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This paper investigates the inverse problem of finding a time-dependent diffusion coefficient in a parabolic equation with the
periodic boundary and integral overdetermination conditions. Under some assumption on the data, the existence, uniqueness,
and continuous dependence on the data of the solution are shown by using the generalized Fourier method. The accuracy and
computational efficiency of the proposed method are verified with the help of the numerical examples.

1. Introduction

Denote the domain𝐷
𝑇
by

𝐷
𝑇
= {(𝑥, 𝑡) : 0 < 𝑥 < 1, 0 < 𝑡 ≤ 𝑇} . (1)

Consider the equation

𝑢
𝑡
= 𝑎 (𝑡) 𝑢𝑥𝑥 + 𝐹 (𝑥, 𝑡) , (2)

with the initial condition

𝑢 (𝑥, 0) = 𝜑 (𝑥) , 0 ≤ 𝑥 ≤ 1, (3)

the periodic boundary condition

𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) , 𝑢
𝑥 (0, 𝑡) = 𝑢

𝑥 (1, 𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

(4)

and the overdetermination condition

∫

1

0

𝑥𝑢 (𝑥, 𝑡) 𝑑𝑥 = 𝐸 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (5)

The problem of finding a pair {𝑎(𝑡), 𝑢(𝑥, 𝑡)} in (2)–(5) will be
called an inverse problem.

Definition 1. The pair {𝑎(𝑡), 𝑢(𝑥, 𝑡)} from the class 𝐶[0, 𝑇] ×
𝐶
2,1
(𝐷
𝑇
) ∩ 𝐶
1,0
(𝐷
𝑇
) for which conditions (2)–(5) is satisfied

and 𝑎(𝑡) > 0 on the interval [0, 𝑇], is called a classical solution
of the inverse problem (2)–(5).

The parameter identification in a parabolic differential
equation from the data of integral overdetermination condi-
tion plays an important role in engineering and physics [1–7].
This integral condition in parabolic problems is also called
heat moments [5].

Boundary value problems for parabolic equations in one
or two local classical conditions are replaced by heatmoments
[8–13].These kinds of conditions such as (5) arise frommany
important applications in heat transfer, thermoelasticity,
control theory, life sciences, and so forth. For example, in heat
propagation in a thin rod, the law of variation𝐸(𝑡) of the total
quantity of heat in the rod is given in [8]. In [12], a physical-
mechanical interpretation of the integral conditions was also
given.

Various statements of inverse problems on determination
of thermal coefficient in one-dimensional heat equation were
studied in [4, 5, 7, 14]. In papers [4, 5, 7], the time-dependent
thermal coefficient is determined from the heat moment.

Boundary value problems and inverse problems for
parabolic equations with periodic boundary conditions are
investigated in [15, 16].
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In the present work, one heat moment is used with peri-
odic boundary condition for the determination of thermal
coefficient. The existence and uniqueness of the classical
solution of the problem (2)–(5) is reduced to fixed point
principles by applying the Fourier method.

This paper organized as follows. In Section 2, the exis-
tence and uniqueness of the solution of inverse problem (2)–
(5) are proved by using the Fourier method. In Section 3,
the continuous dependence on the solution of the inverse
problem is shown. In Section 4, the numerical procedure for
the solution of the inverse problem using the Crank-Nicolson
scheme combined with an iteration method is given. Finally,
in Section 5, numerical experiments are presented and dis-
cussed.

2. Existence and Uniqueness of
the Solution of the Inverse Problem

Wehave the following assumptions on the data of the problem
(2)–(5).

(𝐴
1
) 𝐸(𝑡) ∈ 𝐶

1
[0, 𝑇], 𝐸󸀠(𝑡) > 0, for all 𝑡 ∈ [0, 𝑇];

(𝐴
2
) 𝜑(𝑥) ∈ 𝐶

4
[0, 1];

(1) 𝜑(0) = 𝜑(1), 𝜑󸀠(0) = 𝜑
󸀠
(1), 𝜑󸀠󸀠(0) = 𝜑

󸀠󸀠
(1),

∫
1

0
𝑥𝜑(𝑥)𝑑𝑥 = 𝐸(0);

(2) 𝜑
𝑛
≥ 0, 𝑛 = 1, 2, . . .;

(𝐴
3
) 𝐹(𝑥, 𝑡) ∈ 𝐶(𝐷

𝑇
); 𝐹(𝑥, 𝑡) ∈ 𝐶

4
[0, 1] for arbitrary fixed

𝑡 ∈ [0, 𝑇];

(1) 𝐹(0, 𝑡) = 𝐹(1, 𝑡), 𝐹
𝑥
(0, 𝑡) = 𝐹

𝑥
(1, 𝑡), 𝐹

𝑥𝑥
(0, 𝑡) =

𝐹
𝑥𝑥
(1, 𝑡);

(2) 𝐹
𝑛
(𝑡) ≥ 0, 𝑛 = 1, 2, . . .,

where𝜑
𝑛
=∫
1

0
𝜑(𝑥) sin(2𝜋𝑛𝑥)𝑑𝑥,𝐹

𝑛
(𝑡)=∫

1

0
𝐹(𝑥, 𝑡) sin(2𝜋𝑛𝑥)𝑑𝑥,

𝑛 = 0, 1, 2, . . . .

Theorem 2. Let the assumptions (𝐴
1
)–(𝐴
3
) be satisfied. Then

the following statements are true.

(1) The inverse problem (2)–(5) has a solution in 𝐷
𝑇
.

(2) The solution of inverse problem (2)–(5) is unique in
𝐷
𝑇0
, where the number 𝑇

0
(0 < 𝑇

0
< 𝑇) is determined

by the data of the problem.

Proof. By applying the standard procedure of the Fourier
method, we obtain the following representation for the solu-
tion of (2)–(4) for arbitrary 𝑎(𝑡) ∈ 𝐶[0, 𝑇]:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

[𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫

𝑡

0

𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏]

× sin (2𝜋𝑛𝑥) .
(6)

The assumptions 𝜑(0) = 𝜑(1), 𝜑󸀠(0) = 𝜑
󸀠
(1), 𝐹(0, 𝑡) =

𝐹(1, 𝑡), and𝐹
𝑥
(0, 𝑡) = 𝐹

𝑥
(1, 𝑡) are consistent conditions for the

representation (2) of the solution 𝑢(𝑥, 𝑡) to be valid. Further-
more, under the smoothness assumptions 𝜑(𝑥) ∈ 𝐶

4
[0, 1],

𝐹(𝑥, 𝑡) ∈ 𝐶(𝐷
𝑇
), and 𝐹(𝑥, 𝑡) ∈ 𝐶

4
[0, 1] for all 𝑡 ∈ [0, 𝑇], the

series (6) and its 𝑥-partial derivative converge uniformly in
𝐷
𝑇
since their majorizing sums are absolutely convergent.

Therefore, their sums 𝑢(𝑥, 𝑡) and 𝑢
𝑥
(𝑥, 𝑡) are continuous in

𝐷
𝑇
. In addition, the 𝑡-partial derivative and the 𝑥𝑥-second-

order partial derivative series are uniformly convergent for
𝑡 ≥ 𝜀 > 0 (𝜀 is an arbitrary positive number). Thus, 𝑢(𝑥, 𝑡) ∈
𝐶
2,1
(𝐷
𝑇
) ∩ 𝐶
1,0
(𝐷
𝑇
) and satisfies the conditions (2)–(4). In

addition, 𝑢
𝑡
(𝑥, 𝑡) is continuous in𝐷

𝑇
because the majorizing

sum of 𝑡-partial derivative series is absolutely convergent
under the condition 𝜑

󸀠󸀠
(0) = 𝜑

󸀠󸀠
(1) and 𝑓

𝑥𝑥
(0, 𝑡) = 𝑓

𝑥𝑥
(1, 𝑡)

in𝐷
𝑇
. Equation (6) can be differentiated under the condition

(𝐴
1
) to obtain

∫

1

0

𝑥𝑢
𝑡 (𝑥, 𝑡) 𝑑𝑥 = 𝐸

󸀠
(𝑡) , (7)

and this yields

𝑎 (𝑡) = 𝑃 [𝑎 (𝑡)] , (8)

where

𝑃 [𝑎 (𝑡)]

=
𝐸
󸀠
(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹𝑛 (𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

.

(9)

Denote

𝐶
0
= min
𝑡∈[0,𝑇]

𝐸
󸀠
(𝑡) + min
𝑡∈[0,𝑇]

(

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)) ,

𝐶
1
= max
𝑡∈[0,𝑇]

𝐸
󸀠
(𝑡) + max
𝑡∈[0,𝑇]

(

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)) ,

𝐶
2
= 𝐸
󸀠
(0) , 𝐶

3
=

∞

∑

𝑘=1

2𝜋𝑛(𝜑
𝑛
+ ∫

𝑇

0

𝐹
𝑛 (𝜏) 𝑑𝜏) .

(10)

Using the representation (8), the following estimate is true:

0 <
𝐶
0

𝐶
3

≤ 𝑎 (𝑡) ≤
𝐶
1

𝐶
2

. (11)

Introduce the set𝑀 as

𝑀 = {𝑎 (𝑡) ∈ 𝐶 [0, 𝑇] :
𝐶
0

C
3

≤ 𝑎 (𝑡) ≤
𝐶
1

𝐶
2

} . (12)

It is easy to see that

𝑃 : 𝑀 󳨀→ 𝑀. (13)

Compactness of 𝑃 is verified by analogy to [7]. By virtue of
Schauder’s fixed-point theorem, we have a solution 𝑎(𝑡) ∈

𝐶[0, 𝑇] of (8).
Now let us show that there exists 𝐷

𝑇0
(0 < 𝑇

0
≤ 𝑇) for

which the solution (𝑎, 𝑢) of the problem (2)–(5) is unique in
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𝐷
𝑇0
. Suppose that (𝑏, V) is also a solution pair of the problem

(2)–(5). Then from the representations (6) and (8) of the
solution, we have

𝑢 (𝑥, 𝑡) − V (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝜑
𝑛
(𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠

) sin 2𝜋𝑛 (𝑥)

+

∞

∑

𝑛=1

(∫

𝑡

0

𝐹
𝑛 (𝜏) (𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠

)𝑑𝜏)

× sin 2𝜋𝑛 (𝑥) ,

𝑎 (𝑡) − 𝑏 (𝑡) = 𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)] ,

(14)

where

𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)]

=
𝐸
󸀠
(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹𝑛 (𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

−
𝐸
󸀠
(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹𝑛 (𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠

𝑑𝜏)

.

(15)

The following estimate is true:

|𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)]|

≤

(𝐸
󸀠
(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹𝑛 (𝑡))

𝐶
2

2

⋅ (

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
(𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠

) +

∞

∑

𝑛=1

2𝜋𝑛

×(∫

𝑡

0

𝐹
𝑛 (𝜏) (𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠

)𝑑𝜏)) .

(16)

Using the estimates
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑏(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (2𝜋𝑛)
2
𝑇max
0≤𝑡≤𝑇

|𝑎 (𝑡) − 𝑏 (𝑡)| ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

− 𝑒
−(2𝜋𝑛)

2
∫
𝑡

𝜏
𝑏(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (2𝜋𝑛)
2
𝑇max
0≤𝑡≤𝑇

|𝑎 (𝑡) − 𝑏 (𝑡)| ,

(17)

we obtain

max
0≤𝑡≤𝑇

|𝑃 [𝑎 (𝑡)] − 𝑃 [𝑏 (𝑡)]| ≤ 𝛼max
0≤𝑡≤𝑇

|𝑎 (𝑡) − 𝑏 (𝑡)| . (18)

Let 𝛼 ∈ (0, 1) be arbitrary fixed number. Fix a number 𝑇
0
,

0 < 𝑇
0
≤ 𝑇, such that

𝐶
1
(𝐶
4
+ 𝐶
5
)

𝐶
2

2

𝑇
0
≤ 𝛼. (19)

Then from the equality (10), we obtain

‖𝑎 − 𝑏‖𝐶[0,𝑇0]
≤ 𝛼‖𝑎 − 𝑏‖𝐶[0,𝑇0]

, (20)

which implies that 𝑎 = 𝑏. By substituting 𝑎 = 𝑏 in (9), we have
𝑢 = V.

3. Continuous Dependence of
(𝑎, 𝑢) on the Data

Theorem3. Under assumptions (𝐴
1
)–(𝐴
3
), the solution (𝑎, 𝑢)

of the problem (2)–(5) depends continuously on the data for
small T.

Proof. Let Φ = {𝜑, 𝐹, 𝐸} and Φ = {𝜑, 𝐹, 𝐸} be two sets of the
data, which satisfy the assumptions (𝐴

1
)–(𝐴
3
). Then there

exist positive constants𝑀
𝑖
, 𝑖 = 1,2,3 such that

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐶4[0,1]

≤ 𝑀
1
,

‖𝐹‖
𝐶
4,0
(𝐷𝑇)

≤ 𝑀
2
,

‖𝐸‖𝐶1[0,𝑇] ≤ 𝑀
3
,

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐶4[0,1]

≤ 𝑀
1
,

󵄩󵄩󵄩󵄩󵄩
𝐹
󵄩󵄩󵄩󵄩󵄩𝐶4,0(𝐷𝑇)

≤ 𝑀
2
,

󵄩󵄩󵄩󵄩󵄩
𝐸
󵄩󵄩󵄩󵄩󵄩𝐶1[0,𝑇]

≤ 𝑀
3
.

(21)

Let (𝑎, 𝑢) and (𝑎, 𝑢) be solutions of the inverse problem
(2)–(5) corresponding to the data Φ and Φ, respectively. Ac-
cording to (8),

𝑎 (𝑡)

=
𝐸
󸀠
(𝑡) + ∑

∞

𝑛=1
(1/2𝜋𝑛) 𝐹𝑛 (𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

,

𝑎 (𝑡)

=
𝐸
󸀠

(𝑡) + ∑
∞

𝑛=1
(1/2𝜋𝑛) 𝐹𝑛 (𝑡)

∑
∞

𝑛=1
2𝜋𝑛 (𝜑

𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

+ ∫
𝑡

0
𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏)

.

(22)
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First let us estimate the difference 𝑎 − 𝑎. It is easy to compute
that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
󸀠
(𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

−𝐸
󸀠

(𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
4

󵄩󵄩󵄩󵄩󵄩
𝐸 − 𝐸

󵄩󵄩󵄩󵄩󵄩𝐶1[0,𝑇]
+𝑀
5

󵄩󵄩󵄩󵄩𝜑 − 𝜑
󵄩󵄩󵄩󵄩𝐶4[0,1]

+𝑀
6‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
󸀠
(𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏

−𝐸
󸀠

(𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
7
𝑇
󵄩󵄩󵄩󵄩󵄩
𝐸 − 𝐸

󵄩󵄩󵄩󵄩󵄩𝐶1[0,𝑇]
+𝑀
5
𝑇
󵄩󵄩󵄩󵄩󵄩
𝐹 − 𝐹

󵄩󵄩󵄩󵄩󵄩
𝐶
4,0
(𝐷𝑇)

+𝑀
8‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

−

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)

∞

∑

𝑛=1

2𝜋𝑛𝜑
𝑛
𝑒
−(2𝜋𝑛)

2
∫
𝑡

0
𝑎(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2√6𝑀
4

󵄩󵄩󵄩󵄩󵄩
𝐹 − 𝐹

󵄩󵄩󵄩󵄩󵄩𝐶4,0(𝐷𝑇)
+ 2√6𝑀

7

󵄩󵄩󵄩󵄩𝜑 − 𝜑
󵄩󵄩󵄩󵄩𝐶4[0,1]

+𝑀
9‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

−

∞

∑

𝑛=1

1

2𝜋𝑛
𝐹
𝑛 (𝑡)

∞

∑

𝑛=1

2𝜋𝑛∫

𝑡

0

𝐹
𝑛 (𝜏) 𝑒

−(2𝜋𝑛)
2
∫
𝑡

𝜏
𝑎(𝑠)𝑑𝑠

𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ √6𝑇𝑀
󵄩󵄩󵄩󵄩󵄩
𝐹 − 𝐹

󵄩󵄩󵄩󵄩󵄩𝐶4,0(𝐷𝑇)
+𝑀
10‖𝑎 − 𝑎‖

𝐶[0,𝑇]
,

(23)

where𝑀
𝑘
, 𝑘 = 4, . . . , 10, are some constants.

If we consider these estimates in 𝑎 − 𝑎, we obtain

(1 −𝑀
11
) ‖𝑎 − 𝑎‖𝐶[0,𝑇]

≤ 𝑀
12
(
󵄩󵄩󵄩󵄩󵄩
𝐸 − 𝐸

󵄩󵄩󵄩󵄩󵄩𝐶1[0,𝑇]
+
󵄩󵄩󵄩󵄩𝜑 − 𝜑

󵄩󵄩󵄩󵄩𝐶4[0,1]
+
󵄩󵄩󵄩󵄩󵄩
𝐹 − 𝐹

󵄩󵄩󵄩󵄩󵄩𝐶4,0(𝐷𝑇)
) .

(24)

The inequality𝑀
11

< 1 holds for small 𝑇. Finally, we obtain

‖𝑎 − 𝑎‖𝐶[0,𝑇] ≤ 𝑀
13

󵄩󵄩󵄩󵄩󵄩
Φ − Φ

󵄩󵄩󵄩󵄩󵄩
, 𝑀

13
=

𝑀
12

(1 −𝑀
11
)
,

(25)

where ‖Φ − Φ‖ = ‖𝐸 − 𝐸‖
𝐶
1
[0,𝑇]

+ ‖𝜑 − 𝜑‖
𝐶
4
[0,1]

+

‖𝐹 − 𝐹‖
𝐶
4,0
(𝐷𝑇)

.

From (6), a similar estimate is also obtained for the dif-
ference 𝑢 − 𝑢 as

‖𝑢 − 𝑢‖
𝐶(𝐷𝑇)

≤ 𝑀
14

󵄩󵄩󵄩󵄩󵄩
Φ − Φ

󵄩󵄩󵄩󵄩󵄩
. (26)

4. Numerical Method

We use the finite difference method with a predictor-correct-
or-type approach, that is suggested in [2]. Apply this method
to the problem (2)–(5).

We subdivide the intervals [0, 1] and [0, 𝑇] into 𝑁
𝑥
and

𝑁
𝑡
subintervals of equal lengths ℎ = (1/𝑁

𝑥
) and 𝜏 = (𝑇/𝑁

𝑡
),

respectively. Then we add two lines 𝑥 = 0 and 𝑥 = (𝑁
𝑥
+ 1)ℎ

to generate the fictitious points needed for dealing with the
second boundary condition. We choose the Crank-Nicolson
scheme, which is absolutely stable and has a second-order
accuracy in both ℎ and 𝜏 [15]. The Crank-Nicolson scheme
for (2)–(5) is as follows:

1

𝜏
(𝑢
𝑗+1

𝑖
− 𝑢
𝑗

𝑖
)

=
1

2
(𝑎
𝑗+1

+ 𝑎
𝑗
)

1

2ℎ2

× [(𝑢
𝑗

𝑖−1
− 2𝑢
𝑗

𝑖
+ 𝑢
𝑗

𝑖+1
) + (𝑢

𝑗+1

𝑖−1
− 2𝑢
𝑗+1

𝑖
+ 𝑢
𝑗+1

𝑖+1
)]

+
1

2
(𝐹
𝑗+1

𝑖
+ 𝐹
𝑗

𝑖
) ,

𝑢
0

𝑖
= 𝜙
𝑖
,

𝑢
𝑗

0
= 𝑢
𝑗

𝑁𝑥
,

𝑢
𝑗

1
= 𝑢
𝑗

𝑁𝑥+1
,

(27)

where 1 ≤ 𝑖 ≤ 𝑁
𝑥
and 0 ≤ 𝑗 ≤ 𝑁

𝑡
are the indices for the

spatial and time steps, respectively, 𝑢𝑗
𝑖
= 𝑢(𝑥

𝑖
, 𝑡
𝑗
), 𝜙
𝑖
= 𝜑(𝑥

𝑖
),

𝐹
𝑗

𝑖
= 𝐹(𝑥

𝑖
, 𝑡
𝑗
), and 𝑥

𝑖
= 𝑖ℎ, 𝑡

𝑗
= 𝑗𝜏. At the 𝑡 = 0 level,

adjustment should be made according to the initial condition
and the compatibility requirements.

Equation (27) form an𝑁
𝑥
×𝑁
𝑥
linear system of equations

𝐴𝑈
𝑗+1

= 𝑏, (28)

where

𝑈
𝑗
= (𝑢
𝑗

1
, 𝑢
𝑗

2
, . . . , 𝑢

𝑗

𝑁𝑥
)
tr
, 1 ≤ 𝑗 ≤ 𝑁

𝑡
,

𝑏 = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑁𝑥
)
tr
,

𝐴=

[
[
[
[
[
[
[
[

[

−2 (1 + 𝑅) 1 0 ⋅ ⋅ ⋅ 0 1

1 −2 (1 + 𝑅) 1 0 ⋅ ⋅ ⋅ 0

0 1 −2 (1 + 𝑅) 1 0 ⋅ ⋅ ⋅ 0

... d

0 1 −2 (1 + 𝑅) 1

1 0 1 −2 (1 + 𝑅)

]
]
]
]
]
]
]
]

]

,
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𝑅 =
2ℎ
2

𝜏 (𝑎𝑗+1 + 𝑎𝑗)
, 𝑗 = 0, 1, . . . , 𝑁

𝑡
,

𝑏
1
= 2 (1 − 𝑅) 𝑢

𝑗

1
− 𝑢
𝑗

2
− 𝑢
𝑗

𝑁𝑥
− 𝑅𝜏 (𝐹

𝑗+1

1
+ 𝐹
𝑗

1
) ,

𝑗 = 0, 1, . . . , 𝑁
𝑡
,

𝑏
𝑁𝑥

= − 𝑢
𝑗

𝑁𝑥−1
+ 2 (1 − 𝑅) 𝑢

𝑗

𝑁𝑥
− 𝑢
𝑗

1

− 𝑅𝜏 (𝐹
𝑗+1

𝑁𝑥
+ 𝐹
𝑗

𝑁𝑥
) , 𝑗 = 0, 1, . . . , 𝑁

𝑡
,

𝑏
𝑖
= − 𝑢

𝑗

𝑖−1
+ 2 (1 − 𝑅) 𝑢

𝑗

𝑖
− 𝑢
𝑗

𝑖+1
− 𝑅𝜏 (𝐹

𝑗+1

𝑖
+ 𝐹
𝑗

𝑖
) ,

𝑖 = 2, 3, . . . , 𝑁
𝑥
− 1, 𝑗 = 0, 1, . . . , 𝑁

𝑡
.

(29)
Now, let us construct the predicting-correcting mecha-

nism. First, multiplying (2) by 𝑥 from 0 to 1 and using (4)
and (5), we obtain

𝑎 (𝑡) =

𝐸
󸀠
(𝑡) − ∫

1

0
𝑥𝐹 (𝑥, 𝑡) 𝑑𝑥

𝑢
𝑥 (1, 𝑡)

. (30)

The finite difference approximation of (30) is

𝑎
𝑗
=

[((𝐸
𝑗+1

− 𝐸
𝑗
) /𝜏) − (Fin)𝑗] ℎ

𝑢
𝑗

𝑁𝑥+1
− 𝑢
𝑗

𝑁𝑥

, (31)

where 𝐸𝑗 = 𝐸(𝑡
𝑗
), (Fin)𝑗 = ∫

1

0
𝑥𝐹(𝑥, 𝑡

𝑗
)𝑑𝑥, 𝑗 = 0, 1, . . . , 𝑁

𝑡
.

For 𝑗 = 0,

𝑎
0
=

[((𝐸
1
− 𝐸
0
) /𝜏) − (Fin)0] ℎ

𝜙
𝑁𝑥+1

− 𝜙
𝑁𝑥

, (32)

and the values of 𝜙
𝑖
help us to start our computation. We

denote the values of 𝑎𝑗, 𝑢𝑗
𝑖
at the 𝑠th iteration step 𝑎𝑗(𝑠), 𝑢𝑗(𝑠)

𝑖
,

respectively. In numerical computation, since the time step
is very small, we can take 𝑎

𝑗+1(0)
= 𝑎
𝑗, 𝑢𝑗+1(0)
𝑖

= 𝑢
𝑗

𝑖
, 𝑗 =

0, 1, 2, . . . 𝑁
𝑡
, 𝑖 = 1, 2, . . . , 𝑁

𝑥
. At each (𝑠 + 1)th iteration step,

we first determine 𝑎𝑗+1(𝑠+1) from the formula

𝑎
𝑗+1(𝑠+1)

=

[((𝐸
𝑗+2

− 𝐸
𝑗+1

) /𝜏) − (Fin)𝑗+1] ℎ

𝑢
𝑗+1(𝑠)

𝑁𝑥+1
− 𝑢
𝑗+1(𝑠)

𝑁𝑥

. (33)

Then from (27) we obtain
1

𝜏
(𝑢
𝑗+1(𝑠+1)

𝑖
− 𝑢
𝑗+1(𝑠)

𝑖
)

=
1

4ℎ2
(𝑎
𝑗+1(𝑠+1)

+ 𝑎
𝑗+1(𝑠)

)

× [(𝑢
𝑗+1(𝑠+1)

𝑖−1
− 2𝑢
𝑗+1(𝑠+1)

𝑖
+ 𝑢
𝑗+1(𝑠+1)

𝑖+1
)

+ (𝑢
𝑗+1(𝑠)

𝑖−1
− 2𝑢
𝑗+1(𝑠)

𝑖
+ 𝑢
𝑗+1(𝑠)

𝑖+1
)]

+
1

2
(𝐹
𝑗+1

𝑖
+ 𝐹
𝑗

𝑖
) ,

𝑢
𝑗+1(𝑠)

0
= 𝑢
𝑗+1(𝑠)

𝑁𝑥
,

𝑢
𝑗+1(𝑠)

1
= 𝑢
𝑗+1(𝑠)

𝑁𝑥+1
, 𝑠 = 0, 1, 2, . . . .

(34)

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

t

a
(t
)

Figure 1:The analytical and numerical solutions of 𝑎(𝑡)when𝑇 = 1.
The analytical solution is shown with dashed line.
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Figure 2: The analytical and numerical solutions of 𝑢(𝑥, 𝑡) at the
𝑇 = 1. The analytical solution is shown with dashed line.

The system of (34) can be solved by the Gauss elimination
method and 𝑢𝑗+1(𝑠+1)

𝑖
is determined. If the difference of values

between two iterations reaches the prescribed tolerance, the
iteration is stopped and we accept the corresponding values
𝑎
𝑗+1(𝑠+1), 𝑢

𝑗+1(𝑠+1)

𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝑥
) as 𝑎

𝑗+1, 𝑢𝑗+1
𝑖

(𝑖 =

1, 2, . . . , 𝑁
𝑥
), on the (𝑗 + 1)th time step, respectively. In virtue

of this iteration, we can move from level 𝑗 to level 𝑗 + 1.

5. Numerical Examples and Discussions

Example 1. Consider the inverse problem (2)–(5), with

𝐹 (𝑥, 𝑡) = (2𝜋)
2 sin (2𝜋𝑥) exp (𝑡) ,

𝜑 (𝑥) = sin (2𝜋𝑥) ,

𝐸 (𝑡) = −
1

2𝜋
exp (−𝑡) ,

𝑥 ∈ [0, 1] , 𝑡 ∈ [0, 𝑇] .

(35)
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Figure 3:The analytical and numerical solutions of 𝑎(𝑡)when𝑇 = 1.
The analytical solution is shown with dashed line.
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Figure 4: The analytical and numerical solutions of 𝑢(𝑥, 𝑡) at the
𝑇 = 1. The analytical solution is shown with dashed line.

It is easy to check that the analytical solution of the prob-
lem (2)–(5) is

{𝑎 (𝑡) , 𝑢 (𝑥, 𝑡)} = {
1

(2𝜋)
2
+ exp (2𝑡) , sin (2𝜋𝑥) exp (−𝑡)} .

(36)

Let us apply the scheme which was explained in the
previous section for the step sizes ℎ = 0.005, 𝜏 = 0.005.

In the case when 𝑇 = 1, the comparisons between the
analytical solution (36) and the numerical finite difference
solution are shown in Figures 1 and 2.

Example 2. Consider the inverse problem (2)–(5), with

𝐹 (𝑥, 𝑡) = (2𝜋)
2 sin (2𝜋𝑥) exp (−𝑡 + sin (4𝜋𝑡)) ,

𝜑 (𝑥) = sin (2𝜋𝑥) ,

𝐸 (𝑡) = −
1

2𝜋
exp (−𝑡) ,

𝑥 ∈ [0, 1] , 𝑡 ∈ [0, 𝑇] .

(37)

It is easy to check that the analytical solution of the prob-
lem (2)–(5) is

{𝑎 (𝑡) , 𝑢 (𝑥, 𝑡)}

= {
1

(2𝜋)
2
+ exp (sin (4𝜋𝑡)) , sin (2𝜋𝑥) exp (−𝑡)} .

(38)

Let us apply the scheme which was explained in the
previous section for the step sizes ℎ = 0.01, 𝜏 = ℎ/8.

In the case when 𝑇 = 1, the comparisons between the
analytical solution (38) and the numerical finite difference
solution are shown in Figures 3 and 4.

6. Conclusions

The inverse problem regarding the simultaneously identi-
fication of the time-dependent thermal diffusivity and the
temperature distribution in one-dimensional heat equation
with periodic boundary and integral overdetermination con-
ditions has been considered. This inverse problem has been
investigated from both theoretical and numerical points of
view. In the theoretical part of the paper, the conditions
for the existence, uniqueness, and continuous dependence
on the data of the problem have been established. In the
numerical part, the sensitivity of the Crank-Nicolson finite-
difference scheme combined with an iteration method with
the examples has been illustrated.
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