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A new accurate method on predicting crude oil price is presented, which is based on 𝜀-support vector regression (𝜀-SVR) machine
with dynamic correction factor correcting forecasting errors. We also propose the hybrid RNA genetic algorithm (HRGA) with
the position displacement idea of bare bones particle swarm optimization (PSO) changing the mutation operator. The validity of
the algorithm is tested by using three benchmark functions. From the comparison of the results obtained by using HRGA and
standard RNA genetic algorithm (RGA), respectively, the accuracy of HRGA is much better than that of RGA. In the end, to make
the forecasting result more accurate, the HRGA is applied to the optimize parameters of 𝜀-SVR.The predicting result is very good.
The method proposed in this paper can be easily used to predict crude oil price in our life.

1. Introduction

In recent years, crude oil prices have experienced four jumps
and two slumps.The fluctuation of crude oil price adds more
changes to the development of world economy. Grasping
the change of oil price can provide guidance for economic
development [1].Therefore, it is very important to predict the
crude oil price accurately.

The predicting methods can be divided into two aspects.
One is from the qualitative angle [2]; the other is from
quantitative angle, such as econometric model and statistical
model [3, 4]. And the latter method is adopted by most
scholars. But it is a difficult job to predict crude oil price,
since the price is nonlinear and nonstationary time series
[5].The traditional predicting methods such asAR(p) model,
MA(q) model, and ARMA(p,q) model, base on linear model.
They are only suitable for linear prediction and cannot be
applied to model and predict nonlinear time series [6]. Wang
got the predicting model by using time series and artificial
neural network in 2005 [7], Xie proposed a new method for
crude oil price forecasting based on support vector machine
(SVM) in 2006 [8], Mohammad proposed a hybrid artificial
intelligence model for crude oil price forecasting by means
of feed-forward neural networks and genetic algorithm in

2007 [9], and Guo proposed a hybrid time series model on
the base of GMTD model in 2010 [10]. The experimental
results tell us that the prediction accuracy of these methods
is better than traditional models. But the results is still
existing biggish errors especially when the crude oil price is
fluctuating violently.

Neural network technique provides a favorable tool for
nonlinear time series forecasting. But the predictive ability of
conventional neural network is low, because of the problems
such as the local minimum, over learning, and the lacking of
theoretical direction for selecting the hidden layer nodes.The
SVM was proposed in the 1990s [11]; it can get the optimal
results on the basis of the current information. The basic
idea of SVM is that it fits the sample capacity of functions
on the basis of regulating the upper bound of the minimum
VC dimension, which also means the numbers of support
vector. Compared with neural network [12, 13], SVM has
strong generalization ability of learning small samples and
with the inferior dependence on quantity. But the prediction
performance of SVM is very sensible to parameter selection.
On the other hand, the research on parameter optimization of
SVM is very few at the moment. The parameters are usually
determined on experience or trial method. In this way, if the
parameters are not suitably chosen, the SVMwill lead to poor



2 Abstract and Applied Analysis

prediction performance. So, it is important to find one good
method to get the optimal parameters of SVM.

In this paper, an 𝜀-support vector regression machine
with dynamic correction factor is proposed. And a novel
hybrid RNA genetic algorithm (HRGA) is proposed to obtain
the optimal parameters for a SVM. The HRGA is from
the development of biological science and technology; the
structure and information of RNA molecular are known
profoundly. To improve the optimal performance of genetic
algorithm, one genetic algorithm which bases on coding and
biological molecular operation has been widely concerned
[14]. This method improves the search efficiency and opti-
mization performance through coding the individuals into
biological molecules by use of bases [15, 16]. The appropriate
mutation operator can improve the population diversity and
prevent premature. While the mutation operator of classical
RNA genetic algorithm (RGA) is fixed, so we need to find
a suitable method to determine the mutation operator. In
2003, Kennedy did some improvement on particle swarm
optimization (PSO) and proposed the bare bones particle
swarm algorithm [17].

In the proposedHRGA, the position displacement idea of
bare bones PSO is applied to change the mutation operator.
The nucleotide base encoding, RNA recoding operation, and
protein folding operation are reserved in the new algorithm.
Thus, the strong global search capability is kept. At the same
time, to make sure of the directivity of local searching, the
optimal experience of thewhole population and the historical
experience of individuals are used. The convergence speed
and solution precision are improved. Furthermore, to test the
validity of HRGA, three benchmark functions are adopted.
The mean value of optimum of HRGA is smaller than that of
traditional RNA genetic algorithm.

Once the support vector regression machine is designed
optimally, it can be used to predict crude oil price. Dynamic
correction factor is brought in to improve the predictive effect
and can strengthen the robustness of systems. In order to
test the performance of the proposed predicting method, we
provided the predicting results by using a back propagation
neural network and a traditional support vector regression
machine which are also improved with dynamic correction
factor [7, 8]. The results show that our predicting method
obtains greater accuracy than that of the other two in this
paper.

The paper is organized as follows. Section 2 discusses
the support vector regression machine with dynamic correc-
tion factor. Section 3 presents HRGA based on bare bones
PSO, and some testing examples are applied to verify the
effectiveness of the algorithm. Section 4 applies the dynamic
correcting 𝜀 -SVR to predict the crude oil price. Section 5
concludes the paper.

2. Support Vector Regression Machine with
Dynamic Correction Factor

Consider the training sample set (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, 𝑥

𝑖
∈

𝑅
𝑛, as the input variable and 𝑦

𝑖
∈ 𝑅 as the output variable.

The basic idea of SVM is to find a nonlinear mapping 𝜙
from input space to output space [18–20]. Data 𝑥 is mapped
to a high-dimensional characteristic space 𝐹 on the basis
of the nonlinear mapping. The estimating function of linear
regression in characteristic space 𝐹 is as follows:

𝑓 (𝑥) = [𝜔 × 𝜑 (𝑥)] + 𝑏,

𝜙 : 𝑅
𝑛
→ 𝐹, 𝜔 ∈ 𝐹,

(1)

where 𝑏 denotes threshold value.
Function approximation problem is equal to the following

function:

𝑅reg (𝑓) = 𝑅emp (𝑓) + 𝜆‖𝜔‖
2
=

𝑠

∑

𝑖=1

𝐶 (𝑒
𝑖
) + 𝜆‖𝜔‖

2
, (2)

where 𝑅reg(𝑓) denotes the objective function, 𝑅emp(𝑓)
denotes the empirical risk function, 𝑠 denotes the sample
quantity, 𝜆 denotes adjusting constant, and 𝐶 denotes the
error penalty factor. ‖𝜔‖2 reflects the complexity of 𝑓 in the
high-dimensional characteristic space.

Since linear 𝜀 insensitive loss function has better sparsity,
we can get the following loss function:





𝑦 − 𝑓 (𝑥)




𝜀
= max {0, 


𝑦 − 𝑓 (𝑥) − 𝜀





} . (3)

The empirical risk function is as follows:

𝑅
𝜀

emp
(𝑓) =

1

𝑛

𝑛

∑

𝑖=1





𝑦 − 𝑓 (𝑥)




𝜀
. (4)

According to the statistical theory, we bring in two groups
of nonnegative slack variable {𝜉

𝑖
}
𝑛

𝑖=1
and {𝜉∗

𝑖
}
𝑛

𝑖=1
. Then, the

question can be converted to the following nonlinear 𝜀-
support vector regression machine (𝜀 -SVR) problem:

min
(𝜉𝑖 ,𝜉
∗

𝑖 )

{

1

2

‖𝜔‖
2
+ 𝐶

𝑛

∑

𝑖=1

(𝜉
𝑖
+ 𝜉
∗

𝑖
)} ,

𝑦
𝑖
− 𝜔 ⋅ 𝜙 (𝑥) − 𝑏 ≤ 𝜀 + 𝜉

∗

𝑖
,

𝜔 ⋅ 𝜙 (𝑥) + 𝑏 − 𝑦𝑖
≤ 𝜀 + 𝜉

𝑖
,

𝜉
𝑖
, 𝜉
∗

𝑖
≥ 0,

(5)

where 𝜀 denotes the insensitive loss function. 𝐶 is used to
balance the complex item and the training error of themodel.

We bring into Lagrange multipliers 𝛼
𝑖
and 𝛼

∗

𝑖
, then

the convex quadratic programming problem above can be
changed into the below dual problem:

max
(𝛼𝑖 ,𝛼
∗

𝑖 )

[

[

−

1

2

𝑛

∑

𝑖,𝑗=1

(𝛼
∗

𝑖
− 𝛼
𝑖
) (𝛼
∗

𝑗
− 𝛼
𝑗
)𝐾 (𝑋

𝑖
, 𝑋
𝑗
)

+

𝑛

∑

𝑖=1

𝛼
∗

𝑖
(𝑦
𝑖
− 𝜀) −

𝑛

∑

𝑖=1

𝛼
𝑖
(𝑦
𝑖
− 𝜀)] ,

𝑛

∑

𝑖=1

(𝛼
𝑖
− 𝛼
∗

𝑖
) = 0,

0 ≤ 𝛼
𝑖
, 𝛼
∗

𝑖
≤ 𝐶, 𝑖 = 1, 2, . . . , 𝑛,

(6)
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where 𝐾(𝑋
𝑖
, 𝑋
𝑗
) denotes the inner product kernel satisfying

Mercer theorem.
We can get the 𝜀-𝑆𝑉𝑅 function through solving the above

dual problem:

𝑓 (𝑥) =

𝑛

∑

𝑖=1

(𝛼
𝑖
− 𝛼
∗

𝑖
)𝐾 (𝑋

𝑖
, 𝑋) + 𝑏. (7)

When 𝜀-𝑆𝑉𝑅 is used on prediction, it may have a certain
error since the data fluctuates violently such as the crude
oil price. To reduce the error in some certain as possible as
we can, we bring in the dynamic correction factor 𝜀∗. The
main idea of the dynamic correction factor is that we use the
error of back step with multiplying 𝜀∗ to revise the current
predicting results.Thus, we can reduce the current predicting
error.The dynamic correcting SVR can be defined as follows:

𝑌
𝑑 (
𝑖 + 1) = 𝑌1 (

𝑖 + 1) + 𝜀
∗
[𝑌 (𝑖) − 𝑌𝑑 (

𝑖)] , (8)

where 𝑌 denotes the real results, 𝑌
𝑑

denotes the final
prediction results, 𝑌

1
denotes the initial predicting results,

𝜀
∗ denotes the dynamic correction factor, and 𝑖 denotes the
prediction steps.

In order to make the predicting results more accurate,
the optimal value of 𝜀∗ and the parameters of 𝜀-𝑆𝑉𝑅 involv-
ing 𝐶, 𝛿 (the variable in gauss kernel function) should be
designed (in (8)). To this end, an HRGA is studied below to
optimize the following problem:

min
(𝜀
∗
,𝐶,𝜎)

𝑛

∑

𝑖

[𝑌
𝑑 (
𝑖) − 𝑌 (𝑖)]

2
. (9)

3. HRGA Based on Bare Bones PSO

Assuming that population size is𝑁, the dimension of particle
is 𝑚. The position of particle 𝑖 on generation 𝑡 is 𝑋

𝑖
(𝑡)

= (𝑥
𝑖1
(𝑡), . . . , 𝑥

𝑖𝑗
(𝑡), . . . , 𝑥

𝑖𝑚
(𝑡)), 𝑖 = 1, 2, . . . , 𝑁. The speed of

particle 𝑖 on generation 𝑡 is 𝑉
𝑖
(𝑡) = (V

𝑖1
(𝑡), . . . , V

𝑖𝑗
(𝑡), . . . ,

V
𝑖𝑚
(𝑡)). The historic optimal value of individuals is 𝑃𝐵𝑒𝑠𝑡

𝑖
(𝑡)

= (𝑝𝑏𝑒𝑠𝑡
𝑖1
(𝑡), . . . , 𝑝𝑏𝑒𝑠𝑡

𝑖𝑗
(𝑡), . . . , 𝑝𝑏𝑒𝑠𝑡

𝑖𝑚
(𝑡)).

Let the global optimal value be𝐺𝐵𝑒𝑠𝑡(𝑡) = (𝑔𝑏𝑒𝑠𝑡
1
(𝑡), . . . ,

𝑔𝑏𝑒𝑠𝑡
𝑗
(𝑡), . . . , 𝑔𝑏𝑒𝑠𝑡

𝑚
(𝑡)).

As to standard particle swarm, the position and speed are
updated as

V
𝑖𝑗 (
𝑡 + 1) = 𝑤V𝑖𝑗 (𝑡) + 𝑐1 ⋅ 𝑟1𝑗 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖𝑗 (𝑡) − 𝑥𝑖𝑗 (𝑡))

+ 𝑐
2
⋅ 𝑟
2𝑗
⋅ (𝑔𝑏𝑒𝑠𝑡

𝑗
− 𝑥
𝑖𝑗 (
𝑡)) ,

𝑥
𝑖𝑗 (
𝑡 + 1) = 𝑥𝑖𝑗 (

𝑡) + V
𝑖𝑗 (
𝑡 + 1) ,

(10)

where 𝜔 denotes the inertia weight [21], 𝑐
1
and 𝑐
2
denote the

accelerating operators, and 𝑟
1𝑗
and 𝑟
2𝑗
are uniformdistributed

random numbers in [0, 1].
In the bare bones particle swarmoptimization (PSO), (10)

is replaced by (11) as the evolution equation of particle swarm
algorithm:

𝑥
𝑖𝑗 (
𝑡 + 1) = 𝑁 (0.5 (𝑝𝑏𝑒𝑠𝑡𝑖𝑗 (

𝑡) + 𝑔𝑏𝑒𝑠𝑡𝑗 (
𝑡))

×






𝑝𝑏𝑒𝑠𝑡
𝑖𝑗 (
𝑡) − 𝑔𝑏𝑒𝑠𝑡𝑗 (

𝑡)






) .

(11)

The position of particle is some random numbers which
are gotten from the Gauss distribution. The distribution has
the mean value of (𝑝𝑏𝑒𝑠𝑡

𝑖𝑗
(𝑡) + 𝑔𝑏𝑒𝑠𝑡

𝑗
(𝑡))/2 and the standard

deviation of |𝑝𝑏𝑒𝑠𝑡
𝑖𝑗
(𝑡) − 𝑔𝑏𝑒𝑠𝑡

𝑗
(𝑡)|.

RNA genetic algorithm is on the basis of base coding
and biological molecules operation. Since in the biological
molecule, every three bases compose one amino acid. In
other words, the bases’ length of individuals must be divided
exactly by 3. When RNA recoding and protein folding
[22], to reduce calculation and to control population size,
we assume that the protein folding operation only occurs
on the individuals without RNA recoding. Then the most
important work is to change the mutation probability [23,
24].

Angeline told us that the essence of particle swarm’s
position updating was one mutation operation in 1998 [25].
Traditional RNA genetic algorithm mutates as the fixed
mutation probability, and the mutation is random with one
direction. However HRGA can reflect the historic infor-
mation of individuals and the sharing information of the
population. HRGA can make every individual do directional
mutation and improve search efficiency. Moreover, HRGA
ensures the strong global search capability, since it does not
change the selection and crossover operator.

The procedure of HRGA based on bare bones particle
swarm algorithm to optimize the 𝜀-𝑆𝑉𝑅 parameters and the
dynamic correction factor is as follows.

Step 1. Get one group of 𝜀-𝑆𝑉𝑅 parameters, and the dynamic
correction factor randomly, code every parameter, and get
the initial RNA population with 𝑁 individuals, crossover
probability 𝑃

𝑐
, and mutation probability 𝑃

𝑚
. Assign values

for every 𝑃𝐵𝑒𝑠𝑡
𝑖
(individual’s historic optimal solution) and

𝐺𝐵𝑒𝑠𝑡 (population’s global optimal solution).

Step 2. Compute its error function and get the fitness func-
tion. Comparing it with corresponding fitness value of 𝑃𝐵𝑒𝑠𝑡

𝑖

and 𝐺𝐵𝑒𝑠𝑡, then update 𝑃𝐵𝑒𝑠𝑡
𝑖
and 𝐺𝐵𝑒𝑠𝑡.

Step 3. Execute the selection operation. Get current genera-
tion through coping𝑁 individuals from the initial or the last
generation.

Step 4. Decide whether the value meets the RNA recoding
condition or not. If 𝑌, recode RNA, then go to Step 6. If 𝑁,
go to Step 5.

Step 5. Decide meet the protein mutual folding condition or
not. If 𝑌, execute the protein mutual folding operation. If𝑁,
execute the protein own folding operation.

Step 6. Execute the mutation operation as (11) for all the
crossover individuals, on the basis of the 𝑃𝐵𝑒𝑠𝑡

𝑖
and 𝐺𝐵𝑒𝑠𝑡,

which have been gotten from Step 2.

Step 7. Repeat Step 2 to Step 6 until the training target meets
the condition. At last, we get the optimal parameters of 𝜀-𝑆𝑉𝑅
and the dynamic correction factor.
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Table 1: Benchmark functions.

Function Formula Global minimum

Sphere 𝑓
1
(𝑥) =

𝑛

∑

𝑖=1

𝑥
2

𝑖
, 𝑥
𝑖
∈ [−100, 100]. 𝑓

∗

1
(𝑥) = 0, 𝑥∗ = (0, 0, . . . , 0)

Rosenbrock 𝑓
2
=

𝑛=1

∑

𝑖=1

(100 × (𝑥
𝑖+1
− 𝑥
2

𝑖
)

2

) + (𝑥
𝑖
− 1)
2, 𝑥
𝑖
∈ [−30, 30]. 𝑓

∗

2
(𝑥) = 0, 𝑥∗ = (1, 1, . . . , 1)

Griewank 𝑓
3
=

1

4000

𝑛

∑

𝑖=1

𝑥
𝑖

2
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1, 𝑥
𝑖
∈ [−600, 600]. 𝑓

∗

3
(𝑥) = 0, 𝑥∗ = (0, 0, . . . , 0)

Table 2: Testing results of HRGA and standard RGA.

Function Hunting zone Dimension Iterative times
RGA HRGA

Parameter
selection

Mean value of
optimum

Parameter
selection

Mean value of
optimum

(−100, 100) 2 250 𝑃
𝑐
= 0.9

𝑃
𝑚
= 0.1

8.3421𝑒 − 6

𝑃
𝑐
= 0.85

𝑃
𝑚
= 0.3

1.9824𝑒 − 125

Sphere (−100, 100) 10 1000 𝑃
𝑐
= 0.9

𝑃
𝑚
= 0.1

0.0437 𝑃
𝑐
= 0.85

𝑃
𝑚
= 0.3

1.4597𝑒 − 67

(−100, 100) 20 1500 𝑃
𝑐
= 0.9

𝑃
𝑚
= 0.1

0.1012 𝑃
𝑐
= 0.85

𝑃
𝑚
= 0.3

1.5775𝑒 − 31

(−30, 30) 2 250 𝑃
𝑐
= 0.85

𝑃
𝑚
= 0.1

0.5311 𝑃
𝑐
= 0.6

𝑃
𝑚
= 0.3

0.0195

Rosenbrock (−30, 30) 10 1000 𝑃
𝑐
= 0.85

𝑃
𝑚
= 0.1

15.0766 𝑃
𝑐
= 0.6

𝑃
𝑚
= 0.3

3.0922

(−30, 30) 20 1500 𝑃
𝑐
= 0.85

𝑃
𝑚
= 0.1

124.2468 𝑃
𝑐
= 0.6

𝑃
𝑚
= 0.3

8.0576

(−600, 600) 2 250 𝑃
𝑐
= 0.8

𝑃
𝑚
= 0.15

0.0062 𝑃
𝑐
= 0.5

𝑃
𝑚
= 0.4

0.0044

Griewank (−600, 600) 10 1000 𝑃
𝑐
= 0.8

𝑃
𝑚
= 0.15

0.1468 𝑃
𝑐
= 0.5

𝑃
𝑚
= 0.4

0.0132

(−600, 600) 20 1500 𝑃
𝑐
= 0.8

𝑃
𝑚
= 0.15

0.0191 𝑃
𝑐
= 0.5

𝑃
𝑚
= 0.4

2.0109𝑒 − 3

The flowchart of HRGA to optimize the 𝜀-𝑆𝑉𝑅 parame-
ters and the dynamic correction factor is shown in Figure 1.

3.1. HRGA Testing. Three classical benchmark functions
shown in Table 1 are used to test the property of HRGA.

In addition, among the three functions, Sphere is uni-
modal function, and the other two are multimodal function.

With the population size 𝑁 = 50, and other parameters
determined by multiple test for each function. Each function
is tested by HRGA and standard RGA in different dimen-
sions. Each experience is carried on 100 times. Record the
mean value of target function’s optimum (shown in (12)).The
result is displayed in Table 2:

MVO =

1

𝑁

𝑁

∑

𝑖=1

𝑓
𝑖


(𝑥) . (12)

In this equation, MVO denotes the mean value of target
function’s optimum; 𝑓

𝑖


(𝑥) denotes the optimum of bench-

mark functions in every experiment.
As to the experimental results, with different dimensions

having the same iterative times, the mean value of optimum
ofHRGA is smaller than that of RGA for the three benchmark
functions. The average performance of HRGA is closer to

the optimum. We can increase the mutation probability
appropriately and enhance the convergence speed, since the
mutation operator of HRGA has directional local search.

4. Crude Oil Price Prediction Based on a
Dynamic Correcting 𝜀-SVR

In this paper, we get the crude oil price from the US Energy
Information Administration Web [26]. Since the oil price
fluctuates violently, in order to facilitate the processing and
decrease the error, we adopt the Cushing, OKWTI Spot Price
FOB (dollars per barrel)monthly from January 1986 to now.
We take the one hundred data from January 1986 to April
1994 as the test sample. And give the next 20-month dynamic
predicting data fromMay 1994 toDecember 1995.The relative
error of forecasting is shown in Table 2. The prediction effect
figure of HRGA and 𝜀-𝑆𝑉𝑅 with dynamic correction factor
is shown in Figure 2. We use Gauss function as the kernel
function of 𝜀-𝑆𝑉𝑅, which is given as follows:

𝑘 (𝑥, 𝑦) = exp(−




𝑥 − 𝑦






2

2 ⋅ 𝜎
2
) . (13)
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Get the optimal parameters of 𝜀-SVR

𝐹(𝑥): fitness

𝑥: parameters of 𝜀-SVR and

Figure 1: The flowchart of HRGA.
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Figure 2: The prediction curve of HRGA-𝜀-𝑆𝑉𝑅.

Parameter setting ofHRGA-𝜀-𝑆𝑉𝑅 is with population size
being 100, maximum evolution generation being 150, coding
length of 𝐶 being 9, coding length of 𝜀 being 8, coding length
of 𝜎 being 13, coding length of 𝜀∗ being 8, 𝑃

𝑐
being 0.8, and

𝑃
𝑚
being 0.1.
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Figure 3: Errors analysis with different models.

The optimization interval is set to be

1 ≤ 𝐶 ≤ 10000, 0.0001 ≤ 𝜀 ≤ 0.1,

0.01 ≤ 𝜎 ≤ 500, 0.5 ≤ 𝜀
∗
≤ 2.

(14)
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Table 3: Analysis results of forecasting error.

Date BP/% 𝜀-SVR% HRGA-𝜀-SVR /%
5-1994 3.22 3.64 3.42
6-1994 −5.1 −3.78 −4.48
7-1994 1.97 −0.57 0.61
8-1994 4.27 6.55 5.77
9-1994 2.05 4.41 3.38
10-1994 2.19 1.59 1.51
11-1994 0.69 2.3 1.87
12-1994 8.08 7.68 7.35
1-1995 −6.46 −2.79 −4.16
2-1995 7.58 2.87 4.44
3-1995 −4.23 1.61 −0.13
4-1995 −1.69 −6.46 −5.57
5-1995 1.56 2.08 2.48
6-1995 3.75 3.94 3.2
7-1995 3.7 5.19 4.83
8-1995 −1.69 −0.85 −1.75
9-1995 4.27 3.4 4.19
10-1995 4.64 5.94 5.45
11-1995 −2.58 −1.17 −2.14
12-1995 0.62 −0.92 −0.03
𝛿 4.09 3.96 3.87

When analyzing the results, we define the evaluation
index:

𝐸
𝑟
=

𝑥
𝑖
− 𝑦
𝑖

𝑥
𝑖

× 100%, 𝜎 = √

1

𝑛

𝑛

∑

𝑖=1

(

𝑥
𝑖
− 𝑦
𝑖

𝑥
𝑖

)

2

. (15)

The forecasting error analysis results are shown in
Figure 3. In this figure, SVM refers to 𝜀-𝑆𝑉𝑅. The BP neural
network and 𝜀-𝑆𝑉𝑅 are with dynamic correction factor which
differs them to the traditional method. From Figure 2, we can
know that the prediction result is very close to the real value.
The HRGA-𝜀-SVR can be used to predict the crude oil price.
Table 3 tells us the WTI crude oil price predicting relative
errors of twentymonths. Among the threemethods in twenty
months, the biggest absolute value of relative error of HRGA-
𝜀-𝑆𝑉𝑅 is the smallest, which is 7.35%, and the smallest root-
mean-square of relative error is 3.87%. As to Figure 3, the
fluctuation range ofHRGA-𝜀-𝑆𝑉𝑅 is smaller than those of the
other two methods obviously. This means that HRGA-𝜀-SVR
is the best one among the three methods.

5. Conclusions

In this paper, we have presented a novelmethod on predicting
crude oil price. This method bases on an 𝜀-support vector
regression machine with dynamic correction factor correct-
ing predicting errors. We also proposed the HRGA, with the
position displacement idea of bare bones PSO changing the
mutation operator, to optimize the parameters in an 𝜀-SVR.
The predicting result of crude oil price shows the validity of

the proposed method. Thus, the 𝜀-SVR model can also be
applied to predict tendency in other practical areas.
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