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We present the existence of extremal solution and relaxation problem for fractional differential inclusion with initial conditions.

1. Introduction

Differential equations with fractional order have recently
proved to be valuable tools in the modeling of many physical
phenomena [1–9]. There has also been a significant theoreti-
cal development in fractional differential equations in recent
years; see themonographs of Kilbas et al. [10],Miller andRoss
[11], Podlubny [12], and Samko et al. [13] and the papers of
Kilbas and Trujillo [14], Nahušev [15], Podlubny et al. [16],
and Yu and Gao [17].

Recently, some basic theory for initial value problems for
fractional differential equations and inclusions involving the
Riemann-Liouville differential operator was discussed, for
example, by Lakshmikantham [18] and Chalco-Cano et al.
[19].

Applied problems requiring definitions of fractional
derivatives are those that are physically interpretable for ini-
tial conditions containing 𝑦(0), 𝑦󸀠

(0), and so forth.The same
requirements are true for boundary conditions. Caputo’s
fractional derivative satisfies these demands. Formore details
on the geometric and physical interpretation for fractional
derivatives of both Riemann-Liouville and Caputo types, see
Podlubny [12].

Fractional calculus has a long history. We refer the reader
to [20].

Recently fractional functional differential equations and
inclusions and impulsive fractional differential equations

and inclusions with standard Riemann-Liouville and Caputo
derivatives with differences conditions were studied byAbbas
et al. [21, 22], Benchohra et al. [23], Henderson and Ouahab
[24, 25], Jiao and Zhou [26], and Ouahab [27–29] and in the
references therein.

In this paper, we will be concerned with the existence of
solutions, Filippov’s theorem, and the relaxation theorem of
abstract fractional differential inclusions. More precisely, we
will consider the following problem:

𝑐
𝐷

𝛼
𝑦 (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) , a.e. 𝑡 ∈ 𝐽 := [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦

󸀠

(0) = 𝑦
1
,

(1)

𝑐
𝐷

𝛼
𝑦 (𝑡) ∈ ext𝐹 (𝑡, 𝑦 (𝑡)) , a.e. 𝑡 ∈ 𝐽 := [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦

󸀠

(0) = 𝑦
1
,

(2)

where 𝑐
𝐷

𝛼 is the Caputo fractional derivatives, 𝛼 ∈ (1, 2],
𝐹 : 𝐽 × R𝑁

→ P(R𝑁
) is a multifunction, and ext𝐹(𝑡, 𝑦)

represents the set of extreme points of 𝐹(𝑡, 𝑦). (P(R𝑁
) is the

family of all nonempty subsets of R𝑁.
During the last couple of years, the existence of extremal

solutions and relaxation problem for ordinary differential
inclusionswas studied bymany authors, for example, see [30–
34] and the references therein.
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The paper is organized as follows. We first collect some
background material and basic results from multivalued
analysis and give some results on fractional calculus in
Sections 2 and 3, respectively.Then,wewill be concernedwith
the existence of solution for extremal problem.This is the aim
of Section 4. In Section 5, we prove the relaxation problem.

2. Preliminaries

The reader is assumed to be familiar with the theory of multi-
valued analysis and differential inclusions in Banach spaces,
as presented in Aubin et al. [35, 36], Hu and Papageorgiou
[37], Kisielewicz [38], and Tolstonogov [32].

Let (𝑋, ‖ ⋅ ‖) be a real Banach space, [0, 𝑏] an interval in 𝑅,
and 𝐶([0, 𝑏], 𝑋) the Banach space of all continuous functions
from 𝐽 into𝑋 with the norm

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩∞ = sup {󵄩󵄩󵄩󵄩𝑦 (𝑡)

󵄩󵄩󵄩󵄩 : 0 ≤ 𝑡 ≤ 𝑏} . (3)

A measurable function 𝑦 : [0, 𝑏] → 𝑋 is Bochner
integrable if ‖𝑦‖ is Lebesgue integrable. In what follows,
𝐿
1
([0, 𝑏], 𝑋) denotes the Banach space of functions 𝑦 :

[0, 𝑏] → 𝑋, which are Bochner integrable with norm

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩1 = ∫

𝑏

0

󵄩󵄩󵄩󵄩𝑦 (𝑡)
󵄩󵄩󵄩󵄩 𝑑𝑡.

(4)

Denote by 𝐿1

𝑤
([0, 𝑏], 𝑋) the space of equivalence classes of

Bochner integrable function 𝑦 : [0, 𝑏] → 𝑋 with the norm

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑤 = sup

𝑡∈[0,𝑡]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑦 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
. (5)

The norm ‖ ⋅ ‖
𝑤
is weaker than the usual norm ‖ ⋅ ‖

1
, and for a

broad class of subsets of 𝐿1
([0, 𝑏], 𝑋), the topology defined by

the weak norm coincides with the usual weak topology (see
[37, Proposition 4.14, page 195]). Denote by

P (𝑋) = {𝑌 ⊂ 𝑋 : 𝑌 ̸= 0} ,

Pcl (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 closed} ,

P
𝑏
(𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 bounded} ,

Pcv (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 convex} ,

Pcp (𝑋) = {𝑌 ∈ P (𝑋) : 𝑌 compact} .

(6)

A multivalued map 𝐺 : 𝑋 → P(𝑋) has convex (closed)
values if 𝐺(𝑥) is convex (closed) for all 𝑥 ∈ 𝑋. We say that 𝐺
is bounded on bounded sets if 𝐺(𝐵) is bounded in 𝑋 for each
bounded set 𝐵 of𝑋 (i.e., sup

𝑥∈𝐵
{sup{‖𝑦‖ : 𝑦 ∈ 𝐺(𝑥)}} < ∞).

Definition 1. A multifunction 𝐹 : 𝑋 → P(𝑌) is said to be
upper semicontinuous at the point 𝑥

0
∈ 𝑋, if, for every open

𝑊 ⊆ 𝑌 such that 𝐹(𝑥
0
) ⊂ 𝑊, there exists a neighborhood

𝑉(𝑥
0
) of 𝑥

0
such that 𝐹(𝑉(𝑥

0
)) ⊂ 𝑊.

A multifunction is called upper semicontinuous (u.s.c. for
short) on𝑋 if for each 𝑥 ∈ 𝑋 it is u.s.c. at 𝑥.

Definition 2. A multifunction 𝐹 : 𝑋 → P(𝑌) is said to be
lower continuous at the point 𝑥

0
∈ 𝑋, if, for every open𝑊 ⊆

𝑌 such that 𝐹(𝑥
0
)∩𝑊 ̸= 0, there exists a neighborhood𝑉(𝑥

0
)

of 𝑥
0
with property that 𝐹(𝑥) ∩ 𝑊 ̸= 0 for all 𝑥 ∈ 𝑉(𝑥

0
).

A multifunction is called lower semicontinuous (l.s.c. for
short) provided that it is lower semicontinuous at every point
𝑥 ∈ 𝑋.

Lemma 3 (see [39, Lemma 3.2]). Let 𝐹 : [0, 𝑏] → P(𝑌)

be a measurable multivalued map and 𝑢 : [𝑎, 𝑏] → 𝑌 a
measurable function. Then for any measurable V : [𝑎, 𝑏] →

(0, +∞), there exists a measurable selection 𝑓V of 𝐹 such that
for a.e. 𝑡 ∈ [𝑎, 𝑏],

󵄩󵄩󵄩󵄩𝑢 (𝑡) − 𝑓V (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝑑 (𝑢 (𝑡) , 𝐹 (𝑡)) + V (𝑡) . (7)

First, consider the Hausdorff pseudometric

𝐻
𝑑
: P (𝐸) ×P (𝐸) 󳨀→ R

+
∪ {∞} , (8)

defined by

𝐻
𝑑
(𝐴, 𝐵) = max{sup

𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} , (9)

where 𝑑(𝐴, 𝑏) = inf
𝑎∈𝐴

𝑑(𝑎, 𝑏) and 𝑑(𝑎, 𝐵) = inf
𝑏∈𝐵

𝑑(𝑎, 𝑏).
(P

𝑏,cl(𝐸),𝐻𝑑
) is a metric space and (Pcl(𝑋),𝐻𝑑

) is a gener-
alized metric space.

Definition 4. A multifunction 𝐹 : 𝑌 → P(𝑋) is called
Hausdorff lower semicontinuous at the point 𝑦

0
∈ 𝑌, if for

any 𝜖 > 0 there exists a neighbourhood 𝑈(𝑦
0
) of the point 𝑦

0

such that

𝐹 (𝑦
0
) ⊂ 𝐹 (𝑦) + 𝜖𝐵 (0, 1) , for every 𝑦 ∈ 𝑈 (𝑦

0
) , (10)

where 𝐵(0, 1) is the unite ball in𝑋.

Definition 5. A multifunction 𝐹 : 𝑌 → P(𝑋) is called
Hausdorff upper semicontinuous at the point 𝑦

0
∈ 𝑌, if for

any 𝜖 > 0 there exists a neighbourhood 𝑈(𝑦
0
) of the point 𝑦

0

such that

𝐹 (𝑦) ⊂ 𝐹 (𝑦
0
) + 𝜖𝐵 (0, 1) , for every 𝑦 ∈ 𝑈 (𝑦

0
) . (11)

𝐹 is called continuous, if it is Hausdorff lower and upper
semicontinuous.

Definition 6. Let 𝑋 be a Banach space; a subset 𝐴 ⊂

𝐿
1
([0, 𝑏], 𝑋) is decomposable if, for all 𝑢, V ∈ 𝐴 and for every

Lebesgue measurable set 𝐼 ⊂ 𝐽, one has

𝑢𝜒
𝐼
+ V𝜒

[0,𝑏]\𝐼
∈ 𝐴, (12)

where 𝜒
𝐴
stands for the characteristic function of the set 𝐴.

We denote by Dco(𝐿1
([0, 𝑏], 𝑋)) the family of decomposable

sets.
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Let 𝐹 : [0, 𝑏] × 𝑋 → P(𝑋) be a multivalued map with
nonempty closed values. Assign to𝐹 themultivalued operator
F : 𝐶([0, 𝑏], 𝑋) → P(𝐿

1
([0, 𝑏], 𝑋)) defined by

F (𝑦) = {V ∈ 𝐿
1

([0, 𝑏] , 𝑋) : V (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) ,

a.e. 𝑡 ∈ [0, 𝑏] } .
(13)

The operator F is called the Nemyts’kĭı operator associated
to 𝐹.

Definition 7. Let 𝐹 : [0, 𝑏] × 𝑋 → P(𝑋) be a multivalued
mapwith nonempty compact values.We say that𝐹 is of lower
semicontinuous type (l.s.c. type) if its associated Nemyts’kĭı
operator F is lower semicontinuous and has nonempty
closed and decomposable values.

Next, we state a classical selection theorem due to Bressan
and Colombo.

Lemma 8 (see [40]). Let𝑋 be a separable metric space and let
𝐸 be a Banach space.Then every l.s.c. multivalued operator𝑁 :

𝑋 → P
𝑐𝑙
(𝐿

1
([0, 𝑏], 𝐸)) with closed decomposable values has

a continuous selection; that is, there exists a continuous single-
valued function 𝑓 : 𝑋 → 𝐿

1
([0, 𝑏], 𝐸) such that 𝑓(𝑥) ∈ 𝑁(𝑥)

for every 𝑥 ∈ 𝑋.

Let us introduce the following hypothesis.

(H
1
) 𝐹 : [0, 𝑏]×𝑋 → P(𝑋) is a nonempty compact valued
multivalued map such that

(a) the mapping (𝑡, 𝑦) 󳨃→ 𝐹(𝑡, 𝑦) is L ⊗ B
measurable;

(b) the mapping 𝑦 󳨃→ 𝐹(𝑡, 𝑦) is lower semicontinu-
ous for a.e. 𝑡 ∈ [0, 𝑏].

Lemma 9 (see, e.g., [41]). Let 𝐹 : 𝐽 × 𝑋 → P
𝑐𝑝
(𝐸) be an

integrably bounded multivalued map satisfying (H
1
). Then 𝐹

is of lower semicontinuous type.

Define

𝐹 (𝐾) = {𝑓 ∈ 𝐿
1

([0, 𝑏] , 𝑋) : 𝑓 (𝑡) ∈ 𝐾 a.e. 𝑡 ∈ [0, 𝑏]} ,

𝐾 ⊂ 𝑋,

(14)

where𝑋 is a Banach space.

Lemma 10 (see [37]). Let 𝐾 ⊂ 𝑋 be a weakly compact
subset of 𝑋. Then 𝐹(𝐾) is relatively weakly compact subset of
𝐿
1
([0, 𝑏], 𝑋). Moreover if 𝐾 is convex, then 𝐹(𝐾) is weakly

compact in 𝐿1
([0, 𝑏], 𝑋).

Definition 11. A multifunction 𝐹 : [0, 𝑏] × 𝑌 → P
𝑤cpcv(𝑋)

possesses the Scorza-Dragoni property (S-D property) if for
each 𝜖 > 0, there exists a closed set 𝐽

𝜖
⊂ [0, 𝑏]whose Lebesgue

measure 𝜇(𝐽
𝜖
) ≤ 𝜖 and such that 𝐹 : [0, 𝑏] \ 𝐽

𝜖
× 𝑌 → 𝑋 is

continuous with respect to the metric 𝑑
𝑋
(⋅, ⋅).

Remark 12. It is well known that if the map 𝐹 : [0, 𝑏] × 𝑌 →

P
𝑤cpcv(𝑋) is continuous with respect to 𝑦 for almost every

𝑡 ∈ [0, 𝑏] and is measurable with respect to 𝑡 for every 𝑦 ∈ 𝑌,
then it possesses the S-D property.

In what follows, we present some definitions and proper-
ties of extreme points.

Definition 13. Let𝐴 be a nonempty subset of a real or complex
linear vector space. An extreme point of a convex set 𝐴 is a
point 𝑥 ∈ 𝐴 with the property that if 𝑥 = 𝜆𝑦 + (1 − 𝜆)𝑧 with
𝑦, 𝑧 ∈ 𝐴 and 𝜆 ∈ [0, 1], then 𝑦 = 𝑥 and/or 𝑧 = 𝑥. ext(𝐴) will
denote the set of extreme points of 𝐴.

In other words, an extreme point is a point that is not an
interior point of any line segment lying entirely in 𝐴.

Lemma 14 (see [42]). A nonempty compact set in a locally
convex linear topological space has extremal points.

Let {𝑥󸀠

𝑛
}
𝑛∈N be a denumerable, dense (in 𝜎(𝑋󸀠

, 𝑋) topol-
ogy) subset of the set {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 1}. For any 𝐴 ∈

Pcpcv(𝑋) and 𝑥
󸀠

𝑛
define the function

𝑑
𝑛

(𝐴, 𝑢) = max {⟨𝑦 − 𝑧, 𝑥󸀠

𝑛
⟩ : 𝑦, 𝑧 ∈ 𝐴, 𝑢 =

𝑦 + 𝑧

2
} .

(15)

Lemma 15 (see [33]). 𝑢 ∈ ext(𝐴) if and only if 𝑑𝑛
(𝐴, 𝑢) = 0

for all 𝑛 ≥ 1.

In accordance with Krein-Milman and Trojansky theo-
rem [43], the set ext(𝑆

𝐹
) is nonempty and co(ext(𝑆

𝐹
)) = 𝑆

𝐹
.

Lemma 16 (see [33]). Let 𝐹 : [0, 𝑏] → P
𝑤𝑐𝑝𝑐V(𝑋) be a

measurable, integrably bounded map. Then

ext (𝑆
𝐹
) ⊆ 𝑆

𝐹
, (16)

where ext (𝑆
𝐹
) is the closure of set ext (𝑆

𝐹
) in the topology of

the space 𝐿1
([0, 𝑏], 𝑋).

Theorem 17 (see [33]). Let 𝐹 : [0, 𝑏] × 𝑌 → P
𝑤𝑐𝑝𝑐V(𝑋)

be a multivalued map that has the 𝑆-𝐷 property and let it be
integrable bounded on compacts from 𝑌. Consider a compact
subset 𝐾 ⊂ 𝐶([0, 𝑏], 𝑋) and define the multivalued map 𝐺 :

𝐾 → 𝐿
1
([0, 𝑏], 𝑋), by

𝐺 (𝑦 (⋅))

= {𝑓 ∈ 𝐿
1

([0, 𝑏] , 𝑋) : 𝑓 (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡)) 𝑎.𝑒. 𝑜𝑛 [0, 𝑏]} ,

𝑦 ∈ 𝐾.

(17)

Then for every 𝐾 compact in 𝐶([0, 𝑏], 𝑋), 𝜖 > 0 and any
continuous selection 𝑓 : 𝐾 → 𝐿

1
([0, 𝑏], 𝑋), there exists a

continuous selector𝑔 : 𝐾 → 𝐿
1
([0, 𝑏], 𝑋) of themap ext (𝐺) :

𝐾 → 𝐿
1
([0, 𝑏], 𝑋) such that for all 𝑦 ∈ 𝐶([0, 𝑏], 𝑋) one has

sup
𝑡∈[0,𝑏]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

((𝑓𝑦) (𝑠) − (𝑔𝑦) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜖. (18)
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For a background of extreme point of 𝐹(𝑡, 𝑦(𝑡)) see
Dunford-Schwartz [42, Chapter 5, Section 8] and Florenzano
and Le Van [44, Chapter 3].

3. Fractional Calculus

According to the Riemann-Liouville approach to fractional
calculus, the notation of fractional integral of order 𝛼 (𝛼 > 0)
is a natural consequence of the well known formula (usually
attributed to Cauchy) that reduces the calculation of the
𝑛-fold primitive of a function 𝑓(𝑡) to a single integral of
convolution type. In our notation the Cauchy formula reads

𝐼
𝑛
𝑓 (𝑡) :=

1

(𝑛 − 1)!
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1
𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, 𝑛 ∈ N.

(19)

Definition 18 (see [13, 45]). The fractional integral of order
𝛼 > 0 of a function 𝑓 ∈ 𝐿

1
([𝑎, 𝑏],R) is defined by

𝐼
𝛼

𝑎
+𝑓 (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑠) 𝑑𝑠, (20)

where Γ is the gamma function. When 𝑎 = 0, we write
𝐼
𝛼
𝑓(𝑡) = 𝑓(𝑡)∗𝜙

𝛼
(𝑡), where 𝜙

𝛼
(𝑡) = 𝑡

(𝛼−1)
/Γ(𝛼) for 𝑡 > 0, and

we write 𝜙
𝛼
(𝑡) = 0 for 𝑡 ≤ 0 and 𝜙

𝛼
→ 𝛿(𝑡) as 𝛼 → 0, where

𝛿 is the delta function and Γ is the Euler gamma function
defined by

Γ (𝛼) = ∫

∞

0

𝑡
𝛼−1

𝑒
−𝑡
𝑑𝑡, 𝛼 > 0. (21)

For consistency, 𝐼0 = Id (identity operator), that is, 𝐼0𝑓(𝑡) =
𝑓(𝑡). Furthermore, by 𝐼𝛼𝑓(0+) we mean the limit (if it exists)
of 𝐼𝛼𝑓(𝑡) for 𝑡 → 0

+; this limit may be infinite.

After the notion of fractional integral, that of fractional
derivative of order 𝛼 (𝛼 > 0) becomes a natural requirement
and one is attempted to substitute 𝛼 with −𝛼 in the above
formulas. However, this generalization needs some care in
order to guarantee the convergence of the integral and
preserve the well known properties of the ordinary derivative
of integer order. Denoting by𝐷𝑛, with 𝑛 ∈ N, the operator of
the derivative of order 𝑛, we first note that

𝐷
𝑛
𝐼
𝑛
= Id, 𝐼

𝑛
𝐷

𝑛
̸= Id, 𝑛 ∈ N, (22)

that is,𝐷𝑛 is the left inverse (and not the right inverse) to the
corresponding integral operator 𝐽𝑛. We can easily prove that

𝐼
𝑛
𝐷

𝑛
𝑓 (𝑡) = 𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑓
(𝑘)
(𝑎

+
)
(𝑡 − 𝑎)

𝑘

𝑘!
, 𝑡 > 0. (23)

As a consequence, we expect that 𝐷𝛼 is defined as the left
inverse to 𝐼

𝛼. For this purpose, introducing the positive
integer 𝑛 such that 𝑛 − 1 < 𝛼 ≤ 𝑛, one defines the fractional
derivative of order 𝛼 > 0.

Definition 19. For a function 𝑓 given on interval [𝑎, 𝑏], the
𝛼th Riemann-Liouville fractional-order derivative of 𝑓 is
defined by

𝐷
𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
(
𝑑

𝑑𝑡
)

𝑛

∫

𝑡

𝑎

(𝑡 − 𝑠)
−𝛼+𝑛−1

𝑓 (𝑠) 𝑑𝑠, (24)

where 𝑛 = [𝛼] + 1 and [𝛼] is the integer part of 𝛼.

Defining for consistency, 𝐷0
= 𝐼

0
= Id, then we easily

recognize that

𝐷
𝛼
𝐼
𝛼
= Id, 𝛼 ≥ 0, (25)

𝐷
𝛼
𝑡
𝛾
=

Γ (𝛾 + 1)

Γ (𝛾 + 1 − 𝛼)
𝑡
𝛾−𝛼

,

𝛼 > 0, 𝛾 ∈ (−1, 0) ∪ (0, +∞) , 𝑡 > 0.

(26)

Of course, properties (25) and (26) are a natural generaliza-
tion of those known when the order is a positive integer.

Note the remarkable fact that the fractional derivative
𝐷

𝛼
𝑓 is not zero for the constant function 𝑓(𝑡) = 1, if 𝛼 ∉ N.

In fact, (26) with 𝛾 = 0 illustrates that

𝐷
𝛼
1 =

(𝑡 − 𝑎)
−𝛼

Γ (1 − 𝛼)
, 𝛼 > 0, 𝑡 > 0. (27)

It is clear that 𝐷𝛼
1 = 0, for 𝛼 ∈ N, due to the poles of the

gamma function at the points 0, −1, −2, . . ..
We now observe an alternative definition of fractional

derivative, originally introduced by Caputo [46, 47] in the
late sixties and adopted by Caputo and Mainardi [48] in
the framework of the theory of Linear Viscoelasticity (see a
review in [4]).

Definition 20. Let 𝑓 ∈ 𝐴𝐶
𝑛
([𝑎, 𝑏]). The Caputo fractional-

order derivative of 𝑓 is defined by

(
𝑐

𝐷
𝛼

𝑓) (𝑡) :=
1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑓
𝑛

(𝑠) 𝑑𝑠. (28)

This definition is of course more restrictive than
Riemann-Liouville definition, in that it requires the absolute
integrability of the derivative of order 𝑚. Whenever we use
the operator 𝐷𝛼

∗
we (tacitly) assume that this condition is

met. We easily recognize that in general

𝐷
𝛼
𝑓 (𝑡) := 𝐷

𝑚
𝐼
𝑚−𝛼

𝑓 (𝑡) ̸= 𝐽
𝑚−𝛼

𝐷
𝑚
𝑓 (𝑡) := 𝐷

𝛼

∗
𝑓 (𝑡) , (29)

unless the function 𝑓(𝑡), along with its first 𝑛 − 1 derivatives,
vanishes at 𝑡 = 𝑎+. In fact, assuming that the passage of the𝑚-
derivative under the integral is legitimate, we recognize that,
for𝑚 − 1 < 𝛼 < 𝑚 and 𝑡 > 0,

𝐷
𝛼
𝑓 (𝑡) =

𝑐

𝐷
𝛼

𝑓 (𝑡) +

𝑚−1

∑

𝑘=0

(𝑡 − 𝑎)
𝑘−𝛼

Γ (𝑘 − 𝛼 + 1)
𝑓

(𝑘)
(𝑎

+
) , (30)

and therefore, recalling the fractional derivative of the power
function (26), one has

𝐷
𝛼
(𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

(𝑡 − 𝑎)
𝑘−𝛼

Γ (𝑘 − 𝛼 + 1)
𝑓

(𝑘)
(𝑎

+
)) = 𝐷

𝛼

∗
𝑓 (𝑡) . (31)
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The alternative definition, that is, Definition 20, for the
fractional derivative thus incorporates the initial values of the
function and of lower order. The subtraction of the Taylor
polynomial of degree 𝑛 − 1 at 𝑡 = 𝑎

+ from 𝑓(𝑡) means a sort
of regularization of the fractional derivative. In particular,
according to this definition, the relevant property for which
the fractional derivative of a constant is still zero:

𝑐
𝐷

𝛼
1 = 0, 𝛼 > 0. (32)

We now explore the most relevant differences between the
two fractional derivatives given in Definitions 19 and 20.
From Riemann-Liouville fractional derivatives, we have

𝐷
𝛼

(𝑡 − 𝑎)
𝛼−𝑗

= 0, for 𝑗 = 1, 2, . . . , [𝛼] + 1. (33)

From (32) and (33) we thus recognize the following state-
ments about functions which, for 𝑡 > 0, admit the same
fractional derivative of order 𝛼, with 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ N:

𝐷
𝛼
𝑓 (𝑡) = 𝐷

𝛼
𝑔 (𝑡) ⇐⇒ 𝑓 (𝑡) = 𝑔 (𝑡) +

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡 − 𝑎)

𝛼−𝑗
,

𝑐
𝐷

𝛼
𝑓 (𝑡) =

𝑐

𝐷
𝛼

𝑔 (𝑡) ⇐⇒ 𝑓 (𝑡) = 𝑔 (𝑡) +

𝑚

∑

𝑗=1

𝑐
𝑗
(𝑡 − 𝑎)

𝑛−𝑗
.

(34)

In these formulas, the coefficients 𝑐
𝑗
are arbitrary constants.

For proving allmain results we present the following auxiliary
lemmas.

Lemma 21 (see [10]). Let 𝛼 > 0 and let 𝑦 ∈ 𝐿
∞
(𝑎, 𝑏) or

𝐶([𝑎, 𝑏]). Then

(
𝑐

𝐷
𝛼

𝐼
𝛼
𝑦) (𝑡) = 𝑦 (𝑡) . (35)

Lemma 22 (see [10]). Let 𝛼 > 0 and 𝑛 = [𝛼] + 1. If 𝑦 ∈

𝐴𝐶
𝑛
[𝑎, 𝑏] or 𝑦 ∈ 𝐶𝑛

[𝑎, 𝑏], then

(𝐼
𝛼 𝑐

𝐷
𝛼
𝑦) (𝑡) = 𝑦 (𝑡) −

𝑛−1

∑

𝑘=0

𝑦
(𝑘)
(𝑎)

𝑘!
(𝑡 − 𝑎)

𝑘
. (36)

For further readings and details on fractional calculus, we
refer to the books and papers by Kilbas [10], Podlubny [12],
Samko [13], and Caputo [46–48].

4. Existence Result

Definition 23. A function 𝑦 ∈ 𝐶([0, 𝑏],R𝑁
) is called mild

solution of problem (1) if there exist 𝑓 ∈ 𝐿
1
(𝐽,R𝑁

) such that

𝑦 (𝑡) = 𝑦
0
+ 𝑡𝑦

1
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
1−𝛼

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑏] ,

(37)

where 𝑓 ∈ 𝑆
𝐹,𝑦

= {V ∈ 𝐿1
([0, 𝑏],R𝑁

) : 𝑓(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡)) a.e.
on [0, 𝑏]}.

We will impose the following conditions on 𝐹.

(H
1
) The function 𝐹 : 𝐽 ×R𝑁

→ Pcpcv(R
𝑁
) such that

(a) for all 𝑥 ∈ R𝑁, the map 𝑡 󳨃→ 𝐹(𝑡, 𝑥) is
measurable,

(b) for every 𝑡 ∈ [0, 𝑏], the multivalued map 𝑥 →

𝐹(𝑡, 𝑥) is𝐻
𝑑
continuous

(H
2
) There exist 𝑝 ∈ 𝐿

1
(𝐽,R+

) and a continuous nonde-
creasing function 𝜓 : [0,∞) → (0,∞) such that

‖𝐹 (𝑡, 𝑥)‖P = sup {‖V‖ : V ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑝 (𝑡) 𝜓 (‖𝑥‖) ,

for a.e. 𝑡 ∈ [0, 𝑏] and each 𝑥 ∈ R
𝑁
,

(38)

with

∫

𝑏

0

𝑝 (𝑠) 𝑑𝑠 < ∫

∞

‖𝑦
0
‖+𝑏‖𝑦

1
‖

𝑑𝑢

𝜓 (𝑢)
. (39)

Theorem24. Assume that the conditions (H
1
)-(H

2
) and then

the problem (2) have at least one solution.

Proof. From (H
2
) there exists 𝑀 > 0 such that ‖𝑦‖

∞
≤ 𝑀

for each 𝑦 ∈ 𝑆
𝑐
.

Let

𝐹
1
(𝑡, 𝑦) =

{{

{{

{

𝐹 (𝑡, 𝑦) if 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑀,

𝐹(𝑡,
𝑀𝑦

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

) if 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≥ 𝑀.

(40)

We consider
𝑐

𝐷
𝛼

𝑦 (𝑡) ∈ 𝐹
1
(𝑡, 𝑦 (𝑡)) , a.e. 𝑡 ∈ [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦

󸀠

(0) = 𝑦
1
.

(41)

It is clear that all the solutions of (41) are solutions of (2).
Set

𝑉 = {𝑓 ∈ 𝐿
1
([0, 𝑏] ,R

𝑁
) :

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜓∗

(𝑡)} ,

𝜓
∗
(𝑡) = 𝑝 (𝑡) 𝜓 (𝑀) .

(42)

It is clear that 𝑉 is weakly compact in 𝐿1
([0, 𝑏],R𝑁

). Remark
that for every 𝑓 ∈ 𝑉, there exists a unique solution 𝐿(𝑓) of
the following problem:

𝑐

𝐷
𝛼

𝑦 (𝑡) = 𝑓 (𝑡) , a.e. 𝑡 ∈ [0, 𝑏] ,

𝑦 (𝑡) = 𝑦
0
, 𝑦

󸀠

(0) = 𝑦
1
;

(43)

this solution is defined by

𝐿 (𝑓) (𝑡) = 𝑦
0
+ 𝑡𝑦

1
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

a.e. 𝑡 ∈ [0, 𝑏] .
(44)

We claim that 𝐿 is continuous. Indeed, let 𝑓
𝑛
→ 𝑓 converge

in 𝐿1
([0, 𝑏],R𝑁

), as 𝑛 → ∞, set 𝑦
𝑛
= 𝐿(𝑓

𝑛
), 𝑛 ∈ N. It is clear
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that {𝑦
𝑛
: 𝑛 ∈ N} is relatively compact in 𝐶([0, 𝑏],R𝑁

) and 𝑦
𝑛

converge to 𝑦 ∈ 𝐶([0, 𝑏],R𝑁
). Let

𝑧 (𝑡) = 𝑦
0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑏] .

(45)

Then

󵄩󵄩󵄩󵄩𝑦𝑛
− 𝑧

󵄩󵄩󵄩󵄩∞ ≤
𝑏
𝛼

Γ (𝛼)
∫

𝑏

0

󵄩󵄩󵄩󵄩𝑓𝑛 (𝑠) − 𝑓 (𝑠)
󵄩󵄩󵄩󵄩 𝑑𝑠 󳨀→ 0,

as 𝑛 󳨀→ ∞.

(46)

Hence 𝐾 = 𝐿(𝑉) is compact and convex subset of
𝐶([0, 𝑏],R𝑁

). Let 𝑆
𝐹
: 𝐾 → Pclcv(𝐿

1
([0, 𝑏],R𝑁

)) be the
multivalued Nemitsky operator defined by

𝑆
𝐹
1

(𝑦) = {𝑓 ∈ 𝐿
1
([0, 𝑏] ,R

𝑁
) : 𝑓 (𝑡) ∈ 𝐹

1
(𝑡, 𝑦 (𝑡)) ,

a.e. 𝑡 ∈ [0, 𝑏] } := 𝑆
𝐹
1
,𝑦
.

(47)

It is clear that 𝐹
1
(⋅, ⋅) is 𝐻

𝑑
continuous and 𝐹

1
(⋅, ⋅) ∈

P
𝑤𝑘cpcv(R

𝑁
) and is integrably bounded, then byTheorem 17

(see also Theorem 6.5 in [32] or Theorem 1.1 in [34]), we can
find a continuous function 𝑔 : 𝐾 → 𝐿

1

𝑤
([0, 𝑏],R𝑁

) such that

𝑔 (𝑥) ∈ ext 𝑆
𝐹
1

(𝑦) ∀𝑦 ∈ 𝐾. (48)

From Benamara [49] we know that

ext 𝑆
𝐹
1

(𝑦) = 𝑆ext 𝐹
1
(⋅,𝑦(⋅))

∀𝑦 ∈ 𝐾. (49)

Setting𝑁 = 𝐿 ∘ 𝑔 and letting 𝑦 ∈ 𝐾, then

𝑔 (𝑦) ∈ 𝐹
1
(⋅, 𝑦 (⋅)) 󳨐⇒ 𝑔 (𝑦) ∈ 𝑉 󳨐⇒ 𝑁(𝑦)

= 𝐿 (𝑔 (𝑦)) ∈ 𝐾.

(50)

Now, we prove that 𝑁 is continuous. Indeed, let 𝑦
𝑛
∈ 𝐾

converge to 𝑦 in 𝐶([0, 𝑏],R𝑁
).

Then

𝑔 (𝑦
𝑛
) converge weakly to 𝑔 (𝑦) as 𝑛 󳨀→ ∞. (51)

Since𝑁(𝑦
𝑛
) = 𝐿(𝑔(𝑦

𝑛
)) ∈ 𝐾 and 𝑔(𝑦

𝑛
)(⋅) ∈ 𝐹(𝑡, 𝑦

𝑛
(𝑡)), then

𝑔 (𝑦
𝑛
) (⋅) ∈ 𝐹 (⋅, 𝐵

𝑀
) ∈ Pcp (R

𝑁
) . (52)

FromLemma 10, 𝑔(𝑦
𝑛
) converge weakly to𝑦 in 𝐿1

([0, 𝑏],R𝑁
)

as 𝑛 → ∞. By the definition of𝑁, we have

𝑁(𝑦
𝑛
) = 𝑦

0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑦
𝑛
) (𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝑏] ,

𝑁 (𝑦) = 𝑦
0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑦) (𝑠) 𝑑𝑠,

𝑡 ∈ [0, 𝑏] .

(53)

Since {𝑁(𝑦
𝑛
) : 𝑛 ∈ N} ⊂ 𝐾, then there exists subsequence of

𝑁(𝑦
𝑛
) converge in 𝐶([0, 𝑏],R𝑁

). Then

𝑁(𝑦
𝑛
) (𝑡) 󳨀→ 𝑁(𝑦) (𝑡) , ∀𝑡 ∈ [0, 𝑏] , as 𝑛 󳨀→ ∞.

(54)

This proves that 𝑁 is continuous. Hence by Schauder’s fixed
point there exists 𝑦 ∈ 𝐾 such that 𝑦 = 𝑁(𝑦).

5. The Relaxed Problem

In this section, we examine whether the solutions of the
extremal problem are dense in those of the convexified one.
Such a result is important in optimal control theory whether
the relaxed optimal state can be approximated by original
states; the relaxed problems are generally much simpler to
build. For the problem for first-order differential inclusions,
we refer, for example, to [35, Theorem 2, page 124] or [36,
Theorem 10.4.4, page 402]. For the relaxation of extremal
problems we see the following recent references [30, 50].

Now we present our main result of this section.

Theorem 25. Let 𝐹 : [0, 𝑏] × R𝑁
→ P(R𝑁

) be a
multifunction satisfying the following hypotheses.

(H
3
) The function 𝐹 : [0, 𝑏]×R𝑁

→ P
𝑐𝑝𝑐V(R

𝑁
) such that,

for all 𝑥 ∈ R𝑁, the map

𝑡 󳨃󳨀→ 𝐹 (𝑡, 𝑥) (55)

is measurable.
(H

4
) There exists 𝑝 ∈ 𝐿1

(𝐽,R+
) such that

𝐻
𝑑
(𝐹 (𝑡, 𝑥) , 𝐹 (𝑡, 𝑦)) ≤ 𝑝 (𝑡)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ,

for a.e. 𝑡 ∈ [0, 𝑏] and each 𝑥, 𝑦 ∈ R
𝑁
,

𝐻
𝑑
(𝐹 (𝑡, 0) , 0) ≤ 𝑝 (𝑡) for a.e. 𝑡 ∈ [0, 𝑏] .

(56)

Then 𝑆
𝑒
= 𝑆

𝑐
.

Proof. By Coviz and Nadlar fixed point theorem, we can
easily prove that 𝑆

𝑐
̸= 0, and since 𝐹 has compact and convex

valued, then 𝑆
𝑐
is compact in 𝐶([0, 𝑏],R𝑁

). For more infor-
mation we see [25, 27–29, 51, 52].

Let 𝑦 ∈ 𝑆
𝑐
; then there exists 𝑓 ∈ 𝑆

𝐹,𝑦
such that

𝑦 (𝑡) = 𝑦
0
+ 𝑦

1
𝑡 +

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠,

a.e. 𝑡 ∈ [0, 𝑏] .
(57)

Let𝐾 be a compact and convex set in 𝐶([0, 𝑏],R𝑁
) such that

𝑆
𝑐
⊂ 𝐾. Given that 𝑦

∗
∈ 𝐾 and 𝜖 > 0, we define the following

multifunction 𝑈
𝜖
: [0, 𝑏] → P(R𝑁

) by

𝑈
𝜖
(𝑡) = {𝑢 ∈ R

𝑁
:
󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑢

󵄩󵄩󵄩󵄩 < 𝑑 (𝑓 (𝑡) , 𝐹 (𝑡, 𝑦 (𝑡))) + 𝜖,

𝑢 ∈ 𝐹 (𝑡, 𝑦
∗
(𝑡)) } .

(58)
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The multivalued map 𝑡 → 𝐹(𝑡, ⋅) is measurable and 𝑥 →

𝐹(⋅, 𝑥) is 𝐻
𝑑
continuous. In addition, if 𝐹(⋅, ⋅) has compact

values, then 𝐹(⋅, ⋅) is graph measurable, and the mapping
𝑡 → 𝐹(𝑡, 𝑦(𝑡)) is a measurable multivalued map for fixed 𝑦 ∈
𝐶([0, 𝑏],R𝑁

). Then by Lemma 3, there exists a measurable
selection V

1
(𝑡) ∈ 𝐹(𝑡, 𝑦(𝑡)) a.e. 𝑡 ∈ [0, 𝑏] such that

󵄩󵄩󵄩󵄩𝑓 (𝑡) − V
1
(𝑡)
󵄩󵄩󵄩󵄩 < 𝑑 (𝑓 (𝑡) , 𝐹 (𝑡, 𝑦 (𝑡))) + 𝜖; (59)

this implies that 𝑈
𝜖
(⋅) ̸= 0. We consider 𝐺

𝜖
: 𝐾 → P(𝐿

1
(𝐽,

R𝑁
) defined by

𝐺
𝜖
(𝑦) = {𝑓

∗
∈ F (𝑦) :

󵄩󵄩󵄩󵄩𝑓 (𝑡) − 𝑓∗ (𝑡)
󵄩󵄩󵄩󵄩

< 𝜖 + 𝑑 (𝑓
∗
(𝑡) , 𝐹 (𝑡, 𝑦 (𝑡)))} .

(60)

Since the measurable multifunction 𝐹 is integrable bounded,
Lemma 9 implies that the Nemyts’kĭı operatorF has decom-
posable values. Hence 𝑦 → 𝐺

𝜖
(𝑦) is l.s.c. with decomposable

values. By Lemma 8, there exists a continuous selection 𝑓
𝜖
:

𝐶([0, 𝑏],R𝑁
) → 𝐿

1
(𝐽,R𝑁

) such that

𝑓
𝜖
(𝑦) ∈ 𝐺

𝜖
(𝑦) ∀𝑦 ∈ 𝐶 ([0, 𝑏] ,R

𝑁
) . (61)

FromTheorem 17, there exists function 𝑔
𝜖
: 𝐾 → 𝐿

𝑤
([0, 𝑏],

R𝑁
) such that

𝑔
𝜖
(𝑦) ∈ ext 𝑆

𝐹
(𝑦) = 𝑆ext 𝐹(⋅,𝑦(⋅)) ∀𝑦 ∈ 𝐾,

‖ 𝑔
𝜖
(𝑦) − 𝑓

𝜖
(𝑦) ‖

𝑤
≤ 𝜖, ∀𝑦 ∈ 𝐾.

(62)

From (H
3
) we can prove that there exists𝑀 > 0 such that

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩∞ ≤ 𝑀 ∀𝑦 ∈ 𝑆

𝑐
. (63)

Consider the sequence 𝜖
𝑛
→ 0, as 𝑛 → ∞, and set𝑔

𝑛
= 𝑔

𝜖
𝑛

,
𝑓
𝑛
= 𝑓

𝜖
𝑛

. Set

𝑉 = {𝑓 ∈ 𝐿
1
([0, 𝑏] ,R

𝑁
) :

󵄩󵄩󵄩󵄩𝑓 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜓 (𝑡) a.e. 𝑡 ∈ [0, 𝑏]} ,

𝜓 (𝑡) = (1 +𝑀)𝑝 (𝑡) .

(64)

Let 𝐿 : 𝑉 → 𝐶([0, 𝑏],R𝑁
) be the map such that each 𝑓 ∈ 𝑉

assigns the unique solution of the problem

𝑐

𝐷
𝛼

𝑦 (𝑡) = 𝑓 (𝑡) , a.e. 𝑡 ∈ [0, 𝑏] ,

𝑦 (0) = 𝑦
0
, 𝑦

󸀠

(0) = 𝑦
1
.

(65)

As in Theorem 24, we can prove that 𝐿(𝑉) is compact in
𝐶([0, 𝑏],R𝑁

) and the operator 𝑁
𝑛
= 𝐿 ∘ 𝑔

𝑛
: 𝐾 → 𝐾 is

compact; then by Schauder’s fixed point there exists 𝑦
𝑛
∈ 𝐾

such that 𝑦
𝑛
∈ 𝑆

𝑒
and

𝑦
𝑛
(𝑡) = 𝑦

0
+ 𝑡𝑦

1
+

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑔
𝑛
(𝑦

𝑛
) (𝑠) 𝑑𝑠,

a.e. 𝑡 ∈ [0, 𝑏] , 𝑛 ∈ N.

(66)

Hence

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦𝑛
(𝑡)
󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓 (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

Γ (𝛼)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓

𝑛
(𝑦

𝑛
) (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
𝑏
𝛼

Γ (𝛼)
∫

𝑡

0

󵄩󵄩󵄩󵄩𝑓𝑛 (𝑦𝑛
) (𝑠) − 𝑓 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

≤
1

Γ (𝛼)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓

𝑛
(𝑦

𝑛
) (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
𝑏
𝛼

Γ (𝛼)
∫

𝑡

0

(𝜖
𝑛
+ 𝑑 (𝑓 (𝑠) , 𝑓

𝑛
(𝑦

𝑛
) (𝑠))) 𝑑𝑠

≤
1

Γ (𝛼)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝑔
𝑛
(𝑦

𝑛
) (𝑠) − 𝑓

𝑛
(𝑦

𝑛
) (𝑠)] 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
𝑏
𝛼

Γ (𝛼)
∫

𝑡

0

(𝜖
𝑛
+ 𝐻

𝑑
(𝐹 (𝑠, 𝑦 (𝑠)) , 𝐹 (𝑠, 𝑦

𝑛
(𝑠)))) 𝑑𝑠

≤
𝑏
𝛼+1

Γ (𝛼 + 1)
𝜖
𝑛
+
𝑏
𝛼+1

Γ (𝛼)
𝜖
𝑛
+ ∫

𝑡

0

𝑝 (𝑠)
󵄩󵄩󵄩󵄩𝑦 (𝑠) − 𝑦𝑛

(𝑠)
󵄩󵄩󵄩󵄩 .

(67)

Let 𝑦(⋅) be a limit point of the sequence 𝑦
𝑛
(⋅). Then, it follows

that from the above inequality, one has

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 ≤ ∫

𝑡

0

𝑝 (𝑠)
󵄩󵄩󵄩󵄩𝑦 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠,
(68)

which implies 𝑦(⋅) = 𝑦(⋅). Consequently, 𝑦 ∈ 𝑆
𝑐
is a unique

limit point of 𝑦
𝑛
(⋅) ∈ 𝑆

𝑒
.

Example 26. Let 𝐹 : 𝐽 ×R𝑁
→ Pcpcv(R

𝑁
) with

𝐹 (𝑡, 𝑦) = 𝐵 (𝑓
1
(𝑡, 𝑦) , 𝑓

2
(𝑡, 𝑦)) , (69)

where 𝑓
1
, 𝑓

2
: 𝐽 × R𝑁

→ R𝑁 are Carathéodory functions
and bounded.

Then (2) is solvable.

Example 27. If, in addition to the conditions on 𝐹 of
Example 26, 𝑓

1
and 𝑓

2
are Lipschitz functions, then 𝑆

𝑒
= 𝑆

𝑐
.
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