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A numerical technique based on reproducing kernel methods for the exact solution of linear Volterra integral equations system
of the second kind is given. The traditional reproducing kernel method requests that operator a satisfied linear operator equation
𝐴𝑢 = 𝑓, is bounded and its image space is the reproducing kernel space 𝑊

1

2
[𝑎, 𝑏]. It limits its application. Now, we modify the

reproducing kernelmethod such that it can bemorewidely applicable.The n-term approximation solution obtained by themodified
method is of high accuracy.Thenumerical example comparedwith othermethods shows that themodifiedmethod ismore efficient.

1. Introduction

Thepurpose of this paper is to solve a systemof linearVolterra
integral equations

𝐹 (𝑠) = 𝐺𝑠 + ∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝐹 (𝑡) 𝑑𝑡, 𝑠 ∈ [0, 1] , (1)

where

𝐹 (𝑠) = [𝑓
1
(𝑠) , 𝑓
2
(𝑠) , . . . , 𝑓

𝑛
(𝑠)]
𝑇

,

𝐺 (𝑠) = [𝑔
1
(𝑠) , 𝑔
2
(𝑠) , . . . , 𝑔

𝑛
(𝑠)]
𝑇

,

𝐾 (𝑠, 𝑡) = [𝑘
𝑖,𝑗
] , 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

(2)

In (1), the functions𝐾 and 𝐺 are given, and 𝐹 is the solu-
tion to be determined. We assume that (1) has a unique solu-
tion. Volterra integral equation arises in many physical appli-
cations, for example, potential theory and Dirichlet prob-
lems, electrostatics, mathematical problems of radiative equi-
librium, the particle transport problems of astrophysics and
reactor theory, and radiative heat transfer problems [1–5].
Several valid methods for solving Volterra integral equation
have been developed in recent years, including power series
method [6], Adomain’s decomposition method [7], homo-
topy perturbation method [8, 9], block by block method [10],
and expansion method [11].

Since the reproducing kernel space 𝑊
1

2
[𝑎, 𝑏], which is a

special Hilbert space, is constructed in 1986 [12], the repro-
ducing kernel theory has been applied successfully to many
linear and nonlinear problems, such as differential equation,
population model, and many other equations appearing in
physics and engineering [12–21]. The traditional reproducing
kernel method is limited, because it requires that the image
space of operator 𝐴 in linear operator equation 𝐴𝑢 = 𝑓 is
𝑊
1

2
[𝑎, 𝑏] and operator𝐴must be bounded. In order to enlarge

its application range, the MRKM removes the boundedness
of 𝐴 and weakens its image space to 𝐿

2
[𝑎, 𝑏]. Subsequently,

we apply the MRKM to obtain the series expression of the
exact solution for (1). The 𝑛-term approximation solution
is provided by truncating the series. The final numerical
comparisons between our method and other methods show
the efficiency of the proposed method. It is worth to mention
that the MRKM can be generalized to solve other system of
linear equations.

2. Preliminaries

2.1. The Reproducing Kernel Space𝑊1
2
[0, 1]. The reproducing

kernel space𝑊
1

2
[0, 1] consists of all absolute continuous real-

valued functions, which defined on the closed interval [0, 1],
and the first derivative functions belong to 𝐿

2
[0, 1].
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The inner product and the norm are equipped with

(𝑢, V)
𝑤
1

2

= 𝑢 (0) V (0) + ∫

1

0

𝑢

(𝑥) V (𝑥) 𝑑𝑥, ∀𝑢, V ∈ 𝑤

1

2
,

‖𝑢‖𝑊1
2

= √(𝑢, V)
𝑤
1

2

.

(3)

Theorem 1. 𝑊
1

2
[0, 1] is a reproducing kernel space with repro-

ducing kernel [22]

𝑅
𝑥
(𝑦) = {

1 + 𝑦, 𝑦 ≤ 𝑥

1 + 𝑥, 𝑦 > 𝑥;
(4)

that is, for every 𝑥 ∈ [0, 1] and 𝑢 ∈ 𝑊
1

2
, it follows that

(𝑢 (𝑦) , 𝑅
𝑥
(𝑦))
𝑤
1

2

= 𝑢 (𝑥) . (5)

2.2.The Reproducing Kernel Space𝑊2
2
[0, 1]. The reproducing

kernel space 𝑊
2

2
[0, 1] consists of all real-valued functions in

which the first derivative functions are absolute continuous
on the closed interval [0, 1] and the second derivative func-
tions belong to 𝐿

2
[0, 1].

The inner product and the norm are equipped with

(𝑢, V)
𝑊
2

2

=

1

∑

𝑘=0

𝑢
(𝑘)

(0) V(𝑘) (0)

+ ∫

1

0

𝑢

(𝑥) V (𝑥) 𝑑𝑥, ∀𝑢, V ∈ 𝑊

2

2
[0, 1] ,

‖𝑢‖
𝑊
2

2

= √(𝑢, 𝑢)
𝑤
2

2

.

(6)

Theorem2. 𝑊
2

2
[0, 1] is a reproducing kernel spacewith repro-

ducing kernel [22]

𝑄 (𝑥, 𝑦) =

{{{

{{{

{

1 + 𝑥 × 𝑦 +
𝑥 × 𝑦
2

2
−

𝑦
3

6
𝑦 ≤ 𝑥

1 + 𝑥 × 𝑦 +
𝑥
2
× 𝑦

2
−

𝑥
3

6
, 𝑦 > 𝑥;

(7)

that is, for every 𝑥 ∈ [0, 1] and 𝑢 ∈ 𝑊
2

2
, it follows that

(𝑢 (𝑦) , 𝑄 (𝑥, 𝑦))
𝑤
2

2

= 𝑢 (𝑥) . (8)

The proof of Theorems 1 and 2 can be found in [23].

2.3. Hilbert Space 𝐸. Hilbert space 𝐸 is defined by

𝐸 =

𝑛

⨁

𝑖=1

𝑊
1

2
= {(𝑢
1
, . . . , 𝑢

𝑛
)
𝑇

| 𝑢
𝑖
∈ 𝑤
1

2
, 𝑖 = 1, . . . , 𝑛} . (9)

The inner product and the norm are given by

(𝑢, V)
𝐸
=

𝑛

∑

𝑖=1

(𝑢
𝑖
, V
𝑖
)
𝑤
1

2

,

‖𝑢‖𝐸 = √(𝑢, 𝑢)
𝐸
.

(10)

It is easy to prove that 𝐸 is a Hilbert space.

3. The Exact Solution of (1)
3.1. Identical Transformation of (1). Consider the ith equation
of (1):

𝑓
𝑖
(𝑠) −

𝑛

∑

𝑗=1

∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑡) 𝑓

𝑗
(𝑡) 𝑑𝑡 = 𝑔

𝑖
(𝑠) . (11)

Define operator 𝐴
𝑖𝑗

: 𝑊
1

2
→ 𝐿
2
[0, 1], 𝑗 = 1, . . . , 𝑛,

𝐴
𝑖𝑗

=

{{

{{

{

𝑢 (𝑠) − ∫
1

0
𝑘
𝑖𝑗
(𝑠, 𝑡) 𝑢 (𝑡) 𝑑𝑡, 𝑗 = 𝑖

−∫

𝑠

0

𝑘
𝑖𝑗
(𝑠, 𝑡) 𝑢 (𝑡) 𝑑𝑡, 𝑗 ̸= 𝑖,

(12)

where 𝑢 ∈ 𝑊
1

2
. Then, (1) can be turned into

𝐴
11
𝑓
1
+ 𝐴
12
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐴

1𝑛
𝑓
1𝑛

= 𝑔
1
(𝑠)

𝐴
21
𝑓
1
+ 𝐴
22
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐴

2𝑛
𝑓
1𝑛

= 𝑔
2
(𝑠)

...

𝐴
𝑛1
𝑓
1
+ 𝐴
𝑛2
𝑓
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛𝑛
𝑓
1𝑛

= 𝑔
𝑛
(𝑠) ,

(13)

where 𝐹(𝑠) = [𝑓
1
(𝑠), 𝑓
2
(𝑠), . . . , 𝑓

𝑛
(𝑠)]
𝑇

∈ 𝐸.

3.2. The Exact solution of (1). Let {𝑥
𝑖
}
∞

𝑖=1
be a dense subset of

interval [0, 1], and define

Ψ
𝑖𝑗
(𝑥) = (𝐴

𝑗
1
,𝑦
𝑅
𝑥
(𝑦)

𝑦=𝑥
𝑖

, 𝐴
𝑗
2
,𝑦
𝑅
𝑥
(𝑦)

𝑦=𝑥
𝑖

, . . . ,

𝐴
𝑗
𝑛
,𝑦
𝑅
𝑥
(𝑦)

𝑦=𝑥
𝑖

)

𝑇
(14)

for every 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . .; the subscript 𝑦 of 𝐴
𝑖𝑗,𝑦

means that the operator𝐴
𝑖𝑗
acts on the function of𝑦. It is easy

to prove that Ψ
𝑖𝑗

∈ 𝐸.

Theorem 3. {Ψ
𝑖1
, Ψ
𝑖2
, . . . , Ψ

𝑖𝑛
}
∞

𝑖=1
is complete in 𝐸.

Proof. Take 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇

∈ 𝐸 such that (𝑢(𝑥), Ψ
𝑖𝑗
(𝑥))

= 0 for every 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . ..
From this fact, it holds that

(𝑢 (𝑥) , Ψ
𝑖𝑗
(𝑥))

= ((𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇

,

(𝐴
𝑗1,𝑦

𝑅
𝑥
(𝑦)

𝑦=𝑥
𝑖

,

𝐴
𝑗2,𝑦

𝑅
𝑥
(𝑦)

𝑦=𝑥
𝑖

, . . . , 𝐴
𝑗𝑛,𝑦

𝑅
𝑥
(𝑦)

𝑦=𝑥
𝑖

)

𝑇

)

=

𝑛

∑

𝑘=1

𝐴
𝑗𝑘,𝑦

(𝑢
𝑘
(𝑥) , 𝑅

𝑥
(𝑦))
𝑤
1

2

𝑦=𝑥
𝑖

=

𝑛

∑

𝑘=1

𝐴
𝑗𝑘
𝑢
𝑘
(𝑥
𝑖
) = 0,

(15)
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for every 𝑗 = 1, 2, . . . , 𝑛. The dense {𝑥
𝑖
}
∞

𝑖=1
assumes that

𝐴
11
𝑢
1
+ 𝐴
12
𝑢
2
+ ⋅ ⋅ ⋅ + 𝐴

1𝑛
𝑢
𝑛
= 0

𝐴
21
𝑢
1
+ 𝐴
22
𝑢
2
+ ⋅ ⋅ ⋅ + 𝐴

2𝑛
𝑢
𝑛
= 0

...

𝐴
𝑛1
𝑢
1
+ 𝐴
𝑛2
𝑢
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛𝑛
𝑢
𝑛
= 0.

(16)

Since (16) has a unique solution, it follows that 𝑢 =

𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛

𝑇
= 0. This completes the proof.

We arrangeΨ
11
,Ψ
12
,. . .,Ψ

1𝑛
,Ψ
21
,Ψ
22
, . . .,Ψ

2𝑛
, . . .,Ψ

𝑖1
, Ψ
𝑖2
,

. . .,Ψ
𝑖𝑛
,. . ., denoted by {𝑟

𝑖
}
∞

𝑖=1
; that is, 𝑟

1
= Ψ
11
, 𝑟
2

= Ψ
12
,

. . . , 𝑟
𝑛

= Ψ
1𝑛
, 𝑟
𝑛+1

= Ψ
21
, 𝑟
𝑛+2

= Ψ
22
, . . . , 𝑟

𝑛+𝑛
= Ψ
2𝑛
, . . ..

In a general way, 𝑟
(𝑖−1)𝑛+𝑗

= Ψ
𝑖𝑗
, 𝑖 = 1, 2, 3, . . . ; 𝑗 = 1,

2,. . . ,𝑛. The orthogonal basis {𝑟
𝑖
}
∞

𝑖=1
in 𝐸 from Gram-Schmidt

orthogonalization of {𝑟
𝑖
}
∞

𝑖=1
is as follows:

𝑟
𝑖
=

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑟
𝑘
, 𝑖 = 1, 2, . . . . (17)

Theorem 4. The exact solution of (1) can be expressed by

𝐹 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜌
𝑘
𝑟
𝑖
(𝑥) , (18)

where 𝜌
𝑘
= (𝐹(𝑥), 𝑟

𝑘
)
𝐸
; if 𝑟
𝑘
= Ψ
𝑗𝑙
, then 𝜌

𝑘
= 𝑔
𝑙
(𝑥
𝑗
).

Proof. Assume that 𝐹(𝑥) is the exact solution of (1). 𝐹(𝑥) can
be expanded to Fourier series in terms of normal orthogonal
basis {𝑟

𝑖
(𝑥)}
∞

𝑖=1
in 𝐸:

𝐹 (𝑥) =

∞

∑

𝑖=1

(𝐹, 𝑟
𝑖
)
𝐸
𝑟
𝑖
(𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
(𝐹, 𝑟
𝑘
)
𝐸
𝑟
𝑖
(𝑥) ; (19)

if 𝜌
𝑘
= (𝐹, 𝑟

𝑘
)
𝐸
, then

𝐹 (𝑥) =

∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑗
𝜌
𝑘
𝑟
𝑖
(𝑥) . (20)

When 𝑟
𝑘
= Ψ
𝑗𝑙
, it holds that

𝜌
𝑘
= (𝐹,Ψ

𝑗𝑙
) =

𝑛

∑

𝑘=1

𝐴
𝑙𝑘
𝑢
𝑘
(𝑥
𝑗
) = 𝑔
𝑙
(𝑥
𝑗
) . (21)

Corollary 5. The approximate solution of (1) is

𝐹
𝑚

(𝑥) =

𝑚

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜌
𝑘
𝑟
𝑖
(𝑥) = (𝑓

1,𝑚
, 𝑓
2,𝑚

, . . . , 𝑓
𝑛,𝑚

)
𝑇

, (22)

and 𝑓
𝑖,𝑚

(𝑥) converges uniformly to 𝑓
𝑖
(𝑥) on [0, 1] as 𝑚 → ∞

for every 𝑖 = 1, 2, . . . , 𝑛.

Proof. Obviously, ‖𝐹
𝑚

− 𝐹‖
2

𝐸
→ 0 holds as 𝑚 → ∞; that is,

𝐹
𝑚
(𝑥) is the approximate solution of (1).

Note that ∑
𝑛

𝑖=1
‖𝑓
𝑖,𝑚

− 𝑓
𝑖
‖
2

𝑊
1

2

= ‖𝐹
𝑚

− 𝐹‖
2

𝐸
→ 0. Com-

bining with the expression of 𝑅
𝑥
(𝑦), we have

𝑓𝑖,𝑚 − 𝑓
𝑖

 =

(𝑓
𝑖,𝑚

(𝑦) − 𝑓
𝑖
(𝑦) , 𝑅

𝑥
(𝑦))
𝑊
1

2



≤
𝑓𝑖,𝑚 − 𝑓

𝑖

𝑊1
2

⋅
𝑅𝑥 (𝑦)

𝑊1
2

=
𝑓𝑖,𝑚 − 𝑓

𝑖

𝑊1
2

√𝑅
𝑥
(𝑥)

≤ √2
𝑓𝑖,𝑚 − 𝑓

𝑖

𝑊1
2

, ∀𝑥 ∈ [0, 1] .

(23)

It shows that 𝑓
𝑖,𝑚

converges uniformly to 𝑓
𝑖
on [0, 1] as𝑚 →

∞ for every 𝑖 = 1, 2, . . . , 𝑛. So the proof is complete.

Remark 6. If 𝑘
𝑖𝑗
(𝑠, 𝑡) ∈ 𝐶([0, 1] × [0, 1]) and 𝑔

𝑖
∈ 𝑊
2

2
in (1),

then it is reasonable to regard the unknown functions as the
elements of 𝑊2

2
.

4. Numerical Examples

Taking nodes {𝑥
𝑖
= (𝑖−1)/(𝑁−1)}

𝑁

𝑖=1
,𝑓
𝑖,𝑁

is the approximate
solutions of 𝑓

𝑖
, and 𝑒(𝑓

𝑖,𝑁
) denotes the absolute errors of

𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. According to Remark 6, we solve the

following two examples appearing in [11] in 𝑊
2

2
.

Example 7. Consider the following systemofVolterra integral
equations of the second kind [11]:

𝑓
1
(𝑠) = 𝑔

1
(𝑠) + ∫

𝑠

0

(𝑠 − 𝑡)
3
𝑓
1
(𝑡) 𝑑𝑡 + ∫

𝑠

0

(𝑠 − 𝑡)
2
𝑓
2
(𝑡) 𝑑𝑡,

𝑓
2
(𝑠) = 𝑔

2
(𝑠) + ∫

𝑠

0

(𝑠 − 𝑡)
4
𝑓
1
(𝑡) 𝑑𝑡

+ ∫

𝑠

0

(𝑠 − 𝑡)
3
𝑓
2
(𝑡) 𝑑𝑡,

(24)

where 𝑔
1
(𝑠) and 𝑔

2
(𝑠) are chosen such that the exact solution

is 𝑓
1
(𝑠) = 1 + 𝑠

2
, 𝑓
2
(𝑠) = 1 + 𝑠 − 𝑠

3. The numerical results
obtained by using the present method are compared with [11]
in Table 1.

Example 8. Consider the following system of linear Volterra
integral equations of the second kind [11]:

𝑓
1
(𝑠) = 𝑔

1
(𝑠) + ∫

𝑠

0

(sin (𝑠 − 𝑡) − 1) 𝑓
1
(𝑡) 𝑑𝑡

+ ∫

𝑠

0

(1 − 𝑡 cos 𝑠) 𝑓
2
(𝑡) 𝑑𝑡,

𝑓
2
(𝑠) = 𝑔

2
(𝑠) + ∫

𝑠

0

(𝑓
1
(𝑡)) 𝑑𝑡 + ∫

𝑠

0

(𝑠 − 𝑡) 𝑓
2
(𝑡) 𝑑𝑡,

(25)

where 𝑔
1
(𝑠) and 𝑔

2
(𝑠) are chosen such that the exact solution

is 𝑓
1
(𝑠) = cos 𝑠, 𝑓

2
(𝑠) = sin 𝑠. The numerical results

obtained by using the present method are compared with [11]
in Table 2.
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Table 1: Absolute errors for Example 7.

Nodes 𝑥
𝑖

Errors 𝑒(𝑓
1
) [11] Errors 𝑒(𝑓

1,100
) Errors 𝑒(𝑓

2
) [11] Errors 𝑒(𝑓

2,100
) [11]

0.0 0 1.58309𝐸 − 10 0 3.98245𝐸 − 10

0.1 2.63472𝐸 − 7 3.92220𝐸 − 12 2.11685𝐸 − 8 3.94493𝐸 − 10

0.2 1.62592𝐸 − 5 3.21563𝐸 − 10 2.61132𝐸 − 6 4.72710𝐸 − 10

0.3 1.74905𝐸 − 4 5.95890𝐸 − 10 4.18979𝐸 − 5 6.19366𝐸 − 10

0.4 8.93799𝐸 − 4 5.11051𝐸 − 10 2.86285𝐸 − 4 6.95422𝐸 − 10

0.5 3.00491𝐸 − 3 2.46104𝐸 − 10 1.19940𝐸 − 3 4.19959𝐸 − 10

0.6 7.47528𝐸 − 3 1.98685𝐸 − 9 3.56141𝐸 − 3 5.90035𝐸 − 10

0.7 1.40733𝐸 − 2 5.01512𝐸 − 9 7.74239𝐸 − 3 2.83080𝐸 − 9

0.8 1.78384𝐸 − 2 9.62848𝐸 − 9 1.09171𝐸 − 2 6.94058𝐸 − 9

0.9 4.97756𝐸 − 3 1.61180𝐸 − 8 2.27326𝐸 − 3 1.36984𝐸 − 8

1.0 3.84378𝐸 − 2 2.49043𝐸 − 8 3.32111𝐸 − 2 2.42565𝐸 − 8

Table 2: Absolute errors for Example 8.

Nodes 𝑥
𝑖

Errors 𝑒(𝑓
1
) [11] Errors 𝑒(𝑓

1,100
) Errors 𝑒(𝑓

2
) [11] Errors 𝑒(𝑓

2,100
) [11]

0.0 0 6.93348𝐸 − 11 0 3.60316𝐸 − 11

0.1 1.37735𝐸 − 4 4.53518𝐸 − 09 1.52721𝐸 − 4 2.75123𝐸 − 08

0.2 9.27188𝐸 − 4 8.84879𝐸 − 09 1.14715𝐸 − 3 3.10611𝐸 − 08

0.3 2.67117𝐸 − 3 1.28253𝐸 − 08 3.71248𝐸 − 3 3.53307𝐸 − 08

0.4 5.45507𝐸 − 3 1.65442𝐸 − 08 8.57201𝐸 − 3 4.03402𝐸 − 08

0.5 9.22670𝐸 − 3 2.00881𝐸 − 08 1.64412𝐸 − 2 4.61209𝐸 − 08

0.6 1.38644𝐸 − 2 2.35657𝐸 − 09 2.78243𝐸 − 2 5.27214𝐸 − 08

0.7 1.92960𝐸 − 2 2.71160𝐸 − 08 4.25337𝐸 − 2 6.02041𝐸 − 08

0.8 2.56349𝐸 − 2 3.09302𝐸 − 08 5.91212𝐸 − 2 6.86601𝐸 − 08

0.9 3.31574𝐸 − 2 3.52645𝐸 − 08 7.48883𝐸 − 2 7.82029𝐸 − 08

1.0 4.19808𝐸 − 2 3.67322𝐸 − 08 8.70896𝐸 − 2 1.02387𝐸 − 07

5. Conclusion

In this paper, we modify the traditional reproducing kernel
method to enlarge its application range. The new method
named MRKM is applied successfully to solve a system of
linear Volterra integral equations.Thenumerical results show
that our method is effective. It is worth to be pointed out that
the MRKM is still suitable for solving other systems of linear
equations.
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