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The state estimation problem is investigated for neural networks with leakage delay and time-varying delay as well as for general
activation functions. By constructing appropriate Lyapunov-Krasovskii functionals and employing matrix inequality techniques, a
delay-dependent linear matrix inequalities (LMIs) condition is developed to estimate the neuron state with some observed output
measurements such that the error-state system is globally asymptotically stable. An example is given to show the effectiveness of
the proposed criterion.

1. Introduction

In the past few years, neural networks have been extensively
studied and successfully applied inmany areas such as combi-
natorial optimization, signal processing, associative memory,
affine invariantmatching, and pattern recognition [1]. In such
applications, the stability analysis is a necessary step for the
practical design of neural networks [2]. In hardware imple-
mentation, time delays occur due to finite switching speed
of the amplifiers and communication time. The existence of
timedelaymay lead to some complex dynamic behaviors such
as oscillation, divergence, chaos, instability, or other poor
performance of the neural networks [3]. Therefore, the issue
of stability analysis of neural networkswith timedelay attracts
many researchers, and a number of remarkable results have
been built up in the open literature; for example, see [2–5] and
references therein.

When a neural network is designed to handle complex
nonlinear problems, a great number of neurons with tremen-
dous connections are often required. In such relatively large-
scale neural networks, it may be very difficult and expensive
(or even impossible) to obtain the complete information of
the neuron states. On the other hand, inmany practical appli-
cations, one needs to know the neuron states and then use
them to achieve certain objectives. For instance, a recurrent

neural network was presented in [6] to model an unknown
nonlinear system, and the neuron states were utilized to
implement a control law. Therefore, it is of great importance
to study the state estimation problem of neural networks.

Recently, some results related to the state estimation prob-
lem for neural networks have been reported; for example, see
[7–38] and references therein. In [7], authors initially studied
the state estimation problem of delayed neural networks,
where a delay-independent condition was obtained in terms
of a linear matrix inequality (LMI). In [8], authors proposed
a free-weighting matrix approach to discuss the state estima-
tion problem for neural networks with time-varying delay.
By using the Newton-Leibniz formula, some slack variables
were introduced to derive a less conservative condition. In
[11], attention was focused on the design of a state estimator
to estimate the neuron states by using the delay-fractioning
technique to reduce the possible conservatism. The authors
in [13] first investigated the robust state estimator problem
of delayed neural networks with parameter uncertainties.
Delay-dependent conditions were presented to guarantee the
global asymptotical stability of the error system. In [16], a fur-
ther result on design problem of state estimator for a class of
neural networks of neutral type was presented. A delay-
dependent LMI criterion for existence of the estimator was
derived. In [20], the state estimation problem for discrete
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neural networks with partially unknown transition probabil-
ities and time-varying delays was discussed. By utilizing a
novel Lyapunov functional integrating both lower and upper
time-delay bounds and some new techniques, some delay-
range-dependent sufficient conditions under which the esti-
mation error dynamics were stochastically stable are estab-
lished. In [22], authors investigated the state estimation prob-
lem for neural networks with discrete time-varying delay and
distributed time-varying delay; a delay-interval-dependent
condition is developed to estimate the neuron state with some
observed output measurements such that the error-state sys-
tem was globally asymptotically stable. In [25], leakage delay
in the leakage term was used to destabilize the neuron states.
By constructing the Lyapunov-Krasovskii functional which
contains a triple-integral term, an improved delay-dependent
stability criterion was derived in terms of LMIs. In [27], the
state estimation problem for a class of discrete-time stochastic
neural networks with random delays was considered. By
employing a Lyapunov-Krasovskii functional, sufficient delay
distribution- dependent conditions were established in terms
of LMIs that guarantee the existence of the state estimator.
In [33], authors discussed the state estimation problem for
Takagi-Sugeno (T-S) fuzzy Hopfield neural networks via
strict output passivation of the error system. In [36–38],
authors investigated the distributed state estimation problem
for sensor networks and presented several new sufficient con-
ditions to guarantee the convergence of the estimation error
systems. To the best of the author’s knowledge, there are no
results on the problem of state estimation for neural networks
with leakage delay and time-varying delays. As pointed out in
[39], neural networks with leakage delay are a class of impor-
tant neural networks; time delay in the leakage term also
has great impact on the dynamics of neural networks since
time delay in the stabilizing negative feedback term has a
tendency to destabilize a system. Therefore, it is necessary to
investigate the state estimation problem for neural networks
with leakage delay [25].

Motivated by the previous discussions, the objective of
this paper is to study the state estimation for neural networks
with leakage delay and time-varying delays by employing new
Lyapunov-Krasovskii functionals and using matrix inequal-
ity techniques. The obtained sufficient condition does not
require the differentiability of time-varying delays and is
expressed in terms of linear matrix inequalities, which can
be checked numerically using the effective LMI toolbox in
Matlab. An example is given to show the effectiveness of the
proposed criterion.

Notations.The notations are quite standard. Throughout this
paper, R𝑛 and R𝑛×𝑚 denote, respectively, the 𝑛-dimensional
Euclidean space and the set of all 𝑛 ×𝑚 realmatrices. ‖⋅‖ refers
to the Euclidean vector norm. 𝐴𝑇 represents the transpose of
matrix𝐴, and the asterisk “∗” in a matrix is used to represent
the term which is induced by symmetry. 𝐼 is the identity
matrix with compatible dimension.𝑋 > 𝑌means that𝑋 and
𝑌 are symmetric matrices and that 𝑋 − 𝑌 is positive definite.
Matrices, if not explicitly specified, are assumed to have
compatible dimensions.

2. Model Description and Preliminaries

Consider the following neural networks with leakage delay
and time-varying delays:

�̇� (𝑡) = −𝐶𝑥 (𝑡 − 𝛿) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐽 (𝑡)

(1)

for 𝑡 ≥ 0, where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ R𝑛 is the
state vector of the network at time 𝑡, and 𝑛 corresponds to the
number of neurons; 𝐶 ∈ R𝑛×𝑛 is a positive diagonal matrix,
and𝐴 ∈ R𝑛×𝑛 and𝐵 ∈ R𝑛×𝑛 are the connection weightmatrix
and the delayed connection weight matrix, respectively;
𝑓(𝑥(𝑡)) = (𝑓

1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇

∈ R𝑛 denotes
the neuron activation at time 𝑡; 𝐽(𝑡) ∈ R𝑛 is an external input
vector; 𝛿 and 𝜏(𝑡) denote the leakage delay and time-varying
delay, respectively.

Throughout this paper, we make the following assump-
tions.

(H1) (see [40]) For any 𝑗 ∈ {1, 2, . . . , 𝑛} there exist
constants 𝐹−

𝑗
and 𝐹+

𝑗
such that

𝐹
−

𝑗
≤

𝑓
𝑗
(𝛼
1
) − 𝑓
𝑗
(𝛼
2
)

𝛼
1
− 𝛼
2

≤ 𝐹
+

𝑗
(2)

for all 𝛼
1
̸= 𝛼
2
.

(H2) (see [25]) The leakage delay 𝛿 and time-varying
delays 𝜏(𝑡) satisfy the following conditions:

0 ≤ 𝛿, 0 ≤ 𝜏 (𝑡) ≤ 𝜏, (3)

where 𝛿 and 𝜏 are constants.
As is well known, information about the neuron states is

often incomplete from the network measurements (outputs)
in applications, and the network measurements are subject
to nonlinear disturbances. Similar to [7], we assume that the
network measurements satisfy

𝑦 (𝑡) = 𝐷𝑥 (𝑡) + 𝑔 (𝑡, 𝑥 (𝑡)) , (4)

where𝑦(𝑡) ∈ R𝑚 is themeasurement output, and𝐷 ∈ R𝑚×𝑛 is
a known constantmatrix with appropriate dimension. 𝑔 : R×
R𝑛 → R𝑚 is the neuron-dependent nonlinear disturbances
on the network outputs and satisfies the following condition.

(H3) (see [22]) For any 𝑗 ∈ {1, 2, . . . , 𝑚} there exist con-
stants 𝐺−

𝑗
and 𝐺+

𝑗
such that

𝐺
−

𝑗
≤

𝑔
𝑗
(𝑡, 𝛼
1
(𝑡)) − 𝑔

𝑗
(𝑡, 𝛼
2
(𝑡))

𝛼
1
(𝑡) − 𝛼

2
(𝑡)

≤ 𝐺
+

𝑗
(5)

for 𝑡 ≥ 0 and all 𝛼
1
(𝑡) ̸= 𝛼

2
(𝑡).

Remark 1. As pointed out in [40], the constants 𝐹−
𝑗
and 𝐹+

𝑗

in assumption (H1) of this paper are allowed to be positive,
negative, or zero. Hence, assumption (H1), first proposed by
Liu et al. in [40], is weaker than the Lipschitz condition.
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For the delay neural networks (1), we construct the full-
order state estimation as follows:

�̇� (𝑡) = − 𝐶𝑢 (𝑡 − 𝛿) + 𝐴𝑓 (𝑢 (𝑡))

+ 𝐵𝑓 (𝑢 (𝑡 − 𝜏 (𝑡))) + 𝐽 (𝑡) + 𝐾 (𝑦 (𝑡) − V (𝑡))
(6)

V (𝑡) = 𝐷𝑢 (𝑡) + 𝑔 (𝑡, 𝑢 (𝑡)) , (7)

where 𝑢(𝑡) ∈ R𝑛 is an estimation of the state 𝑥(𝑡) of (1), and
𝐾 ∈ R𝑛×𝑚, to be determined, is a gain matrix of the state
estimator.

Let the error state be 𝑒(𝑡) = 𝑥(𝑡)−𝑢(𝑡) then it follows from
(1), (4), (6), and (7) that

̇𝑒 (𝑡) = − 𝐾𝐷𝑒 (𝑡) − 𝐶𝑒 (𝑡 − 𝛿) + 𝐴ℎ (𝑒 (𝑡))

+ 𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡))) − 𝐾𝑟 (𝑡, 𝑒 (𝑡)) ,

(8)

where ℎ(𝑒(𝑡)) = 𝑓(𝑥(𝑡)) − 𝑓(𝑢(𝑡)), 𝑟(𝑡, 𝑒(𝑡)) = 𝑔(𝑡, 𝑥(𝑡)) −
𝑔(𝑡, 𝑢(𝑡)).

The problem to be addressed in this study is to find
out the gain matrix 𝐾 such that the system (8) is globally
asymptotically stable.

To prove our results, the following lemmas that can be
found in [22] are necessary.

Lemma 2 (see [22]). For any constant matrix 𝑊 ∈ R𝑚×𝑚,
𝑊 > 0, scalar 0 < ℎ(𝑡) < ℎ, and vector function𝜔(⋅) : [0, ℎ] →
R𝑚 such that the integrations concerned are well defined, then

(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑊(∫

ℎ(𝑡)

0

𝜔 (𝑠) 𝑑𝑠)

≤ ℎ (𝑡) ∫

ℎ(𝑡)

0

𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠.

(9)

Lemma 3 (see [22]). Given constant matrices 𝑃, 𝑄, and 𝑅,
where 𝑃𝑇 = 𝑃, 𝑄𝑇 = 𝑄, then

[

𝑃 𝑅

𝑅
𝑇

−𝑄

] < 0 (10)

is equivalent to the following conditions:

𝑄 > 0, 𝑃 + 𝑅𝑄
−1

𝑅
𝑇

< 0. (11)

3. Main Results

For presentation convenience, in the following, we denote

𝐹
1
= diag (𝐹−

1
, 𝐹
−

2
, . . . , 𝐹

−

𝑛
) ,

𝐹
2
= diag (𝐹+

1
, 𝐹
+

2
, . . . , 𝐹

+

𝑛
) ,

𝐹
3
= diag (𝐹−

1
𝐹
+

1
, 𝐹
−

2
𝐹
+

2
, . . . , 𝐹

−

𝑛
𝐹
+

𝑛
) ,

𝐹
4
= diag(

𝐹
−

1
+ 𝐹
+

1

2

,

𝐹
−

2
+ 𝐹
+

2

2

, . . . ,

𝐹
−

𝑛
+ 𝐹
+

𝑛

2

) ,

𝐺
1
= diag (𝐺−

1
𝐺
+

1
, 𝐺
−

2
𝐺
+

2
, . . . , 𝐺

−

𝑛
𝐺
+

𝑛
) ,

𝐺
2
= diag(

𝐺
−

1
+ 𝐺
+

1

2

,

𝐺
−

2
+ 𝐺
+

2

2

, . . . ,

𝐺
−

𝑛
+ 𝐺
+

𝑛

2

) .

(12)

Theorem 4. Assume that the assumptions (H1)–(H3) hold. If
there exist four symmetric positive definite matrices 𝑃

𝑖
(𝑖 =

1, 2, 3, 4), five positive diagonal matrices𝑊
1
,𝑊
2
, 𝑅
1
, 𝑅
2
, and

𝑅
3
, and seven matrices𝑄

1
,𝑄
2
,𝑄
3
,𝑋
11
,𝑋
12
,𝑋
22
, and 𝑍, such

that the following LMIs hold:

𝑋 = [

𝑋
11
𝑋
12

∗ 𝑋
22

] > 0, (13)

Ω =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Ω
11
Ω
12
𝑄
3
0 Ω

15
𝑋
22
Ω
17
𝑄
1
𝐵 Ω
19

𝑄
3

0

∗ Ω
22
0 0 −𝑄

1
𝐶 𝑋

12
Ω
27
𝑄
1
𝐵 −𝑍 0 0

∗ ∗ Ω
33
𝑄
2

0 0 𝐹
4
𝑅
2
0 0 0 𝑄

2

∗ ∗ ∗ −𝑃
3

0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −𝑃
1
−𝑋
22

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
2

0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
1
0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2
0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −

1

𝜏

𝑃
4
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −

1

𝜏

𝑃
4

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

< 0, (14)

where Ω
11
= 𝑋
12
+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
− 𝑍𝐷 − 𝐷

𝑇

𝑍
𝑇

−

𝑄
3
− 𝑄
𝑇

3
− 𝐹
3
𝑅
1
− 𝐺
1
𝑅
3
, = 𝑋
11
− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
− 𝑄
1
−𝐷
𝑇

𝑍
𝑇,

Ω
15
= −𝑋

12
− 𝑄
1
𝐶, Ω
17
= 𝑄
1
𝐴 + 𝐹

4
𝑅
1
, Ω
19
= −𝑍 + 𝐺

2
𝑅
3
,

Ω
22
= −𝑄
1
−𝑄
𝑇

1
+𝜏𝑃
4
,Ω
27
= 𝑊
1
−𝑊
2
+𝑄
1
𝐴,Ω
33
= −𝑄
2
−𝑄
𝑇

2
−
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𝐹
3
𝑅
2
, then error-state system (8) of the delayed neural network

described by (1) and (6) is globally asymptotically stable, and
the estimator gain matrix 𝐾 can be designed as 𝐾 = 𝑄−1

1
𝑍.

Proof. From assumption (H1), we know that

∫

𝑒𝑖(𝑡)

0

(ℎ
𝑖
(𝑠) − 𝐹

−

𝑖
𝑠) 𝑑𝑠 ≥ 0, (15)

∫

𝑒𝑖(𝑡)

0

(𝐹
+

𝑖
𝑠 − ℎ
𝑖
(𝑠)) 𝑑𝑠 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛. (16)

Let 𝑊
1
= diag(𝑤

11
, 𝑤
12
, . . . , 𝑤

1𝑛
), 𝑊
2
= diag(𝑤

21
, 𝑤
22
,

. . . , 𝑤
2𝑛
), and consider the following Lyapunov-Krasovskii

functional as

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) + 𝑉

4
(𝑡) , (17)

where

𝑉
1
(𝑡) =

[

[

𝑒(𝑡)

∫

𝑡

𝑡−𝛿

𝑒(𝑠)𝑑𝑠

]

]

𝑇

[

𝑋
11
𝑋
12

∗ 𝑋
22

]
[

[

𝑒 (𝑡)

∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

]

]

,

𝑉
2
(𝑡) = 2

𝑛

∑

𝑖=1

𝑤
1𝑖
∫

𝑒𝑖(𝑡)

0

(ℎ
𝑖
(𝑠) − 𝐹

−

𝑖
𝑠) 𝑑𝑠

+ 2

𝑛

∑

𝑖=1

𝑤
2𝑖
∫

𝑒𝑖(𝑡)

0

(𝐹
+

𝑖
𝑠 − ℎ
𝑖
(𝑠)) 𝑑𝑠,

𝑉
3
(𝑡) = ∫

𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠) 𝑃
1
𝑒 (𝑠) 𝑑𝑠 + 𝛿∫

0

−𝛿

∫

𝑡

𝑡+𝜉

𝑒
𝑇

(𝑠) 𝑃
2
𝑒 (𝑠) 𝑑𝑠 𝑑𝜉,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏

𝑒
𝑇

(𝑠) 𝑃
3
𝑒 (𝑠) 𝑑𝑠 + ∫

0

−𝜏

∫

𝑡

𝑡+𝜉

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜉.

(18)

Calculating the time derivative of 𝑉
𝑖
(𝑡) (𝑖 = 1, 2, 3, 4), we

obtain

�̇�
1
(𝑡) = 2

[

[

𝑒(𝑡)

∫

𝑡

𝑡−𝛿

𝑒(𝑠)𝑑𝑠

]

]

𝑇

[

𝑋
11
𝑋
12

∗ 𝑋
22

] [

̇𝑒 (𝑡)

𝑒 (𝑡) − 𝑒 (𝑡 − 𝛿)
]

= 𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑋
𝑇

12
) 𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑋
11
̇𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑋
12
𝑒 (𝑡 − 𝛿) + 2𝑒

𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2 ̇𝑒
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

− 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠,

(19)

�̇�
2
(𝑡) = 2 ̇𝑒

𝑇

(𝑡)𝑊
1
(ℎ (𝑒 (𝑡)) − 𝐹

1
𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡)𝑊
2
(𝐹
2
𝑒 (𝑡) − ℎ (𝑒 (𝑡)))

= 2𝑒
𝑇

(𝑡) (−𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
) ̇𝑒 (𝑡)

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
−𝑊
2
) ℎ (𝑒 (𝑡)) ,

(20)

�̇�
3
(𝑡) = 𝑒

𝑇

(𝑡) (𝑃
1
+ 𝛿
2

𝑃
2
) 𝑒 (𝑡)

− 𝑒
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿) − 𝛿∫

𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠) 𝑃
2
𝑒 (𝑠) 𝑑𝑠

≤ 𝑒
𝑇

(𝑡) (𝑃
1
+ 𝛿
2

𝑃
2
) 𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿)

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠) ,

(21)

�̇�
4
(𝑡) = 𝑒

𝑇

(𝑡) 𝑃
3
𝑒 (𝑡) − 𝑒

𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏)

+ 𝜏 ̇𝑒
𝑇

(𝑡) 𝑃
4
̇𝑒 (𝑡) − ∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠.

(22)

In deriving inequality (21), we havemade use of Lemma 2.
It follows from inequalities (19)–(22) that

�̇� (𝑡) ≤ 𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) (𝑋
11
− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2
) ̇𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑋
12
𝑒 (𝑡 − 𝛿)

+ 2𝑒
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 𝜏 ̇𝑒
𝑇

(𝑡) 𝑃
4
̇𝑒 (𝑡) + 2 ̇𝑒

𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
−𝑊
2
) ℎ (𝑒 (𝑡))

− 𝑒
𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒 (𝑡 − 𝛿)

− 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

− 𝑒
𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏)

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

− ∫

𝑡

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠.

(23)
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From model (8), we have

0 = 2 (𝑒
𝑇

(𝑡) + ̇𝑒
𝑇

(𝑡))𝑄
1

× [ − ̇𝑒 (𝑡) − 𝐾𝐷𝑒 (𝑡) − 𝐶𝑒 (𝑡 − 𝛿) + 𝐴ℎ (𝑒 (𝑡))

+𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡))) − 𝐾𝑟 (𝑡, 𝑒 (𝑡))]

= −𝑒
𝑇

(𝑡) (𝑄
1
𝐾𝐷 + 𝐷

𝑇

𝐾
𝑇

𝑄
𝑇

1
) 𝑒 (𝑡)

− 2𝑒
𝑇

(𝑡) 𝑄
1
̇𝑒 (𝑡) − 2𝑒

𝑇

(𝑡) 𝑄
1
𝐶𝑒 (𝑡 − 𝛿)

+ 2𝑒
𝑇

(𝑡) 𝑄
1
𝐴ℎ (𝑒 (𝑡)) + 2𝑒

𝑇

(𝑡) 𝑄
1
𝐵ℎ

× (𝑒 (𝑡 − 𝜏 (𝑡))) − 2𝑒
𝑇

(𝑡) 𝑄
1
𝐾𝑟 (𝑡, 𝑒 (𝑡))

− ̇𝑒
𝑇

(𝑡) (𝑄
1
+ 𝑄
𝑇

1
) ̇𝑒 (𝑡) − 2𝑒

𝑇

(𝑡) 𝐷
𝑇

𝐾
𝑇

𝑄
𝑇

1
̇𝑒 (𝑡)

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐶𝑒 (𝑡 − 𝛿) + 2 ̇𝑒

𝑇

(𝑡) 𝑄
1
𝐴ℎ (𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐾𝑟(𝑡, 𝑒 (𝑡) .

(24)

By Newton-Leibniz formulation and assumption (H2),
we have

0 = −2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2

× (𝑒 (𝑡 − 𝜏 (𝑡)) − 𝑒 (𝑡 − 𝜏) − ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏)

+ 𝜏𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑃
−1

4
𝑄
𝑇

2
𝑒 (𝑡 − 𝜏 (𝑡))

+ ∫

𝑡−𝜏(𝑡)

𝑡−𝜏

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠,

0 = −2𝑒
𝑇

(𝑡) 𝑄
3

× (𝑒 (𝑡) − 𝑒 (𝑡 − 𝜏 (𝑡)) − ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑒 (𝑠) 𝑑𝑠)

≤ −2𝑒
𝑇

(𝑡) 𝑄
3
𝑒 (𝑡) + 2𝑒

𝑇

(𝑡) 𝑄
3
𝑒 (𝑡 − 𝜏 (𝑡))

+ 𝜏𝑒
𝑇

(𝑡) 𝑄
3
𝑃
−1

4
𝑄
𝑇

3
𝑒 (𝑡)

+ ∫

𝑡

𝑡−𝜏(𝑡)

̇𝑒
𝑇

(𝑠) 𝑃
4
̇𝑒 (𝑠) 𝑑𝑠.

(25)

In addition, for positive diagonal matrices 𝑅
𝑖
> 0 (𝑖 =

1, 2, 3), we can get from assumption (H1) and assumption
(H3) that [15]

[

𝑒 (𝑡)

ℎ (𝑒 (𝑡))
]

𝑇

[

𝐹
3
𝑅
1
−𝐹
4
𝑅
1

−𝐹
4
𝑅
1
𝑅
1

] [

𝑒 (𝑡)

ℎ (𝑒 (𝑡))
] ≤ 0,

[

𝑒 (𝑡 − 𝜏 (𝑡))

ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))
]

𝑇

[

𝐹
3
𝑅
2
−𝐹
4
𝑅
2

−𝐹
4
𝑅
2
𝑅
2

]

× [

𝑒 (𝑡 − 𝜏 (𝑡))

ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))
] ≤ 0,

[

𝑒 (𝑡)

𝑟 (𝑡, 𝑒 (𝑡))
]

𝑇

[

𝐺
1
𝑅
3
−𝐺
2
𝑅
3

−𝐺
2
𝑅
3
𝑅
3

] [

𝑒 (𝑡)

𝑟 (𝑡, 𝑒 (𝑡))
] ≤ 0.

(26)

It follows from (23)–(26) that

�̇� (𝑡) ≤ 𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3

− 𝑄
1
𝐾𝐷 − 𝐷

𝑇

𝐾
𝑇

𝑄
𝑇

1
− 𝑄
3
− 𝑄
𝑇

3

+𝜏𝑄
3
𝑃
−1

4
𝑄
𝑇

3
− 𝐹
3
𝑅
1
− 𝐺
1
𝑅
3
) 𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) (𝑋
11
− 𝐹
1
𝑊
1
+ 𝐹
2
𝑊
2

−𝑄
1
− 𝐷
𝑇

𝐾
𝑇

𝑄
𝑇

1
) ̇𝑒 (𝑡)

+ 2𝑒
𝑇

(𝑡) 𝑄
3
𝑒 (𝑡 − 𝜏 (𝑡))

− 2𝑒
𝑇

(𝑡) (𝑋
12
+ 𝑄
1
𝐶) 𝑒 (𝑡 − 𝛿)

+ 2𝑒
𝑇

(𝑡) 𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2𝑒
𝑇

(𝑡) (𝑄
1
𝐴 + 𝐹

4
𝑅
1
) ℎ (𝑒 (𝑡))

+ 2𝑒
𝑇

(𝑡) 𝑄
1
𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 2𝑒
𝑇

(𝑡) (−𝑄
1
𝐾 + 𝐺

2
𝑅
3
) 𝑟 (𝑡, 𝑒 (𝑡))

+ ̇𝑒
𝑇

(𝑡) (−𝑄
1
− 𝑄
𝑇

1
+ 𝜏𝑃
4
) ̇𝑒 (𝑡)

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐶𝑒 (𝑡 − 𝛿)

+ 2 ̇𝑒
𝑇

(𝑡) 𝑋
12
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

+ 2 ̇𝑒
𝑇

(𝑡) (𝑊
1
−𝑊
2
+ 𝑄
1
𝐴) ℎ (𝑒 (𝑡))

+ 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐵ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

− 2 ̇𝑒
𝑇

(𝑡) 𝑄
1
𝐾𝑟(𝑡, 𝑒 (𝑡) + 𝑒𝑇 (𝑡 − 𝜏 (𝑡))

× (−𝑄
2
− 𝑄
𝑇

2
+ 𝜏𝑄
2
𝑃
−1

4
𝑄
𝑇

2

−𝐹
3
𝑅
2
) 𝑒 (𝑡 − 𝜏 (𝑡))

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝜏)

+ 2𝑒
𝑇

(𝑡 − 𝜏 (𝑡)) 𝐹
4
𝑅
2
ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))
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− 𝑒
𝑇

(𝑡 − 𝜏) 𝑃
3
𝑒 (𝑡 − 𝜏) − 𝑒

𝑇

(𝑡 − 𝛿) 𝑃
1
𝑒

× (𝑡 − 𝛿) − 2𝑒
𝑇

(𝑡 − 𝛿)𝑋
22
∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠

− (∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

𝑇

𝑃
2
(∫

𝑡

𝑡−𝛿

𝑒 (𝑠) 𝑑𝑠)

− ℎ
𝑇

(𝑒 (𝑡)) 𝑅
1
ℎ (𝑒 (𝑡))

− ℎ
𝑇

(𝑒 (𝑡 − 𝜏 (𝑡))) 𝑅
2
ℎ (𝑒 (𝑡 − 𝜏 (𝑡)))

− 𝑟
𝑇

(𝑡, 𝑒 (𝑡)) 𝑅
3
𝑟 (𝑡, 𝑒 (𝑡)) = 𝜉

𝑇

(𝑡) Π𝜉 (𝑡) ,

(27)

where 𝜉(𝑡) = (𝑒𝑇(𝑡), ̇𝑒𝑇(𝑡), 𝑒𝑇(𝑡 − 𝜏(𝑡)), 𝑒𝑇(𝑡 − 𝜏), 𝑒𝑇(𝑡 − 𝛿),
∫

𝑡

𝑡−𝛿

𝑒
𝑇

(𝑠)𝑑𝑠, ℎ𝑇(𝑒(𝑡)), ℎ𝑇(𝑒(𝑡 − 𝜏(𝑡))), 𝑟𝑇(𝑡, 𝑒(𝑡)))𝑇,

Π =

[

[

[

[

[

[

[

[

[

[

[

[

[

Π
11
Π
12
𝑄
3
0 −𝑋

12
− 𝑄
1
𝐶 𝑋

22
𝑄
1
𝐴 + 𝐹

4
𝑅
1
𝑄
1
𝐵 −𝑄

1
𝐾 + 𝐺

2
𝑅
3

∗ Π
22
0 0 −𝑄

1
𝐶 𝑋

12
𝑊
1
−𝑊
2
+ 𝑄
1
𝐴 𝑄
1
𝐵 −𝑄

1
𝐾

∗ ∗ Π
33
𝑄
2

0 0 𝐹
4
𝑅
2

0 0

∗ ∗ ∗ −𝑃
3

0 0 0 0 0

∗ ∗ ∗ ∗ −𝑃
1

−𝑋
22

0 0 0

∗ ∗ ∗ ∗ ∗ −𝑃
2

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑅
1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑅
3

]

]

]

]

]

]

]

]

]

]

]

]

]

(28)

withΠ
11
= 𝑋
12
+𝑋
𝑇

12
+ 𝑃
1
+ 𝛿
2

𝑃
2
+ 𝑃
3
−𝑄
1
𝐾𝐷−𝐷

𝑇

𝐾
𝑇

𝑄
𝑇

1
−

𝑄
3
− 𝑄
𝑇

3
+ 𝜏𝑄
3
𝑃
−1

4
𝑄
𝑇

3
− 𝐹
3
𝑅
1
− 𝐺
1
𝑅
3
, Π
12
= 𝑋
11
− 𝐹
1
𝑊
1
+

𝐹
2
𝑊
2
− 𝑄
1
− 𝐷
𝑇

𝐾
𝑇

𝑄
𝑇

1
, Π
22
= −𝑄
1
− 𝑄
𝑇

1
+ 𝜏𝑃
4
, Π
33
= −𝑄
2
−

𝑄
𝑇

2
+ 𝜏𝑄
2
𝑃
−1

4
𝑄
𝑇

2
− 𝐹
3
𝑅
2
.

By using Lemma 3, and noting 𝐾 = 𝑄−1
1
𝑍, it is easy to

verify the equivalence of Π < 0 and Ω < 0. Thus, one can
derive from (14) and (27) that

�̇� (𝑡) ≤ 0, (29)

which implies that the error-state system (8) of the delayed
neural networks described by (1) and (6) is globally asymp-
totically stable. The proof is completed.

4. Numerical Example

To verify the effectiveness of the theoretical result of this
paper, consider the following example.

Example 1. Consider a two-neuron neural network (1), where

𝐶 = [

1.3 0

0 0.9
] , 𝐴 = [

0.5 −0.2

0.7 0.5
] ,

𝐵 = [

0.6 −0.1

−1.2 −0.8
] , 𝐽 (𝑡) = [

1.6 cos (21𝑡)
−1.3 sin (1.1𝑡)] ,

𝑓
1
(𝑥) = 𝑓

2
(𝑥) = tanh (𝑥) ,

𝛿 = 0.1, 𝜏 (𝑡) = 0.27 |sin (7𝑡)| .

(30)

Figure 1 shows that the considered neural network has
a chaotic attractor, where the initial condition is 𝑥

1
(𝑡) =

0.5 cos(0.5𝑡), 𝑥
2
(𝑡) = −0.2 sin (18𝑡), and 𝑡 ∈ [−0.27, 0].

It can be verified that assumptions (H1) and (H2) are
satisfied, and 𝐹

1
= 0, 𝐹

2
= 𝐼, 𝐹

3
= 0, 𝐹

4
= diag{0.5, 0.5},

𝜏 = 0.27.

Choose network measurement (4), where

𝐷 = [

0.7 −0.2

0.1 0.5
] ,

𝑔 (𝑡, 𝑥 (𝑡)) = 0.1 cos𝑥 (𝑡) + 0.3.
(31)

It is obvious that assumption (H3) is satisfied with 𝐺
1
=

−0.01𝐼 and 𝐺
2
= 0. By the Matlab LMI Control Toolbox, we

find a solution to the LMIs in (13) and (14) as follows:

𝑃
1
= [

0.5042 0.0068

0.0068 0.1895
] , 𝑃

2
= [

2.7464 0.0896

0.0896 2.0468
] ,

𝑃
3
= [

0.3288 −0.0027

−0.0027 0.1564
] , 𝑃

4
= [

0.1907 0.0138

0.0138 0.1027
] ,

𝑊
1
= [

0.1184 0

0 0.0779
] , 𝑊

2
= [

0.2313 0

0 0.1183
] ,

𝑅
1
= [

0.9466 0

0 0.4360
] , 𝑅

2
= [

0.4704 0

0 0.2050
] ,

𝑅
3
= [

2.9274 0

0 3.4376
] , 𝑄

1
= [

0.2168 0.0134

0.0144 0.0812
] ,

𝑄
2
= [

0.2025 0.0032

0.0032 0.1054
] , 𝑄

3
= [

−0.0134 0.0159

−0.0162 0.0155
] ,

𝑋
11
= [

0.4753 0.0123

0.0123 0.1554
] , 𝑋

12
= [

−0.5667 −0.0378

−0.0362 −0.2141
] ,

𝑋
22
= [

0.8376 0.0508

0.0508 0.4503
] , 𝑍 = [

0.5858 0.1452

−0.0249 0.4239
] .

(32)

Subsequently, we can obtain from𝐾 = 𝑄−1
1
𝑍 that

𝐾 = [

2.7511 0.3508

−0.7949 5.1560
] . (33)
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Figure 1: Phase trajectory of model (1).
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Figure 2: The responses of the true state 𝑥
1
(𝑡) (solid line) and its

estimation 𝑢
1
(𝑡) (dash line).

Therefore, we know from Theorem 4 that error-state
system (8) of the delayed neural network described by (1) and
(6) is globally asymptotically stable.The simulation results are
shown in Figures 2 and 3,which demonstrate the effectiveness
of the developed approach for the design of the state estimator
for neural networks with leakage delay and time-varying
delay.

5. Conclusions

In this paper, the state estimation problem has been inves-
tigated for neural networks with leakage delay and time-
varying delay as well as general activation functions. By
employing Lyapunov functional method and the matrix
inequality techniques, a delay-dependent LMIs condition has
been established to estimate the neuron state with some
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Figure 3: The responses of the true state 𝑥
2
(𝑡) (solid line) and its

estimation 𝑢
2
(𝑡) (dash line).

observed output measurements such that the error-state
system is globally asymptotically stable. An example has been
provided to show the effectiveness of the proposed criterion.
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