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This paper is concerned with the study of entrained collective rhythms of multicellular systems by using partial impulsive control
strategy. The objective is to design an impulsive controller based on only those partially available cell states, so that the entrained
collective rhythms are guaranteed for the multicellular systems with cell-to-cell communication mechanism. By using the newly
developed impulsive integrodifferential inequality, the sufficient conditions are derived to achieve the entrained collective rhythms
of multicellular systems. A synthetic multicellular system with simulation results is finally given to illustrate the usefulness of the
developed results.

1. Introduction

Complex physiological rhythms are ubiquitous in living
organisms, which are central to life, such as our daily cycle of
waking and sleeping and the beating of our hearts. Collective
rhythms are normally generated by thousands of divers clock
cells which manage to function in a coherent oscillatory
state [1, 2]. In fields ranging from circadian biology to
endocrinology, however, it remains an exciting challenge to
understand how collective rhythms emerge in multicellular
structures [3–7].

Elucidating the collective dynamics of multicellular sys-
tems not only is essential for the understanding of the
rhythmic phenomena of living organisms at both molecular
and cellular levels but also has many potential applications in
bioengineering areas. For example, in cancer chemotherapy,
treatments could be based on the circadian rhythm of cell
division [8]. Over the past decade or so, many researchers
have paid a great deal of attention to study the collective
dynamics of multicellular systems. For instance, in [9–12],
the authors considered stability of genetic networks and
neural networks. In [3], the authors pointed out that intercell

signaling mechanism does lead to synchronous behavior
across a population of cells. In [13], after making real-time
analysis of the gene expression, the authors showed the
synchronized rhythms of clock gene transcription across
hundreds of neurons within themammalian suprachiasmatic
nucleus (SCN) in organotypic slice culture. In addition, based
on the Lyapunov stability theory, the collective rhythms of
multicellular systems were further studied in [14]. For the
other relevant results, please see [15–17].

Although there are significant advances on elucidating
the collective behaviors of biological organisms in recent
years, the essential mechanisms from which the collective
rhythms arise remain to be fully understood. It is well known
that coupling among cells is not sufficient to achieve collective
rhythms. In fact, the collective rhythms of multicellular
systems are far away from being well understood and warrant
further and insightful study.

On the other hand, experimental results have already
shown that external stimuli play an important role in achiev-
ing the collective rhythms. In [18], physiological rhythms
were induced by regular or periodic inputs occurring in
the context of medical devices. In [19], an external voltage
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was applied to enhance the synchronization of electronic
synthetic genetic networks. In [20], it was shown that a
specific collective behavior could be realized by chang-
ing the frequency and amplitude of the periodic stimuli.
Another well-known example is that organisms usually dis-
play a circadian rhythm, where the key processes show a 24-
hour periodicity entrained to the light-dark cycle [21]. In [22],
the authors studied the rhythmic process of the circadian
oscillators under the effect of the daily light-dark cycle.
Furthermore, from the view of impulsive control systems,
collective behaviors of coupled systems were investigated and
some interesting results have been obtained in [23–27], and,
for the other relevant results, please refer to [28–32] and the
references therein.

However, in the above-mentioned results, one basic
assumption is that the external stimuli are applied to all the
cells in the community, that is very expensive or unrealistic
in practice. Actually, in many practical medical cases, only
partial specific cells could be detected and utilized. In these
situations, the external stimuli are applied to only those
cells in the community. To the best of our knowledge,
there are few results in the open literature on the entrained
collective rhythms of multicellular systems by applying
impulsive control based on the partially available cell
states.

This paper is to study the entrained collective rhythms
of multicellular systems with only partially available cell
states. By using the newly developed impulsive integrod-
ifferential inequality, a new criterion is derived to ensure
the entrained collective rhythms of multicellular systems.
It is shown that when the spontaneous synchrony cannot
be achieved, an appropriate periodic stimulus could achieve
a collective rhythm even only with partially available cell
states. It is noted that the proposed partial impulsive control
method can be also easily extended to study other complex
systems.

The rest of the paper is organized as follows. Section 2
formulates the problem of the entrained collective rhythms
and provides some useful lemmas. Section 3 presents the
main results for entrained collective rhythms of multicellular
systems. A synthetic multicellular system will be employed
to illustrate the effectiveness of the developed results in
Section 4, which is followed by conclusions in Section 5.

2. Model Description and
Problem Formulation

To make it easy for the readers, let us start from a single cell
model of the form

𝑥̇ (𝑡) = −𝐴𝑥 (𝑡) + 𝑓 (𝑥 (𝑡)) , (1)

where 𝑥(𝑡) ∈ R𝑛+ represents the concentrations of proteins,
RNAs, and other chemical complexes, 𝐴 is the positive
diagonal matrix denoting the degradation and dilution rate,
and𝑓(𝑥(𝑡)) is the complex regulatory function, which usually
is of the Michaelis-Menten or Hill form.

Remark 1. It is known that many biological models can be
represented by (1), such as the Goodwin model [33] and
the toggle switch [34]. Furthermore, the regulatory function
𝑓(𝑥) in model (1) is usually monotonically increasing or
decreasing.

Without loss of generality, the regulatory function is
always assumed to satisfy the following assumption.

Assumption 2. The regulatory function 𝑓(𝑥) in (1) satisfies

(𝑓

𝑖
(𝑎) − 𝑓

𝑖
(𝑏)) [𝑓

𝑖
(𝑎) − 𝑓

𝑖
(𝑏) − 𝑙

𝑖
(𝑎 − 𝑏)] ≤ 0, (2)

for all 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 𝑏, and 𝑙
𝑖
> 0.

Consider multicellular systems with cell-to-cell commu-
nication mechanism described as follows:

𝑥̇

𝑖
(𝑡) = − 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺

𝑖𝑗
Γ𝑥

𝑗
(𝑡) , 𝑖 = 1, . . . , 𝑁,

(3)

where 𝑥
𝑖
(𝑡) ∈ R𝑛+ is the state of the 𝑖th cell, denoting

the concentrations of chemical complexes in this cell, and
𝑁 is the total cell number of the entire community. The
third term in model (3) describes the capability of cells to
communicate with each other in order to coordinate the
behavior of the entire community. 𝐺 = (𝐺

𝑖𝑗
)

𝑁×𝑁
is the

coupling structure matrix that represents the communica-
tions between different cells, and Γ is the inner coupling
structure that represents the connections of different chem-
ical complexes in one cell. 𝐺 satisfies the diffusive coupling
condition

𝐺

𝑖𝑗
≥ 0, for 𝑖 ̸= 𝑗,

𝐺

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝐺

𝑖𝑗
, 𝑖 = 1, 2, . . . , 𝑁.

(4)

It can be noted that such coupling is biologically plausible
in many biological systems, such as the quorum sensing
mechanism in bacteria [2, 35].

Suppose only 𝑙 cell states in the community are measur-
able for the multicellular systems (3). Consider the following
linear impulsive controller based on those 𝑙 measurable cell
states:

𝑢

𝑖
=

∞

∑

𝑘=1

𝐸

𝑖𝑘
(𝑥

𝑖
− 𝑥) 𝛿 (𝑡 − 𝑡

𝑘
) , 𝑖 = 1, 2, . . . , 𝑙, 𝑘 ∈ N, (5)

where 𝑥 is the state of the isolated cell described in (1), 𝑙 is the
number of the measurable cell states, 𝐸

𝑖𝑘
is the gain matrix,

and 𝛿(𝑡 − 𝑡
𝑘
) is the Dirac impulse function with discontinuity

points 𝑡
1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→∞
𝑡

𝑘
= ∞.
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Then the impulsive-controlled multicellular systems with
partial states can be described by the following impulsive
differential equation:

𝑥̇

𝑖
(𝑡) = −𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺

𝑖𝑗
Γ𝑥

𝑗
(𝑡) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡

𝑘
] ,

Δ𝑥

𝑖
(𝑡

𝑘
) = 𝑥

𝑖
(𝑡

+

𝑘
) − 𝑥

𝑖
(𝑡

−

𝑘
) = 𝐸

𝑖𝑘
(𝑥

𝑖
− 𝑥) ,

𝑘 = 1, 2, . . . , 𝑡 = 𝑡

𝑘
,

𝑖 = 1, . . . , 𝑙,

𝑥̇

𝑖
(𝑡) = − 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺

𝑖𝑗
Γ𝑥

𝑗
(𝑡) , 𝑖 = 𝑙 + 1, . . . , 𝑁.

(6)

Defining 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥(𝑡), one can obtain the following

error system:

̇𝑒

𝑖
(𝑡) = −𝐴𝑒

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺

𝑖𝑗
Γ𝑒

𝑗
(𝑡) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡

𝑘
] ,

𝑒

𝑖
(𝑡

+

𝑘
) = (𝐼 + 𝐸

𝑖𝑘
) 𝑒

𝑖
(𝑡

𝑘
) , 𝑘 = 1, 2, . . . ,

𝑡 = 𝑡

𝑘
, 𝑖 = 1, . . . , 𝑙,

̇𝑒

𝑖
(𝑡) = − 𝐴𝑒

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡))

+ 𝑐

𝑁

∑

𝑗=1

𝐺

𝑖𝑗
Γ𝑒

𝑗
(𝑡) , 𝑖 = 𝑙 + 1, . . . , 𝑁.

(7)

Then the problem of entrained collective rhythms is to
design the partial impulsive controller (5) such that the stabil-
ity of the error system (7) is guaranteed. Before presenting the
main results, some useful lemmas are introduced in advance.

Lemma 3 (see [36]). If 𝑃 ∈ R𝑛×𝑛 is a positive definite matrix
and 𝑄 ∈ R𝑛×𝑛 is a symmetric matrix, then

𝜆min (𝑃
−1

𝑄)𝑥

T
𝑃𝑥 ≤ 𝑥

T
𝑄𝑥

≤ 𝜆max (𝑃
−1

𝑄)𝑥

T
𝑃𝑥, ∀𝑥 ∈ R𝑛,

(8)

where 𝜆min(⋅) and 𝜆max(⋅) are the minimum and maximum
eigenvalues of the matrix, respectively.

Lemma 4. For positive scalars 𝛿 > 0, 𝜇 > 0, and 𝜌 >

0, if 𝑢(𝑡) satisfies

𝑢̇ (𝑡) ≤ ℎ (𝑡, 𝑢 (𝑡)) + 𝛿∫

𝑡

0

𝑒

−𝜌(𝑡−𝑠)

𝑢 (𝑠) 𝑑𝑠, 𝑡 ̸= 𝑡

𝑘
,

𝑢 (𝑡

+

𝑘
) ≤ 𝜇𝑢 (𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑢 (0) ≤ 𝑢

0
,

(9)

where ℎ(𝑡, 𝑢(𝑡)) is a continuous function, then one has 𝑢(𝑡) ≤
𝑢

𝜖
(𝑡), 𝑡 ≥ 0 for 𝜖 ≥ 0, where𝑢

𝜖
(𝑡) is the solution to the following

impulsive integrodifferential equation:

𝑢̇

𝜖
(𝑡) = ℎ (𝑡, 𝑢

𝜖
(𝑡)) + 𝛿∫

𝑡

0

𝑒

−𝜌(𝑡−𝑠)

𝑢

𝜖
(𝑠) 𝑑𝑠 + 𝜖, 𝑡 ̸= 𝑡

𝑘
,

𝑢

𝜖
(𝑡

+

𝑘
) = 𝜇𝑢

𝜖
(𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑢

𝜖
(0) = 𝑢

0
.

(10)

Proof. Firstly, we prove

𝑢 (𝑡) ≤ 𝑢

𝜖
(𝑡) , 𝑡 ∈ (0, 𝑡

1
] . (11)

If argument (11) is not right, then there exists ̃𝑡 ∈ (0, 𝑡
1
) such

that

𝑢 (

̃

𝑡) > 𝑢

𝜖
(

̃

𝑡) . (12)

Considering the continuity of 𝑢(𝑡), 𝑢
𝜖
(𝑡) on (0, 𝑡

1
], theremust

exist 𝑡∗ ∈ (0, ̃𝑡) such that

𝑢 (𝑡

∗

) = 𝑢

𝜖
(𝑡

∗

) , 𝑢̇ (𝑡

∗

) ≥ 𝑢̇

𝜖
(𝑡

∗

) ,

𝑢 (𝑡) ≤ 𝑢

𝜖
(𝑡) , ∀𝑡 ≤ 𝑡

∗

;

(13)

then it yields

𝑢̇ (𝑡

∗

) ≤ ℎ (𝑡

∗

, 𝑢 (𝑡

∗

)) + 𝛿∫

𝑡
∗

0

𝑒

−𝜌(𝑡
∗

−𝑠)

𝑢 (𝑠) 𝑑𝑠

< ℎ (𝑡

∗

, 𝑢

𝜖
(𝑡

∗

)) + 𝛿∫

𝑡
∗

0

𝑒

−𝜌(𝑡
∗

−𝑠)

𝑢

𝜖
(𝑠) 𝑑𝑠 + 𝜖

= 𝑢̇

𝜖
(𝑡

∗

) ,

(14)

which contradicts the condition 𝑢̇(𝑡∗) ≥ 𝑢̇
𝜖
(𝑡

∗

), so (11) holds.
Suppose 𝑢(𝑡) ≤ 𝑢

𝜖
(𝑡), for all 𝑡 ∈ (0, 𝑡

𝑘
]; then by 𝑢(𝑡+

𝑘
) =

𝜇𝑢(𝑡

𝑘
) ≤ 𝜇𝑢

𝜖
(𝑡

𝑘
) = 𝑢

𝜖
(𝑡

+

𝑘
), similarly, one has 𝑢(𝑡) ≤ 𝑢

𝜖
(𝑡),

for all 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
]. By using the mathematical induction

method, one can conclude 𝑢(𝑡) ≤ 𝑢
𝜖
(𝑡), for all 𝑡 ∈ (0, 𝑡

𝑘
] for

any positive integer 𝑘. The proof is thus complete.

Lemma 5 (Grownwall-Bellman Inequality [37]). Let 𝛼(𝑡)
be a real value continuous function and 𝛽(𝑡) a nonnegative
continuous function on [𝑎, 𝑏]. If a continuous function 𝑢(𝑡) has
the property that

𝑢 (𝑡) ≤ 𝛼 (𝑡) + ∫

𝑡

𝑎

𝛽 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑎 ≤ 𝑡 ≤ 𝑏,
(15)

then on [𝑎, 𝑏] one has

𝑢 (𝑡) ≤ 𝛼 (𝑡) + ∫

𝑡

𝑎

𝛼 (𝑠) 𝛽 (𝑠) exp(∫
𝑡

𝑠

𝛽 (𝑟) 𝑑𝑟) 𝑑𝑠. (16)

Definition 6. The multicellular system (6) is said to achieve
collective rhythms with the designed partial impulsive con-
troller, if there exist scalars 𝜌 > 0 and𝑀 > 0 such that

lim
𝑡→∞

‖𝑋(𝑡)‖

2

≤ 𝑀𝑒

−𝜌𝑡

‖𝑋(0)‖

2

, (17)
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where 𝑋(𝑡) = [𝑥T
1
− 𝑥

T
, . . . , 𝑥

T
𝑁
− 𝑥

T
]

T and 𝑋(0) is the initial
condition.

3. Main Results

In this section, by using the proposed impulsive integrod-
ifferential inequality, a sufficient condition guaranteeing the
entrained collective rhythms of multicellular systems is
derived.

Theorem7. For a given scalar 𝜇 ∈ (0, 1), if there exist matrices
𝑃

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙, 𝑄

𝑖
> 0, 𝑖 = 𝑙 + 1, . . . , 𝑁, scalars 𝜆

𝑖
> 0,

𝜇

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙, 𝜂

𝑖
> 0, 𝑖 = 𝑙 + 1, . . . , 𝑁, and positive

scalars 𝜖
1
, 𝜖
2
, 𝛿
1
, and 𝛿

2
such that

(−𝐴

T
𝑃

𝑖
− 𝑃

𝑖
𝐴) + 𝜆max (𝑃𝑖)(𝜖1𝐼 + 𝜖

−1

1
𝐿

T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

)

+ 𝑐𝛿

−1

1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

Γ

T
Γ ≤ 𝜆

𝑖
𝑃

𝑖
,

(18)

(𝐼 + 𝐸

𝑖𝑘
)

T
𝑃

𝑖
(𝐼 + 𝐸

𝑖𝑘
) ≤ 𝜇

𝑖
𝑃

𝑖
,

(19)

for 𝑖 = 1, . . . , 𝑙, and

(−𝐴

T
𝑄

𝑖
− 𝑄

𝑖
𝐴) + 𝜆max (𝑄𝑖)(𝜖2𝐼 + 𝜖

−1

2
𝐿

T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

)

+ 𝑐𝛿

−1

2

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

Γ

T
Γ ≤ −𝜂

𝑖
𝑄

𝑖
,

(20)

for 𝑖 = 𝑙 + 1, . . . , 𝑁, and, for any impulsive time sequence {𝑡
𝑘
}

satisfying

𝛿 := sup
𝑘

{𝑡

𝑘+1
− 𝑡

𝑘
} <

ln (1/𝜇)
𝜂 + 𝜆 + (𝛽𝛾) / (𝜂𝜇)

, (21)

for 𝑘 = 0, 1, 2, . . ., where 𝜇 = max(𝜇
𝑖
), 𝜆 = max(𝜆

𝑖
), 𝑖 =

1, . . . , 𝑙, and 𝜂 = min(𝜂
𝑖
), 𝑖 = 𝑙 + 1, . . . , 𝑁, then the entrained

collective rhythms of multicellular systems (6) are achieved.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) = 𝑉

1
(𝑡) + 𝑉

2
(𝑡) , (22)

where

𝑉

1
(𝑡) :=

𝑙

∑

𝑖=1

𝑒

T
𝑖
(𝑡) 𝑃

𝑖
𝑒

𝑖
(𝑡) ,

𝑉

2
(𝑡) :=

𝑁

∑

𝑖=𝑙+1

𝑒

T
𝑖
(𝑡) 𝑄

𝑖
𝑒

𝑖
(𝑡) ,

(23)

where 𝑃
𝑖
, 𝑖 = 1, 2, . . . , 𝑙 and 𝑄

𝑖
, 𝑖 = 𝑙 + 1, . . . , 𝑁 are positive

definite matrices to be determined.
For any 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
], 𝑘 ∈ N, taking the Dini derivative

along the trajectories of (7), we have

𝐷

+

𝑉

1
(𝑡) =

𝑙

∑

𝑖=1

( ̇𝑒

T
𝑖
(𝑡) 𝑃

𝑖
𝑒

𝑖
(𝑡) + 𝑒

T
𝑖
(𝑡) 𝑃

𝑖
̇𝑒

𝑖
(𝑡))

=

𝑙

∑

𝑖=1

(𝑒

T
𝑖
(𝑡) (−𝐴

T
𝑃

𝑖
− 𝑃

𝑖
𝐴) 𝑒

𝑖
(𝑡)

+ 2𝑒

T
𝑖
(𝑡) 𝑃

𝑖
(𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡)))

+ 2𝑐

𝑁

∑

𝑗=1

𝑒

T
𝑖
(𝑡) 𝑃

𝑖
𝐺

𝑖𝑗
Γ𝑒

𝑗
(𝑡)) .

(24)

It follows from Assumption 2 that

2𝑒

T
𝑖
(𝑡) 𝑃

𝑖
(𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡)))

≤ 𝜆max (𝑃𝑖) (𝜖1𝑒
T
𝑖
(𝑡) 𝑒

𝑖
(𝑡) + 𝜖

−1

1
𝑒

T
𝑖
(𝑡) 𝐿

T
𝐿𝑒

𝑖
(𝑡)) ,

2𝑐

𝑁

∑

𝑗=1

𝑒

T
𝑖
(𝑡) 𝑃

𝑖
𝐺

𝑖𝑗
Γ𝑒

𝑗
(𝑡)

≤ 𝑐𝜆max (𝑃𝑖)
𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

× (𝛿

1
𝑒

T
𝑖
(𝑡) 𝑒

𝑖
(𝑡) + 𝛿

−1

1
𝑒

T
𝑗
(𝑡) Γ

T
Γ𝑒

𝑗
(𝑡)) ,

(25)

where 𝜖
1
> 0, 𝛿

1
> 0 and 𝐿 = diag(𝑙

1
, . . . , 𝑙

𝑛
). One also has

𝑐𝛿

−1

1

𝑙

∑

𝑖=1

𝑁

∑

𝑗=1

𝜆max (𝑃𝑖)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑗
(𝑡) Γ

T
Γ𝑒

𝑗
(𝑡)

= 𝑐𝛿

−1

1

𝑁

∑

𝑖=1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡)

= 𝑐𝛿

−1

1

𝑙

∑

𝑖=1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡)

+ 𝑐𝛿

−1

1

𝑁

∑

𝑖=𝑙+1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡) .

(26)
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Substituting (25)–(26) into (24) yields

𝐷

+

𝑉

1
(𝑡) ≤

𝑙

∑

𝑖=1

(𝑒

T
𝑖
(𝑡) (−𝐴

T
𝑃

𝑖
− 𝑃

𝑖
𝐴) 𝑒

𝑖
(𝑡) + 𝜆max (𝑃𝑖) 𝑒

T
𝑖
(𝑡)

× (𝜖

1
𝐼 + 𝜖

−1

1
𝐿

T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

) 𝑒

𝑖
(𝑡)

+𝑐𝛿

−1

1

𝑙

∑

𝑖=1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡))

+ 𝑐𝛿

−1

1

𝑁

∑

𝑖=𝑙+1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡)

=

𝑙

∑

𝑖=1

𝑒

T
𝑖
(𝑡)( (−𝐴

T
𝑃

𝑖
− 𝑃

𝑖
𝐴) + 𝜆max (𝑃𝑖)

× (𝜖

1
𝐼 + 𝜖

−1

1
𝐿

T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

)

+𝑐𝛿

−1

1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

Γ

T
Γ) 𝑒

𝑖
(𝑡)

+ 𝑐𝛿

−1

1

𝑁

∑

𝑖=𝑙+1

𝑙

∑

𝑗=1

𝜆max (𝑃𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡) .

(27)

Define 𝛽
𝑖
= 𝑐𝛿

−1

1
∑

𝑙

𝑗=1
𝜆max(𝑃𝑗)|𝐺𝑗𝑖|. Then it follows from

condition (18) and Lemma 3 that

𝐷

+

𝑉

1
(𝑡) ≤

𝑙

∑

𝑖=1

𝑒

T
𝑖
(𝑡) 𝜆

𝑖
𝑃

𝑖
𝑒

𝑖
(𝑡) +

𝑁

∑

𝑖=𝑙+1

𝛽

𝑖
𝑒

T
𝑖
(𝑡) 𝑒

𝑖
(𝑡)

≤ 𝜆𝑉

1
(𝑡) + 𝛽𝑉

2
(𝑡) ,

(28)

where 𝜆 = max(𝜆
𝑖
) and 𝛽 = max(𝛽

𝑖
𝜆max(𝑄

−1

𝑖
)).

Furthermore, for any 𝑡 ≥ 0, one can also get

𝐷

+

𝑉

2
(𝑡) =

𝑁

∑

𝑖=𝑙+1

( ̇𝑒

T
𝑖
(𝑡) 𝑄

𝑖
𝑒

𝑖
(𝑡) + 𝑒

T
𝑖
(𝑡) 𝑄

𝑖
̇𝑒

𝑖
(𝑡))

=

𝑁

∑

𝑖=𝑙+1

(𝑒

T
𝑖
(𝑡) (−𝐴

T
𝑄

𝑖
− 𝑄

𝑖
𝐴) 𝑒

𝑖
(𝑡)

+ 2𝑒

T
𝑖
(𝑡) 𝑄

𝑖
(𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑥 (𝑡)))

+2𝑐

𝑁

∑

𝑗=1

𝑒

T
𝑖
(𝑡) 𝑄

𝑖
𝐺

𝑖𝑗
Γ𝑒

𝑗
(𝑡))

≤

𝑁

∑

𝑖=𝑙+1

(𝑒

T
𝑖
(𝑡) (−𝐴

T
𝑄

𝑖
− 𝑄

𝑖
𝐴) 𝑒

𝑖
(𝑡)

+ 𝜆max (𝑄𝑖) 𝑒
T
𝑖
(𝑡)

× (𝜖

2
𝐼 + 𝜖

−1

2
𝐿

T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

) 𝑒

𝑖
(𝑡)

+𝑐𝛿

−1

2

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡))

+ 𝑐𝛿

−1

2

𝑙

∑

𝑖=1

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡)

=

𝑁

∑

𝑖=𝑙+1

𝑒

T
𝑖
(𝑡)

× ( (−𝐴

T
𝑄

𝑖
− 𝑄

𝑖
𝐴) + 𝜆max (𝑄𝑖)

× (𝜖

2
𝐼 + 𝜖

−1

2
𝐿

T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

)

+𝑐𝛿

−1

2

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

Γ

T
Γ) 𝑒

𝑖
(𝑡)

+ 𝑐𝛿

−1

2

𝑙

∑

𝑖=1

𝑁

∑

𝑗=𝑙+1

𝜆max (𝑄𝑗)
󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

𝑒

T
𝑖
(𝑡) Γ

T
Γ𝑒

𝑖
(𝑡) ,

(29)

where 𝜖
2
> 0, 𝛿

2
> 0.

Defining 𝛾
𝑖
= 𝑐𝛿

−1

2
∑

𝑁

𝑗=𝑙+1
𝜆max(𝑄𝑗)|𝐺𝑗𝑖|, it follows from

(20) and (29) that

𝐷

+

𝑉

2
(𝑡) ≤ −

𝑁

∑

𝑖=𝑙+1

𝜂

𝑖
𝑒

T
𝑖
(𝑡) 𝑄

𝑖
𝑒

𝑖
(𝑡)

+

𝑙

∑

𝑖=1

𝛾

𝑖
𝑒

T
𝑖
(𝑡) 𝑒

𝑖
(𝑡)

≤ − 𝜂𝑉

2
(𝑡) + 𝛾𝑉

1
(𝑡) ,

(30)

where 𝜂 = min(𝜂
𝑖
) and 𝛾 = max(𝛾

𝑖
𝜆max(𝑃

−1

𝑖
)), which implies

𝑉

2
(𝑡) ≤ 𝑒

−𝜂𝑡

𝑉

2
(0) + 𝛾∫

𝑡

0

𝑒

−𝜂(𝑡−𝛼)

𝑉

1
(𝛼) 𝑑𝛼.

(31)

Then substituting (31) into (28) yields

𝐷

+

𝑉

1
(𝑡) ≤ 𝜆𝑉

1
(𝑡) + 𝛽𝑒

−𝜂𝑡

𝑉

2
(0)

+ 𝛽𝛾∫

𝑡

0

𝑒

−𝜂(𝑡−𝛼)

𝑉

1
(𝛼) 𝑑𝛼, 𝑡 ∈ (𝑡

𝑘
, 𝑡

𝑘+1
] .

(32)
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On the other hand, when 𝑡 = 𝑡+
𝑘
, it follows from (19) that

𝑉

1
(𝑡

+

𝑘
) =

𝑙

∑

𝑖=1

𝑒

T
𝑖
(𝑡

𝑘
) (𝐼 + 𝐸

𝑖𝑘
)

T
𝑃

𝑖
(𝐼 + 𝐸

𝑖𝑘
) 𝑒

𝑖
(𝑡

𝑘
)

≤

𝑙

∑

𝑖=1

𝑒

T
𝑖
(𝑡

𝑘
) 𝜇

𝑖
𝑃

𝑖
𝑒

𝑖
(𝑡

𝑘
)

≤ 𝜇𝑉

1
(𝑡

𝑘
) ,

(33)

where 𝜇 = max(𝜇
𝑖
), 𝑖 = 1, . . . , 𝑙.

For any scalar 𝜖 > 0, define the following impulsive
integrodifferential equation:

̇

𝑉

𝜖
(𝑡) = 𝜆𝑉

𝜖
(𝑡) + 𝛽𝑒

−𝜂𝑡

𝑉

2
(0)

+ 𝛽𝛾∫

𝑡

0

𝑒

−𝜂(𝑡−𝛼)

𝑉

𝜖
(𝛼) 𝑑𝛼

+ 𝜖, 𝑡 ∈ (𝑡

𝑘−1
, 𝑡

𝑘
] ,

𝑉

𝜖
(𝑡

+

𝑘
) = 𝜇𝑉

𝜖
(𝑡

𝑘
) , 𝑡 = 𝑡

𝑘
,

𝑉

𝜖
(0) = 𝑉

1
(0) .

(34)

It then follows from Lemma 4 that 𝑉
1
(𝑡) ≤ 𝑉

𝜖
(𝑡), for all 𝑡 ∈

(0, 𝑡

𝑘
].
The solution to (34) can be expressed as follows:

𝑉

𝜖
(𝑡) = 𝑊 (𝑡, 0) 𝑉

𝜖
(0) + ∫

𝑡

0

𝑊(𝑡, 𝑠)

× {𝜖 + 𝛽𝑒

−𝜂𝑠

𝑉

2
(0)

+𝛽𝛾∫

𝑠

0

𝑒

−𝜂(𝑠−𝛼)

𝑉

𝜖
(𝛼) 𝑑𝛼}𝑑𝑠,

(35)

where 𝑊(𝑡, 𝑠) (𝑡, 𝑠 ≥ 0) is the Cauchy matrix of the linear
impulsive system

𝑢̇ (𝑡) = 𝜆𝑢 (𝑡) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡

𝑘
] ,

𝑢 (𝑡

+

𝑘
) = 𝜇𝑢 (𝑡

𝑘
) , 𝑘 = 1, 2, . . . , 𝑡 = 𝑡

𝑘
.

(36)

Furthermore, noting that𝜇 < 1 and 𝑡
𝑘+1
−𝑡

𝑘
≤ 𝛿, it follows

from condition (21) that𝑊(𝑡, 𝑠) could be estimated as

𝑊(𝑡, 𝑠) = 𝑒

𝜆(𝑡−𝑠)

∏

𝑠<𝑡
𝑘
≤𝑡

𝜇 ≤ 𝑒

𝜆(𝑡−𝑠)

𝜇

((𝑡−𝑠)/𝛿)−1

=

1

𝜇

𝑒

−((1/𝛿) ln(1/𝜇)−𝜆)(𝑡−𝑠)
.

(37)

Defining ̂𝜆 = (1/𝛿) ln(1/𝜇) − 𝜆, one has

𝑉

𝜖
(𝑡) ≤

1

𝜇

𝑒

−
̂
𝜆𝑡

𝑉

𝜖
(0)

+

1

𝜇

∫

𝑡

0

𝑒

−
̂
𝜆(𝑡−𝑠)

(𝜖 + 𝛽𝑒

−𝜂𝑠

𝑉

2
(0)) 𝑑𝑠

+

𝛽𝛾

𝜇

∫

𝑡

0

𝑒

−
̂
𝜆(𝑡−𝑠)

∫

𝑠

0

𝑒

−𝜂(𝑠−𝛼)

𝑉

𝜖
(𝛼) 𝑑𝛼 𝑑𝑠

=

1

𝜇

𝑒

−
̂
𝜆𝑡

𝑉

𝜖
(0) +

𝜖

𝜇

̂

𝜆

(1 − 𝑒

−
̂
𝜆𝑡

)

+

𝛽𝑉

2
(0)

𝜇 (

̂

𝜆 − 𝜂)

(𝑒

−𝜂𝑡

− 𝑒

−
̂
𝜆𝑡

)

+

𝛽𝛾

𝜇

∫

𝑡

0

∫

𝑡

𝛼

𝑒

−
̂
𝜆(𝑡−𝑠)

𝑒

−𝜂(𝑠−𝛼)

𝑉

𝜖
(𝛼) 𝑑𝑠 𝑑𝛼

=

1

𝜇

𝑒

−
̂
𝜆𝑡

𝑉

𝜖
(0) +

𝜖

𝜇

̂

𝜆

(1 − 𝑒

−
̂
𝜆𝑡

)

+

𝛽𝑉

2
(0)

𝜇 (

̂

𝜆 − 𝜂)

(𝑒

−𝜂𝑡

− 𝑒

−
̂
𝜆𝑡

) +

𝛽𝛾

𝜇 (

̂

𝜆 − 𝜂)

× ∫

𝑡

0

(𝑒

−𝜂(𝑡−𝛼)

− 𝑒

−
̂
𝜆(𝑡−𝛼)

)𝑉

𝜖
(𝛼) 𝑑𝛼.

(38)

Noting from condition (21) that ̂𝜆 > 𝜂, then one gets

𝑉

𝜖
(𝑡) ≤

1

𝜇

𝑒

−
̂
𝜆𝑡

𝑉

𝜖
(0) +

𝜖

𝜇

̂

𝜆

+

𝛽𝑉

2
(0)

𝜇 (

̂

𝜆 − 𝜂)

𝑒

−𝜂𝑡

+

𝛽𝛾

𝜇 (

̂

𝜆 − 𝜂)

∫

𝑡

0

𝑒

−𝜂(𝑡−𝛼)

𝑉

𝜖
(𝛼) 𝑑𝛼.

(39)

Defining 𝑢(𝑡) = 𝑒

𝜂𝑡

𝑉

𝜖
(𝑡), 𝛼(𝑡) = (𝑉

𝜖
(0)/𝜇) + (𝛽𝑉

2
(0)/𝜇(

̂

𝜆 −

𝜂)) + (𝜖/𝜇

̂

𝜆)𝑒

𝜂𝑡, and 𝛽(𝑡) = (𝛽𝛾/𝜇(̂𝜆 − 𝜂)) = 𝜌, one obtains

𝑢 (𝑡) ≤ 𝛼 (𝑡) + ∫

𝑡

0

𝛽 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ≥ 0.
(40)

Then by using Lemma 5, it is easy to get

𝑢 (𝑡) ≤ (

𝑉

𝜖
(0)

𝜇

+

𝛽𝑉

2
(0)

𝜇 (

̂

𝜆 − 𝜂)

) 𝑒

𝜌𝑡

+

𝜖𝜂

𝜇

̂

𝜆 (𝜂 − 𝜌)

𝑒

𝜂𝑡

, 𝑡 ≥ 0,

(41)

which implies

𝑉

𝜖
(𝑡) ≤ (

𝑉

𝜖
(0)

𝜇

+

𝛽𝑉

2
(0)

𝜇 (

̂

𝜆 − 𝜂)

) 𝑒

−(𝜂−𝜌)𝑡

+

𝜖𝜂

𝜇

̂

𝜆 (𝜂 − 𝜌)

,

𝑡 ≥ 0.

(42)

Let 𝜖 → 0

+, one can get

𝑉

1
(𝑡) ≤ 𝑒

−(𝜂−𝜌)𝑡

(

𝑉

1
(0)

𝜇

+

𝛽𝑉

2
(0)

𝜇 (

̂

𝜆 − 𝜂)

) . (43)
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Then it follows from (31) that

𝑉

2
(𝑡) ≤ 𝑒

−𝜂𝑡

𝑉

2
(0) + 𝑒

−(𝜂−𝜌)𝑡

(

𝑉

1
(0)

𝜇

+

𝛽𝑉

2
(0)

𝜇 (

̂

𝜆 − 𝜂)

)

𝛾

𝜌

. (44)

Furthermore, it follows from condition (21) that 𝜂 > 𝜌.
Therefore together with (43) and (44), one can conclude that
condition (17) is satisfied; that is, the entrained collective
rhythms of multicellular systems (6) are achieved. The proof
is thus completed.

Remark 8. The obtained result not only provides a new
prospective to understand the interactions between the
external stimuli and intrinsic physiological rhythms but also
is potentially useful for the development of some medical
devices. The result presented here is more effective in com-
parison with those in [38–41], where it is assumed that all the
states are available for feedback purpose.

As a special case, if the positive matrices 𝑃
𝑖
and 𝑄

𝑖
in the

Lyapunov function (22) are chosen as the identity matrix, the
following simplified result could be readily obtained.

Corollary 9. For a given scalar 𝜇 ∈ (0, 1), if there exist scalars
𝜆

𝑖
> 0, 𝜇

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙, 𝜂

𝑖
> 0, 𝑖 = 𝑙 + 1, . . . , 𝑁, and

positive scalars 𝜖
1
, 𝜖
2
, 𝛿
1
, and 𝛿

2
such that

−𝐴

T
− 𝐴 + 𝜖

1
𝐼 + 𝜖

−1

1
𝐿

T
𝐿 + 𝑐𝛿

1

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝑐𝛿

−1

1

𝑙

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

Γ

T
Γ ≤ 𝜆

𝑖
,

(𝐼 + 𝐸

𝑖𝑘
)

𝑇

(𝐼 + 𝐸

𝑖𝑘
) ≤ 𝜇

𝑖
,

(45)

for 𝑖 = 1, . . . , 𝑙 and

−𝐴

T
− 𝐴 + 𝜖

2
𝐼 + 𝜖

−1

2
𝐿

T
𝐿 + 𝑐𝛿

2

𝑁

∑

𝑗=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑖𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

+ 𝑐𝛿

−1

2

𝑁

∑

𝑗=𝑙+1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

𝑗𝑖

󵄨

󵄨

󵄨

󵄨

󵄨

Γ

T
Γ ≤ −𝜂

𝑖
,

(46)

for 𝑖 = 𝑙 + 1, . . . , 𝑁, and, for any impulsive time sequence {𝑡
𝑘
}

satisfying

𝛿 := sup
𝑘

{𝑡

𝑘+1
− 𝑡

𝑘
} <

ln (1/𝜇)
𝜂 + 𝜆 + (𝛽𝛾) / (𝜂𝜇)

, (47)

for 𝑘 = 0, 1, 2, . . ., where 𝜇 = max(𝜇
𝑖
), 𝜆 = max(𝜆

𝑖
), 𝑖 =

1, . . . , 𝑙, and 𝜂 = min(𝜂
𝑖
), 𝑖 = 𝑙 + 1, . . . , 𝑁, then the entrained

collective rhythms of multicellular systems (6) are achieved.

4. Numerical Example

In this section, a synthetic multicellular system composed
of 𝑁 Goodwin oscillators [33] is employed to illustrate the
effectiveness of the proposed control strategy.

DNA mRNA (m) Enzyme (e)

Product (p)
Repression

Substrate

Figure 1: Regulatory scheme of the Goodwin oscillator.

4.1. Goodwin Oscillators. TheGoodwin oscillator is a genetic
network with negative feedback formed in a cyclic way [33],
where metabolites repress the enzymes which are essential
for their own synthesis by inhibiting the transcription of
the molecule DNA to messenger RNA (mRNA) (see [42]
for more details). The regulatory scheme of the Goodwin
oscillator can be shown in Figure 1.

Amodifiedmodel reflecting the above regulation process
is given by

𝑑𝑚

𝑑𝑡

=

𝑢

𝑘

1
+ 𝑝

𝛼
− 𝑎𝑚,

𝑑𝑒

𝑑𝑡

= V𝑚 − 𝑏𝑒,

𝑑𝑝

𝑑𝑡

= 𝑤𝑒 −

𝑐𝑝

𝑘

2
+ 𝑝

,

(48)

where 𝑚, 𝑒, and 𝑝 are the concentrations of mRNA, the
enzyme, and the product of the reaction of the enzyme and
a substrate, respectively. 𝑎, 𝑏, and 𝑐 are the degradation rates
of each component, respectively. 𝑢, V, and 𝑤 denote the rates
of transcription, translation, and catalysis, respectively. 𝑘

1

and 𝑘
2
are two positive constants. 𝛼 is the Hill coefficient

denoting the cooperativity of the end product repression. It
should be pointed out that model (46) is slightly different
from the model in [33]. By changing the linear degradation
formof the product toMichaelis-Menten form, the limit cycle
oscillations can occur for a lower value of the Hill coefficient
𝛼 (see [42] for details).

The parameters are chosen as 𝑎 = 𝑏 = 𝑐 = V = 𝑤 = 0.1,
𝑢 = 1, and 𝑘

1
= 𝑘

2
= 0.1, and the Hill coefficient 𝛼 is taken

as 𝛼 = 4. Given 4 random initial conditions, the simulation
results are recorded in Figures 2 and 3. Figure 2 shows the
time response of every products, and Figure 3 shows the limit
cycle of the oscillators in phase space.

4.2. Multicellular System Model. Without loss of generality,
we perform the simulation study on the scale-free network
structure, which is assumed to obey the scale-free distribu-
tion of the Barabási-Albert (BA) model [43]. The parameters
are given as𝑚

0
= 𝑚 = 5 and𝑁 = 60. Figure 4 is the generated

BA network graph.
The inner couplingmatrix Γ is given by Γ = diag(1, 1.2, 1),

and the regulation function in Michaelis-Menten form sat-
isfies condition (2). Assume that only the first 20 nodes are



8 Abstract and Applied Analysis

6

5

4

3

2

1

0
0 50 100 150 200 250 300

x1

x2

x3

Times (s)

x
(t

)

Figure 2: Time response of four oscillators.
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Figure 3: Limit cycle of the oscillators in phase space.

Figure 4: BA scale-free network graph.
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Figure 5: Rhythmic errors 𝑒
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in BA network.
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Figure 6: Rhythmic errors 𝑒
𝑖2
in BA network.

able to accept the external inputs. The parameters are chosen
as 𝑐 = 4, 𝜖

1
= 0.03, and 𝜖

2
= 0.01. The impulse magnitude

is given as 𝐸
𝑖𝑘
= −1.8, and impulse interval is chosen as

𝛿 = 0.4. It follows from Corollary 9 that the entrained
collective behaviors can be achieved. Figures 5, 6, and 7 show
the rhythmic errors of the multicellular systems.

It is noted that since only 20 measurable cells in the
network are subject to the external stimuli, the approaches in
[38–41], which need the information of all the states, cannot
be applied in this case.

5. Conclusion

In this paper, the entrained collective rhythmsofmulticellular
systems have been investigated. It is shown that the entrained
collective behavior can be achieved via impulsive control even
when only partial states of multicellular systems are available.
With the help of the newly developed impulsive integrod-
ifferential inequality, the sufficient conditions are derived
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to ensure the entrained collective rhythms of multicellular
systems. A synthetic multicellular system is finally used to
illustrate the effectiveness of the developed impulsive control
strategy.
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