
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 524028, 9 pages
http://dx.doi.org/10.1155/2013/524028

Research Article
Passivity Analysis and Passive Control for T-S Fuzzy Systems
with Leakage Delay and Mixed Time-Varying Delays

Ting Lei,1 Zengshun Chen,2 Qiankun Song,1 and Zhenjiang Zhao3

1 Department of Mathematics, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Civil Engineering & Architecture, Chongqing Jiaotong University, Chongqing 400074, China
3Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China

Correspondence should be addressed to Qiankun Song; qiankunsong@gmail.com

Received 17 July 2013; Accepted 24 August 2013

Academic Editor: Xinsong Yang

Copyright © 2013 Ting Lei et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The passivity and passification for Takagi-Sugeno (T-S) fuzzy systems with leakage delay and both discrete and distributed time-
varying delays are investigated. By employing the Lyapunov functional method and using the matrix inequality techniques, several
delay-dependent criteria to ensure the passivity and passification of the considered T-S fuzzy systems are established in terms
of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. The obtained results
generalize some previous results. Two examples are given to show the effectiveness of the proposed criteria.

1. Introduction

TheTakagi-Sugeno (T-S) fuzzy system, initially proposed and
studied by Takagi and Sugeno [1], has attracted increasing
interest due to the fact that it provides a general framework
to represent a nonlinear plant by using a set of local linear
models which are smoothly connected through nonlinear
fuzzy membership functions [2]. In practice, time delays
often occur in many dynamic systems such as chemical
processes, metallurgical processes, biological systems, and
neural networks [3]. The existence of time delays is usually a
source of instability and poor performance [4].Therefore, the
study of stability with consideration of time delays becomes
extremely important [5]. Recently, the stability and stabiliza-
tion of T-S fuzzy systems with delays have been extensively
studied; for example, see [3–13] and references therein.

On the other hand, the passivity theory is another
effective tool to the stability analysis of the system [14]. The
main idea of passivity theory is that the passive properties
of the system can keep the system internal stability [15]. For
these reasons, the passivity and passification problems have
been an active area of research recently. The passification
problem, which is also called the passive control problem,
is formulated as the problem of finding a suitable controller

such that the resulting closed-loop system is passive. Recently,
some authors have studied the passivity of some systems
and obtained sufficient conditions for checking the passivity
of the systems that include linear systems with delays [14–
16], delayed neural networks [17, 18], networked control
systems [19], nonlinear discrete-time systems with direct
input-output link [20], and T-S fuzzy systems [21–25]. In [21],
the stability of fuzzy control loops is proven with the unique
condition that the controlled plant can be made passive by
zero shifting. For linear time-invariant plants, this approach
leads to frequency response conditions similar to the previous
results in the literature, but which are more general and can
include robust stability considerations. In [23], the passivity
and feedback passification of T-S fuzzy systems with time
delays are considered. Both delay-independent and delay-
dependent results are presented, and the theoretical results
are given in terms of LMIs. In [24], discrete-time T-S fuzzy
systems with delays were considered, and several sufficient
conditions for checking passivity and passification were
obtained. In [25], the contiguous-time T-S fuzzy systemswith
time-varying delays were investigated, and several criteria to
ensure the passivity and feedback passification were given.
In [22], the passivity and feedback passification of T-S fuzzy
systems with both discrete and distributed time-varying
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delays were investigated without assuming the differentia-
bility of the time-varying delays. By employing appropriate
Lyapunov-Krasovskii functionals, several delay-dependent
criteria for the passivity of the considered T-S fuzzy systems
were established in terms of LMIs.

Recently, Gopalsamy initially investigated the bidirec-
tional associative memory (BAM) neural networks with con-
stant delays in the leakage terms and derived several sufficient
conditions for the existence of a unique equilibrium as well as
its asymptotic and exponential stability [26]. Inspired by this
work, authors considered the T-S fuzzy systems with constant
leakage delay and investigated their stability problem [7]. As
pointed out in [7], T-S fuzzy systems with leakage delay are a
class of important T-S fuzzy systems: time delay in the leakage
term also has great impact on the dynamics of T-S fuzzy
systems since time delay in the stabilizing negative feedback
term has a tendency to destabilize a system. To the best of
the authors knowledge, there is no results on the problem of
passivity for T-S fuzzy systems with leakage delay. Therefore,
there is a need to further extend the passivity results reported
in [22].

Motivated by the above discussions, the objective of this
paper is to study the passivity and feedback passification of T-
S fuzzy systems with leakage delay and mixed time-varying
delays by employing new Lyapunov-Krasovskii functionals
and using matrix inequality techniques. The obtained suffi-
cient conditions do not require the differentiability of time-
varying delays and are expressed in terms of linear matrix
inequalities, which can be checked numerically using the
effective LMI toolbox inMATLAB.Two examples are given to
show the effectiveness and less conservatism of the proposed
criteria.

Notations.The notations are quite standard. Throughout this
paper, R𝑛 and R𝑛×𝑚 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑛×𝑚 realmatrices. ‖⋅‖ refers
to the Euclidean vector norm. 𝐴𝑇 represents the transpose of
matrix𝐴, and the asterisk “∗” in a matrix is used to represent
the term which is induced by symmetry. 𝐼 is the identity
matrix with compatible dimension. 𝑋 > 𝑌 means that 𝑋
and 𝑌 are symmetric matrices and that 𝑋 − 𝑌 is positive
definite. Matrices, if not explicitly specified, are assumed to
have compatible dimensions.

2. Model Description and Preliminaries

Consider a continuous time T-S fuzzy system with dis-
crete and distributed time-varying delays as well as leakage
delay, and the 𝑖th rule of the model is of the following
form.

Plant Rule 𝑖. If 𝑧
1
(𝑡) is𝑀

𝑖1
and. . .and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝
, then

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡 − 𝛿) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐻
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡) ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] ,

(1)

where 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑟, and 𝑟 is the number of If-
then rules; 𝑧

1
(𝑡), 𝑧

2
(𝑡), . . . , 𝑧

𝑝
(𝑡) are the premise variables;

each 𝑀
𝑖𝑗
(𝑗 = 1, 2, . . . , 𝑝) is a fuzzy set; 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡),

. . . , 𝑥
𝑛
(𝑡))

𝑇

∈ R𝑛 is the state vector of the system at time 𝑡;
𝑤(𝑡) = (𝑤

1
(𝑡), 𝑤

2
(𝑡), . . . , 𝑤

𝑞
(𝑡))

𝑇

∈ R𝑞 is the square inte-
grable exogenous input; 𝑦(𝑡) = (𝑦

1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑞
(𝑡))

𝑇

∈ R𝑞

is the output vector of the system; 𝛿, 𝜏(𝑡), and 𝑑(𝑡) denote
the leakage delay, the discrete time-varying delay, and the
distributed time-varying delay, respectively, and satisfy 0 ≤

𝜏(𝑡) ≤ 𝜏, 0 ≤ 𝑑(𝑡) ≤ 𝑑, where 𝜏 and 𝑑 are constants; 𝜙(𝑠)
is bounded and continuously differentiable on [−𝜌, 0], where
𝜌 = max{𝛿, 𝜏, 𝑑}; 𝐴

𝑖
, 𝐵

𝑖
, 𝑊

𝑖
, 𝑈

𝑖
, 𝐶

𝑖
, 𝐷

𝑖
, 𝐻

𝑖
, and 𝑉

𝑖
are some

given constant matrices with appropriate dimensions.
Let 𝜇

𝑖
(𝑡) be the normalized membership function of the

inferred fuzzy set 𝛾
𝑖
(𝑡); that is,

𝜇
𝑖
(𝑡) =

𝛾
𝑖
(𝑡)

∑
𝑟

𝑖=1
𝛾
𝑖
(𝑡)

, (2)

where 𝛾
𝑖
(𝑡) = ∏

𝑝

𝑗=1
𝑀
𝑖𝑗
(𝑧
𝑗
(𝑡)) with𝑀

𝑖𝑗
(𝑧
𝑗
(𝑡)) being the grade

of membership function of 𝑧
𝑗
(𝑡) in𝑀

𝑖𝑗
(𝑡). It is assumed that

𝛾
𝑖
(𝑡) ≥ 0 (𝑖 = 1, 2, . . . , 𝑟) and ∑

𝑟

𝑖=1
𝛾
𝑖
(𝑡) > 0 for all 𝑡. Thus,

𝜇
𝑖
(𝑡) ≥ 0 and∑𝑟

𝑖=1
𝜇
𝑖
(𝑡) = 1 for all 𝑡. And the T-S fuzzy model

(1) can be defuzzied as

�̇� (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [𝐴

𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡)] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [𝐶

𝑖
𝑥 (𝑡 − 𝛿) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝐻
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡)] ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] .

(3)

In the literature, there are different definitions of passivity.
In this paper, we adopt the following widely accepted defini-
tion of passivity, which can been found in [22].

Definition 1. System (1) is called passive if there exists a scalar
𝛾 > 0 such that

2∫

𝑡𝑝

0

𝑦
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠 ≥ −𝛾∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠 (4)

for all 𝑡
𝑝
≥ 0 and for the solution of (1) with 𝜙(⋅) ≡ 0.
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To prove our results, the following lemma that can be
found in [27] is necessary.

Lemma 2 (see [27]). For any constant matrix 𝑊 ∈ R𝑚×𝑚,
𝑊 > 0, scalar 0 < ℎ(𝑡) < ℎ, vector function 𝜔(⋅) : [0, ℎ] →

R𝑚 such that the integrations concerned are well defined; then,

(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑊(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

≤ ℎ (𝑡) ∫

ℎ(𝑡)

0

𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠.

(5)

3. Main Results

Theorem 3. Model (1) is passive in the sense of Definition 1
if there exist a scalar 𝛾 > 0, three symmetric positive definite
matrices 𝑃

1
, 𝑃
2
, and 𝑃

3
, and eleven matrices 𝑄

1
, 𝑄

2
, 𝑋

11
, 𝑋

12
,

𝑋
22
, 𝑌

𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3, 𝑖 ≤ 𝑗) such that the following LMIs hold

for 𝑖 = 1, 2, . . . , 𝑟:

𝑋 = [

𝑋
11

𝑋
12

∗ 𝑋
22

] > 0, (6)

𝑌 =
[

[

𝑌
11

𝑌
12

𝑌
13

∗ 𝑌
22

𝑌
23

∗ ∗ 𝑌
33

]

]

> 0, (7)

Π
𝑖
=

[

[

[

[

[

[

[

[

Π11 𝑋11 − 𝑄1 −𝑋12 + 𝑄1𝐴𝑖 Π14,𝑖 𝑋22 𝑄1𝑊𝑖 𝑄1𝑈𝑖

∗ Π22 𝑄2𝐴𝑖 𝑄2𝐵𝑖 𝑋12 𝑄2𝑊𝑖 𝑄1𝑈𝑖

∗ ∗ −𝑃1 0 −𝑋22 0 −𝐶
𝑇

𝑖

∗ ∗ ∗ Π44 0 0 −𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝑃2 0 0

∗ ∗ ∗ ∗ ∗ −𝑃3 −𝐻
𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Π77,𝑖

]

]

]

]

]

]

]

]

<0,

(8)

whereΠ
11
= 𝑃

1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+𝑋

12
+𝑋

𝑇

12
+ 𝜏𝑌

11
+ 𝑌

13
+ 𝑌

𝑇

13
,

Π
14,𝑖

= 𝜏𝑌
12

− 𝑌
13

+ 𝑌
𝑇

23
+ 𝑄

1
𝐵
𝑖
, Π

22
= 𝜏𝑌

33
− 𝑄

2
− 𝑄

𝑇

2
,

Π
44
= 𝜏𝑌

22
− 𝑌

23
− 𝑌

𝑇

23
, and Π

77,𝑖
= −𝑉

𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Proof. From condition (7), we know that 𝑌
33

> 0. Consider
the following Lyapunov-Krasovskii functional as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (9)

where

𝑉
1
(𝑡) = ∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠) 𝑃
1
𝑥 (𝑠) 𝑑𝑠 + 𝛿∫

0

−𝛿

∫

𝑡

𝑡+𝜉

𝑥
𝑇

(𝑠) 𝑃
2
𝑥 (𝑠) 𝑑𝑠 𝑑𝜉

+ 𝑑∫

0

−𝑑

∫

𝑡

𝑡+𝜉

𝑥
𝑇

(𝑠) 𝑃
3
𝑥 (𝑠) 𝑑𝑠 𝑑𝜉,

𝑉
2
(𝑡) =

[

[

𝑥(𝑡)

∫

𝑡

𝑡−𝛿

𝑥(𝑠)𝑑𝑠

]

]

𝑇

[

𝑋
11

𝑋
12

∗ 𝑋
22

]
[

[

𝑥 (𝑡)

∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

]

]

,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝜏

∫

𝑡

𝜉

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠 𝑑𝜉,

𝑉
4
(𝑡) = ∫

𝑡

0

∫

𝜉

𝜉−𝜏(𝜉)

𝑢
𝑇

(𝜉, 𝑠) 𝑌𝑢 (𝜉, 𝑠) 𝑑𝑠 𝑑𝜉,

(10)

and 𝑢(𝜉, 𝑠) = (𝑥
𝑇

(𝜉), 𝑥
𝑇

(𝜉 − 𝜏(𝜉)), �̇�
𝑇

(𝑠))
𝑇.

Calculating the time derivative of 𝑉(𝑡) and using Lemma
2, we obtain that

�̇�
1
(𝑡) = 𝑥

𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 𝛿∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠) 𝑃
2
𝑥 (𝑠) 𝑑𝑠 − 𝑑∫

𝑡

𝑡−𝑑

𝑥
𝑇

(𝑠) 𝑃
3
𝑥 (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
) 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠) ,

�̇�
2
(𝑡) = 2

[

[

𝑥(𝑡)

∫

𝑡

𝑡−𝛿

𝑥(𝑠)𝑑𝑠

]

]

𝑇

[

𝑋
11

𝑋
12

∗ 𝑋
22

] [

�̇� (𝑡)

𝑥 (𝑡) − 𝑥 (𝑡 − 𝛿)
]

= 𝑥
𝑇

(𝑡) (𝑋
12
+ 𝑋

𝑇

12
) 𝑥 (𝑡) + 2𝑥

𝑇

(𝑡) 𝑋
11
�̇� (𝑡)

− 2𝑥
𝑇

(𝑡) 𝑋
12
𝑥 (𝑡 − 𝛿) + 2𝑥

𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2�̇�
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠,

�̇�
3
(𝑡) = 𝜏�̇�

𝑇

(𝑡) 𝑌
33
�̇� (𝑡) − ∫

𝑡

𝑡−𝜏

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠,

�̇�
4
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

(𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , �̇�
𝑇

(𝑠)) 𝑌

× (𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) , �̇�
𝑇

(𝑠))

𝑇

𝑑𝑠

= 𝜏 (𝑡) [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))
]

𝑇

[

𝑌
11

𝑌
12

𝑌
𝑇

12
𝑌
22

] [

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏 (𝑡))
]

+ 2𝑥
𝑇

(𝑡) 𝑌
13
𝑥 (𝑡) − 2𝑥

𝑇

(𝑡) 𝑌
13
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑌
23
𝑥 (𝑡)

− 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑌
23
𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏(𝑡)

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠

≤ 𝑥
𝑇

(𝑡) (𝜏𝑌
11
+ 𝑌

13
+ 𝑌

𝑇

13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))
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+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡

𝑡−𝜏

�̇�
𝑇

(𝑠) 𝑌
33
�̇� (𝑠) 𝑑𝑠.

(11)

It follows from (11) that

�̇� (𝑡) ≤ 𝑥
𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+ 𝑋

12
+ 𝑋

𝑇

12

+𝜏𝑌
11
+ 𝑌

13
+ 𝑌

𝑇

13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑋
11
�̇� (𝑡) − 2𝑥

𝑇

(𝑡) 𝑋
12
𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠 + 𝜏�̇�
𝑇

(𝑡) 𝑌
33
�̇� (𝑡)

+ 2�̇�
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
) 𝑥 (𝑡 − 𝜏 (𝑡))

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠) .

(12)

From the first equation of (3), we have

0 = 2 (𝑥
𝑇

(𝑡) 𝑄
1
+ �̇�

𝑇

(𝑡) 𝑄
2
)

×

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [ − �̇� (𝑡) + 𝐴

𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡)]

=

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) ( − 2𝑥

𝑇

(𝑡) 𝑄
1
�̇� (𝑡) + 2𝑥

𝑇

(𝑡) 𝑄
1
𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑈
𝑖
𝑤 (𝑡)

− 2�̇�
𝑇

(𝑡) 𝑄
2
�̇� (𝑡) + 2�̇�

𝑇

(𝑡) 𝑄
2
𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2�̇�
𝑇

(𝑡) 𝑄
2
𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2�̇�
𝑇

(𝑡) 𝑄
2
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+2�̇�
𝑇

(𝑡) 𝑄
2
𝑈
𝑖
𝑤 (𝑡) ) .

(13)

It follows from (12) and (13) that

�̇� (𝑡) − 2𝑤
𝑇

(𝑡) 𝑦 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) [𝑥

𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+ 𝑋

12

+𝑋
𝑇

12
+ 𝜏𝑌

11
+ 𝑌

13
+ 𝑌

𝑇

13
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝑋
11
− 𝑄

1
) �̇� (𝑡)

+ 2𝑥
𝑇

(𝑡) (−𝑋
12
+ 𝑄

1
𝐴
𝑖
) 𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
+ 𝑄

1
𝐵
𝑖
)

× 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑄
1
𝑈
𝑖
𝑤 (𝑡)

+ �̇�
𝑇

(𝑡) (𝜏𝑌
33
− 𝑄

2
− 𝑄

𝑇

2
) �̇� (𝑡)

+ 2�̇�
𝑇

(𝑡) 𝑄
2
𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2�̇�
𝑇

(𝑡) 𝑄
2
𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2�̇�
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2�̇�
𝑇

(𝑡) 𝑄
2
𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2�̇�
𝑇

(𝑡) 𝑄
2
𝑈
𝑖
𝑤 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− 2𝑥
𝑇

(𝑡 − 𝛿) 𝐶
𝑇

𝑖
𝑤 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
)

× 𝑥 (𝑡 − 𝜏 (𝑡)) − 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐷
𝑇

𝑖
𝑤 (𝑡)
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− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

− 2(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐻
𝑇

𝑖
𝑤 (𝑡)

+𝑤
𝑇

(𝑡) (−𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼)𝑤 (𝑡) ]

=

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡) 𝑧

𝑇

(𝑡) Π
𝑖
𝑧 (𝑡) ,

(14)

where 𝑧(𝑡) = (𝑥
𝑇

(𝑡), �̇�
𝑇

(𝑡), 𝑥
𝑇

(𝑡−𝛿), 𝑥
𝑇

(𝑡−𝜏(𝑡)), ∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠)𝑑𝑠,

∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠)𝑑𝑠, 𝑤
𝑇

(𝑡))
𝑇.Thus, one canderive from (8) and (14)

that

�̇� (𝑡) − 2𝑤
𝑇

(𝑡) 𝑦 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡) ≤ 0. (15)

By integrating (15) with respect to 𝑡 from 0 to 𝑡
𝑝
, we obtain

2∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠 ≥ 𝑉 (𝑥 (𝑡
𝑝
))

− 𝑉 (𝑥 (0)) − 𝛾∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠.

(16)

From the definition of 𝑉(𝑥(𝑡)), we have 𝑉(𝑥(𝑡
𝑝
) ≥ 0 and

𝑉(𝑥(0) = 0 when 𝜙(⋅) ≡ 0. Thus,

2∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑦 (𝑠) 𝑑𝑠 ≥ −𝛾∫

𝑡𝑝

0

𝑤
𝑇

(𝑠) 𝑤 (𝑠) 𝑑𝑠 (17)

holds for all 𝑡
𝑝
≥ 0. The proof is completed.

Next, we consider the passification problem; that is, a state
feedback controller is to be designed to make the closed-loop
fuzzy system passive. Extending on system (1), we consider
the following T-S fuzzy system with control input.

Plant Rule 𝑖. If 𝑧
1
(𝑡) is𝑀

𝑖1
and . . . and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝
, then

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡) + 𝑅

𝑖
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑖
𝑥 (𝑡 − 𝛿) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐻
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡) ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] ,

(18)

where 𝑢(𝑡) ∈ 𝑅
𝑙 is the control input, 𝑅

𝑖
is a constant matrix

with appropriate dimension.

Controller Rule 𝑖. If 𝑧
1
(𝑡) is𝑀

𝑖1
and . . . and 𝑧

𝑝
(𝑡) is𝑀

𝑖𝑝
, then

𝑢 (𝑡) = 𝐾
𝑖
𝑥 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟. (19)

And the overall state feedback controller is presented by

𝑢 (𝑡) =

𝑟

∑

𝑗=1

𝜇
𝑗
(𝑡) 𝐾

𝑗
𝑥 (𝑡) , (20)

where 𝜇
𝑗
(𝑡) is defined as before.The closed-loop fuzzy system

can be represented as

�̇� (𝑡) =

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× [𝑅
𝑖
𝐾
𝑗
𝑥 (𝑡) + 𝐴

𝑖
𝑥 (𝑡 − 𝛿) + 𝐵

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝑊
𝑖
∫

𝑡

𝑡−𝜎(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑈
𝑖
𝑤 (𝑡)] ,

𝑦 (𝑡) =

𝑟

∑

𝑖=1

𝜇
𝑖
(𝑡)

× [𝐶
𝑖
𝑥 (𝑡) + 𝐷

𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+𝐻
𝑖
∫

𝑡

𝑡−𝜎(𝑡)

𝑥 (𝑠) 𝑑𝑠 + 𝑉
𝑖
𝑤 (𝑡)] ,

𝑥 (𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜌, 0] .

(21)

The following theorem establishes the main result of the
state feedback passification.

Theorem 4. The closed-loop fuzzy system (21) is passive in the
sense of Definition 1 if there exist a scalar 𝛾 > 0, four symmetric
positive definite matrices 𝐸

1
, 𝐸

2
, 𝐸

3
, and 𝑆, and matrices 𝐹

11
,

𝐹
12
, 𝐹
22
, 𝐺

𝑖𝑗
(𝑖, 𝑗 = 1, 2, 3, 𝑖 ≤ 𝑗), and 𝑍

𝑗
(𝑗 = 1, 2, . . . , 𝑟) such

that the following LMIs hold for 𝑖, 𝑗 = 1, 2, . . . , 𝑟:

𝑋 = [

𝑋
11

𝑋
12

∗ 𝑋
22

] > 0, (22)

𝑌 =
[

[

𝑌
11

𝑌
12

𝑌
13

∗ 𝑌
22

𝑌
23

∗ ∗ 𝑌
33

]

]

> 0, (23)

Ω
𝑖𝑗
=

[

[

[

[

[

[

[

[

Ω
11,𝑖𝑗

Ω
12,𝑖𝑗

−𝐹
12
+ 𝐴

𝑖
𝑆 Ω

14,𝑖
𝐹
22

𝑊
𝑖
𝑆 𝑈

𝑖

∗ Ω
22

𝐴
𝑖
𝑆 𝐵

𝑖
𝑆 𝐹

12
𝑊
𝑖
𝑆 𝑈

𝑖

∗ ∗ −𝐸
1

0 −𝐹
22

0 −𝑆𝐶
𝑇

𝑖

∗ ∗ ∗ Ω
44

0 0 −𝑆𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝐸
2

0 0

∗ ∗ ∗ ∗ ∗ −𝐸
3
−𝑆𝐻

𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Ω
77,𝑖

]

]

]

]

]

]

]

]

< 0,

(24)

where Ω
11,𝑖𝑗

= 𝐸
1
+ 𝛿

2

𝐸
2
+ 𝑑

2

𝐸
3
+ 𝐹

12
+ 𝐹

𝑇

12
+ 𝜏𝐺

11
+ 𝐺

13
+

𝐺
𝑇

13
+ 𝑅

𝑖
𝑍
𝑗
+ 𝑍

𝑇

𝑗
𝑅
𝑇

𝑖
, Ω

12,𝑖𝑗
= 𝐹

11
− 𝑆 + 𝑍

𝑇

𝑗
𝑅
𝑇

𝑖
, Ω

14,𝑖
= 𝜏𝐺

12
−

𝐺
13
+ 𝐺

𝑇

23
+ 𝐵

𝑖
𝑆, Ω

22
= 𝜏𝐺

33
− 2𝑆, Ω

44
= 𝜏𝐺

22
− 𝐺

23
− 𝐺

𝑇

23
,

and Ω
77,𝑖

= −𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Moreover, the state feedback gains can be constructed as

𝐾
𝑗
= 𝑍

𝑗
𝑆
−1

, 𝑗 = 1, 2, . . . , 𝑟. (25)
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Proof. Structure Lyapunov-Krasovskii functional (9), where
𝑃
1
= 𝑆

−1

𝐸
1
𝑆
−1,𝑃

2
= 𝑆

−1

𝐸
2
𝑆
−1,𝑃

3
= 𝑆

−1

𝐸
3
𝑆
−1,𝑋

𝑖𝑗
= 𝑆

−1

𝐹
𝑖𝑗
𝑆
−1

(𝑖 = 1, 2, 𝑖 ≤ 𝑗), and 𝑌
𝑖𝑗
= 𝑆

−1

𝐺
𝑖𝑗
𝑆
−1 (𝑖 = 1, 2, 3, 𝑖 ≤ 𝑗).

From the first equation of (21), we have

0 = 2 (𝑥
𝑇

(𝑡) + �̇�
𝑇

(𝑡)) 𝑆
−1

×

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× [ − �̇� (𝑡) + 𝑅
𝑖
𝐾
𝑗
𝑥 (𝑡) + 𝐴

𝑖
𝑥 (𝑡 − 𝛿)

+ 𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡)) + 𝑊

𝑖
∫

𝑡

𝑡−𝜎(𝑡)

𝑥 (𝑠) 𝑑𝑠 +𝑈
𝑖
𝑤 (𝑡) ]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× (2𝑥
𝑇

(𝑡) 𝑆
−1

𝑅
𝑖
𝐾
𝑗
𝑥 (𝑡)

+ 𝑥
𝑇

(𝑡) (−2𝑆
−1

+ 2𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1

) �̇� (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡) − 2�̇�

𝑇

(𝑡) 𝑆
−1

�̇� (𝑡)

+ 2�̇�
𝑇

(𝑡) 𝑆
−1

𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2�̇�
𝑇

(𝑡) 𝑆
−1

𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2�̇�
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+2�̇�
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡) ) .

(26)

It follows from (12) and (26) that

�̇� (𝑡) − 2𝑤
𝑇

(𝑡) 𝑦 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡)

≤

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡)

× [𝑥
𝑇

(𝑡) (𝑃
1
+ 𝛿

2

𝑃
2
+ 𝑑

2

𝑃
3
+ 𝑋

12
+ 𝑋

𝑇

12

+ 𝜏𝑌
11
+ 𝑌

13
+ 𝑌

𝑇

13
+ 𝑆

−1

𝑅
𝑖
𝐾
𝑗

+𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1

) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝑋
11
− 𝑆

−1

+ 𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1

) �̇� (𝑡)

+ 2𝑥
𝑇

(𝑡) (−𝑋
12
+ 𝑆

−1

𝐴
𝑖
) 𝑥 (𝑡 − 𝛿)

+ 2𝑥
𝑇

(𝑡) (𝜏𝑌
12
− 𝑌

13
+ 𝑌

𝑇

23
+ 𝑆

−1

𝐵
𝑖
)

× 𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2𝑥
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡)

+ �̇�
𝑇

(𝑡) (𝜏𝑌
33
− 2𝑆

−1

) �̇� (𝑡)

+ 2�̇�
𝑇

(𝑡) 𝑆
−1

𝐴
𝑖
𝑥 (𝑡 − 𝛿)

+ 2�̇�
𝑇

(𝑡) 𝑆
−1

𝐵
𝑖
𝑥 (𝑡 − 𝜏 (𝑡))

+ 2�̇�
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

+ 2�̇�
𝑇

(𝑡) 𝑆
−1

𝑊
𝑖
∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠

+ 2�̇�
𝑇

(𝑡) 𝑆
−1

𝑈
𝑖
𝑤 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑥 (𝑡 − 𝛿)

− 2𝑥
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠

− 2𝑥
𝑇

(𝑡 − 𝛿) 𝐶
𝑇

𝑖
𝑤 (𝑡)

+ 𝑥
𝑇

(𝑡 − 𝜏 (𝑡)) (𝜏𝑌
22
− 𝑌

23
− 𝑌

𝑇

23
)

× 𝑥 (𝑡 − 𝜏 (𝑡))

− 2𝑥
𝑇

(𝑡 − 𝜏 (𝑡))𝐷
𝑇

𝑖
𝑤 (𝑡)

− (∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑥 (𝑠) 𝑑𝑠)

− (∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝑃
3
(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

− 2(∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐻
𝑇

𝑖
𝑤 (𝑡)

+𝑤
𝑇

(𝑡) (−𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼)𝑤 (𝑡) ]

=

𝑟

∑

𝑖=1

𝑟

∑

𝑗=1

𝜇
𝑖
(𝑡) 𝜇

𝑗
(𝑡) 𝑧

𝑇

(𝑡) Ξ
𝑖𝑗
𝑧 (𝑡) ,

(27)
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where 𝑧(𝑡) = (𝑥
𝑇

(𝑡), �̇�
𝑇

(𝑡), 𝑥
𝑇

(𝑡−𝛿), 𝑥
𝑇

(𝑡−𝜏(𝑡)), ∫

𝑡

𝑡−𝛿

𝑥
𝑇

(𝑠)𝑑𝑠,

∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠)𝑑𝑠, 𝑤
𝑇

(𝑡))
𝑇, and

Ξ𝑖𝑗 =

[
[
[
[
[
[
[
[
[
[
[
[

[

Ξ11,𝑖𝑗 Ξ12,𝑖𝑗 −𝑆
−1
𝐹12𝑆
−1
+ 𝑆
−1
𝐴𝑖 Ξ14,𝑖 𝑆

−1
𝐹22𝑆
−1

𝑆
−1
𝑊𝑖 𝑆

−1
𝑈𝑖

∗ Ξ22 𝑆
−1
𝐴𝑖 𝑆

−1
𝐵𝑖 𝑆

−1
𝐹12𝑆
−1

𝑆
−1
𝑊𝑖 𝑆

−1
𝑈𝑖

∗ ∗ −𝑆
−1
𝐸1𝑆
−1

0 −𝑆
−1
𝐹22𝑆
−1

0 −𝐶
𝑇

𝑖

∗ ∗ ∗ Ξ44 0 0 −𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝑆
−1
𝐸2𝑆
−1

0 0

∗ ∗ ∗ ∗ ∗ −𝑆
−1
𝐸3𝑆
−1

−𝐻
𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Ξ77,𝑖

]
]
]
]
]
]
]
]
]
]
]
]

]

(28)

with Ξ
11,𝑖𝑗

= 𝑆
−1

(𝐸
1
+ 𝛿

2

𝐸
2
+ 𝑑

2

𝐸
3
+ 𝐹

12
+ 𝐹

𝑇

12
+ 𝜏𝐺

11
+

𝐺
13

+ 𝐺
𝑇

13
)𝑆
−1

+ 𝑆
−1

𝑅
𝑖
𝐾
𝑗
+ 𝐾

𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1, Ξ

12,𝑖𝑗
= 𝑆

−1

𝐹
11
𝑆
−1

−

𝑆
−1

+ 𝐾
𝑇

𝑗
𝑅
𝑇

𝑖
𝑆
−1, Ξ

14,𝑖
= 𝑆

−1

(𝜏𝐺
12

− 𝐺
13

+ 𝐺
𝑇

23
+ 𝐵

𝑖
𝑆)𝑆

−1,
Ξ
22

= 𝜏𝑆
−1

𝐺
33
𝑆
−1

− 2𝑆
−1, Ξ

44
= 𝑆

−1

(𝜏𝐺
22
− 𝐺

23
− 𝐺

𝑇

23
)𝑆
−1,

Ξ
77,𝑖

= −𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Pre- and postmultiply Ξ
𝑖𝑗
by matrix diag(𝑆, 𝑆, 𝑆, 𝑆, 𝑆, 𝑆, 𝐼),

we get that

Π
𝑖𝑗
=

[

[

[

[

[

[

[

[

[

Π
11,𝑖𝑗

Π
12,𝑖𝑗

−𝐹
12
+ 𝐴

𝑖
𝑆 Π

14,𝑖
𝐹
22

𝑊
𝑖
𝑆 𝑈

𝑖

∗ Π
22

𝐴
𝑖
𝑆 𝐵

𝑖
𝑆 𝐹

12
𝑊
𝑖
𝑆 𝑈

𝑖

∗ ∗ −𝐸
1

0 −𝐹
22

0 −𝑆𝐶
𝑇

𝑖

∗ ∗ ∗ Π
44

0 0 −𝑆𝐷
𝑇

𝑖

∗ ∗ ∗ ∗ −𝐸
2

0 0

∗ ∗ ∗ ∗ ∗ −𝐸
3
−𝑆𝐻

𝑇

𝑖

∗ ∗ ∗ ∗ ∗ ∗ Π
77,𝑖

]

]

]

]

]

]

]

]

]

(29)

with Π
11,𝑖𝑗

= 𝐸
1
+ 𝛿

2

𝐸
2
+ 𝑑

2

𝐸
3
+ 𝐹

12
+ 𝐹

𝑇

12
+ 𝜏𝐺

11
+ 𝐺

13
+

𝐺
𝑇

13
+ 𝑅

𝑖
𝐾
𝑗
𝑆 + 𝑆𝐾

𝑇

𝑗
𝑅
𝑇

𝑖
, Π

12,𝑖𝑗
= 𝐹

11
− 𝑆 + 𝑆𝐾

𝑇

𝑗
𝑅
𝑇

𝑖
, Π

14,𝑖
=

𝜏𝐺
12
−𝐺

13
+𝐺

𝑇

23
+𝐵

𝑖
𝑆,Π

22
= 𝜏𝐺

33
−2𝑆,Π

44
= 𝜏𝐺

22
−𝐺

23
−𝐺

𝑇

23
,

and Π
77,𝑖

= −𝑉
𝑖
− 𝑉

𝑇

𝑖
− 𝛾𝐼.

Obviously, Ξ
𝑖𝑗
< 0 andΠ

𝑖𝑗
< 0 are equivalent. And we get

from condition (25) that Π
𝑖𝑗
= Ω

𝑖𝑗
.

It follows from condition (24) and inequality (27) that

�̇� (𝑡) − 2𝑦
𝑇

(𝑥 (𝑡)) 𝑤 (𝑡) − 𝛾𝑤
𝑇

(𝑡) 𝑤 (𝑡) ≤ 0, (30)

which means

2∫

𝑡𝑝

0

𝑦
𝑇

(𝑥 (𝑠)) 𝑢 (𝑠) 𝑑𝑠 ≥ −𝛾∫

𝑡𝑝

0

𝑢
𝑇

(𝑠) 𝑢 (𝑠) 𝑑𝑠. (31)

From Definition 1, we know that the stochastic T-S fuzzy
system (1) is passive in the sense of expectation. The proof
is completed.

4. Numerical Examples

To verify the effectiveness of the theoretical results of this
paper, consider the following two examples.

Example 1. Consider a T-S fuzzy system (1) with 𝑟 = 2, where
𝛿 = 0.2, 𝜏(𝑡) = 0.5| cos 𝑡|, and 𝑑(𝑡) = 0.1| cos(2𝑡)|,

𝐴
1
= [

0.8 −0.2

0 0.6
] , 𝐵

1
= [

0.2 −0.9

−0.1 0.2
] ,

𝑊
1
= [

−1.6 0.4

1.2 0.3
] , 𝑈

1
= [

0.1 −0.2

0.1 −0.1
] ,

𝐶
1
= [

0.2 0

0.1 0.1
] , 𝐷

1
= [

0 −0.1

0.2 0.1
] ,

𝐻
1
= [

0.2 −0.1

−0.2 −0.1
] , 𝑉

1
= [

0.1 0.2

0 −0.1
] ,

𝐴
2
= [

−0.7 −0.6

1.1 −0.1
] , 𝐵

2
= [

−0.1 −0.4

−0.3 −0.2
] ,

𝑊
2
= [

0.2 0.9

−0.1 0.4
] , 𝑈

2
= [

−0.6 −0.2

0.5 0
] ,

𝐶
2
= [

0.1 0.5

0.2 −0.4
] , 𝐷

2
= [

0.6 −0.1

−0.2 0.1
] ,

𝐻
2
= [

−0.1 0.3

−0.7 −0.6
] , 𝑉

2
= [

−0.1 −0.2

0.8 −0.3
] .

(32)

It can be verified that 𝜏 = 0.5, 𝑑 = 0.1. By using the
MATLAB LMI Control Toolbox, a solution to the LMIs in
(6)–(8) is found as follows:

𝑃
1
= 10

−9

[

0.1318 0.0174

0.0174 0.1795
] ,

𝑃
2
= 10

−8

[

0.1126 −0.0105

−0.0105 0.1813
] ,

𝑃
3
= 10

−8

[

0.3237 −0.0297

−0.0297 0.4519
] ,

𝑄
1
= 10

−10

[

0.0548 0.0458

0.7636 0.5797
] ,

𝑄
2
= 10

−9

[

0.1094 0.0750

0.0967 0.1859
] ,

𝑋
11
= 10

−10

[

0.3230 0.3149

0.3149 0.6926
] ,

𝑋
12
= 10

−9

[

−0.0972 0.0056

−0.0134 −0.1477
] ,

𝑋
22
= 10

−9

[

0.1644 −0.0150

−0.0150 0.2929
] ,

𝑌
11
= 10

−8

[

0.1105 0.0483

0.0483 0.1743
] ,

𝑌
12
= 10

−8

[

−0.1175 −0.0473

−0.0510 −0.1812
] ,

𝑌
13
= 10

−9

[

−0.4500 −0.1940

−0.1940 −0.6933
] ,
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𝑌
22
= 10

−8

[

0.1157 0.0497

0.0497 0.1815
] ,

𝑌
23
= 10

−9

[

0.4500 0.1940

0.1940 0.6933
] ,

𝑌
33
= 10

−9

[

0.1618 0.0970

0.0970 0.2835
] ,

𝛾 = 6.9261 × 10
9

.

(33)

According to Theorem 3, the considered model (1) is passive
in the sense of Definition 1.

Example 2. We use the data of Example 1 in addition to

𝑅
1
= [

0.3 0.1

0.7 −0.2
] , 𝑅

2
= [

−0.3 0.1

−0.4 −0.1
] . (34)

By using the MATLAB LMI Control Toolbox, a solution
to the LMIs in (22)–(24) is found as follows:

𝐸
1
= [

176.3972 −120.7648

−120.7648 318.6006
] ,

𝐸
2
= [

330.6365 13.3938

13.3938 485.5898
] ,

𝐸
3
= [

534.8304 −124.7740

−124.7740 945.8976
] ,

𝑆 = [

49.8112 1.0593

1.0593 115.3239
] ,

𝐹
11
= [

236.7653 −230.2321

−230.2321 436.0261
] ,

𝐹
12
= [

−44.4016 −52.5502

−14.9764 −39.8274
] ,

𝐹
22
= [

54.2464 7.9191

7.9191 96.0467
] ,

𝐺
11
= [

226.1583 −23.8308

−23.8308 253.3605
] ,

𝐺
12
= [

−92.2107 −144.1195

−27.1469 −174.7165
] ,

𝐺
13
= [

−46.2910 −140.9230

−15.2074 −83.4028
] ,

𝐺
22
= [

115.7710 −1.7962

−1.7962 362.7980
] ,

𝐺
23
= [

52.3927 −9.2251

5.1656 258.7547
] ,

𝐺
33
= [

29.6087 5.0408

5.0408 240.9688
] ,

𝑍
1
= 10

3

[

−0.1547 0.1479

−2.0308 2.9733
] ,

𝑍
2
= 10

3

[

−0.1547 0.1479

−2.0308 2.9733
] ,

𝛾 = 405.7666.

(35)

Subsequently, we can obtain from (25) that

𝐾
1
= [

−3.1335 1.3116

−41.3262 26.1620
] ,

𝐾
2
= [

−3.1335 1.3116

−41.3262 26.1620
] .

(36)

Thus, a fuzzy controller (20) with feedback gains 𝐾
1
and 𝐾

2

can be constructed to make the closed-loop T-S fuzzy system
(21) passive.

5. Conclusions

In this paper, the passivity and passification for T-S fuzzy
systems with both discrete and distributed time-varying
delays have been investigated without assuming the differen-
tiability of the time-varying delays. By utilizing the Lyapunov
functional method and the matrix inequality techniques,
several delay-dependent criteria to ensure the passivity of the
considered T-S fuzzy systems have been established in terms
of linearmatrix inequalities (LMIs) that can be easily checked
by using the standard numerical software. Two examples
have been provided to demonstrate the effectiveness of the
proposed criteria since the feasible solutions to the given
LMIs criteria in this paper have been found.
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[20] E. M. Navarro-López and E. Fossas-Colet, “Feedback passivity
of nonlinear discrete-time systems with direct input-output
link,” Automatica, vol. 40, no. 8, pp. 1423–1428, 2004.

[21] G. Calcev, R. Gorez, and M. De Neyer, “Passivity approach to
fuzzy control systems,” Automatica, vol. 34, no. 3, pp. 339–344,
1998.

[22] Q. Song, Z. Wang, and J. Liang, “Analysis on passivity and
passification of T-S fuzzy systems with time-varying delays,”
Journal of Intelligent & Fuzzy Systems, vol. 24, no. 1, pp. 21–30,
2013.

[23] C. Li, H. Zhang, and X. Liao, “Passivity and passification of
fuzzy systemswith time delays,”Computers &Mathematics with
Applications, vol. 52, no. 6-7, pp. 1067–1078, 2006.

[24] X. Liu, “Passivity and passification analysis of uncertain
discrete-time fuzzy systems,” Kybernetes, vol. 38, no. 3-4, pp.
396–405, 2009.

[25] B. Zhang,W.X. Zheng, and S. Xu, “Passivity analysis and passive
control of fuzzy systems with time-varying delays,” Fuzzy Sets
and Systems, vol. 174, pp. 83–98, 2011.

[26] K. Gopalsamy, “Leakage delays in BAM,” Journal of Mathemati-
cal Analysis and Applications, vol. 325, no. 2, pp. 1117–1132, 2007.

[27] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay
Systems, Birkhauser, Boston, Mass, USA, 2003.


