𝑗
− 𝛿𝑥
𝑖
)

+𝛿𝑥
⊤

𝑗
𝑄Γ (𝛿𝑥

𝑖
− 𝛿𝑥
𝑗
))

= − 𝜀

𝑑−1

∑

𝑙=1

𝑑

∑

𝑘=𝑙+1

∑

𝑖∈𝑃𝑙

∑

𝑗∈𝑃𝑘

𝑎
𝑖𝑗
(𝛿𝑥
𝑗
− 𝛿𝑥
𝑖
)

⊤

𝑄Γ (𝛿𝑥
𝑗
− 𝛿𝑥
𝑖
) ≤ 0.

(A.14)

The proof is completed.
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