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We investigate the asymptotic behavior of solutions to a linear Volterra integrodifferential system 𝑥
󸀠

𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡)𝑥
𝑖
(𝑡) +

∑
𝑛

𝑗=1
∫

𝑡

0
𝐾
𝑖𝑗
(𝑡, 𝑠)𝑥

𝑗
(𝑠)𝑑𝑠, 𝑡 ∈ R+, 𝑖 = 1, 2, . . . , 𝑛. We show that under some suitable conditions, there exists a solution for the above

integrodifferential system, which is asymptotically equivalent to some given functions. Two examples are given to illustrate our
theorem.

1. Introduction

Throughout this paper, we denote by N the set of positive
integers, by R the set of all real numbers, by R+ the set of
all nonnegative real numbers, and by R𝑛 the set of all 𝑛-
dimensional real vectors. Moreover, 𝐵𝐶(R+,R𝑛) denotes the
Banach space of all bounded and continuous functions 𝑓 :

R+ → R𝑛 with the norm
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
= sup
𝑡∈R+

max
1≤𝑗≤𝑛

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
, (1)

where 𝑓(𝑡) = (𝑓
1
(𝑡), . . . , 𝑓

𝑛
(𝑡))
𝑇 for 𝑡 ∈ R+.

The aim of this paper is to study some asymptotic behav-
ior of solutions to the following linear Volterra integrodiffer-
ential system:

𝑥
󸀠

𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠) 𝑥

𝑗
(𝑠) 𝑑𝑠,

𝑡 ∈ R
+
, 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝑎
𝑖
, 𝑏
𝑖
: R+ → R and 𝐾

𝑖𝑗
: R+ × R+ → R, 𝑖, 𝑗 = 1, 2,

. . . , 𝑛 are all continuous functions.

Definition 1. We call 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

: R+ → R𝑛 a
solution of system (2) if 𝑥 is continuously differentiable and
satisfies (2).

The asymptotic behavior of solutions has been an impor-
tant and interesting topic in the qualitative theory of differen-
tial and difference equations. Especially, recently, many
authors have made interesting and important contribu-
tions on the asymptotic behavior of solutions forVolterra type
difference equations (e.g., we refer the reader to [1–10] and
references therein).

Very recently, Dibĺık and Schmeidel [6] obtained a very
interesting result concerning the asymptotic behavior of solu-
tions for the following linear Volterra difference equation:

𝑥 (𝑛 + 1) = 𝑎 (𝑛) + 𝑏 (𝑛) 𝑥 (𝑛) +

𝑛

∑

𝑖=0

𝐾 (𝑛, 𝑖) 𝑥 (𝑖) . (3)

More specifically, they proved that for every admissible
constant 𝑐 ∈ R, there exists a solution 𝑥 = 𝑥(𝑛) of (3) such
that

𝑥 (𝑛) ∼ (𝑐 +

𝑛−1

∑

𝑖=0

𝑎 (𝑖)

𝛽 (𝑖 + 1)

)𝛽 (𝑛) , 𝑛 󳨀→ ∞, (4)

where 𝛽(𝑛) = ∏
𝑛−1

𝑖=0
𝑏(𝑖). However, to the best of our knowl-

edge, it seems that there is no literature concerning such
asymptotic behavior of solutions for Volterra type differential
equations. That is the main motivation of this paper. In this
paper, we will adopt the idea in the proof of [6] to investigate
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some asymptotic behaviors of solutions for Volterra differen-
tial system (2).

2. Main Result

Before establishing our main result, we first give an “Arzela-
Ascoli” type theorem for the subsets of 𝐵𝐶(R+,R𝑛).

Lemma 2. LetF ⊂ 𝐵𝐶(R+,R𝑛), satisfying (i)F is uniformly
bounded; (ii)F is equiuniformly continuous on every compact
subset of R+; (iii) for every 𝜀 > 0, there exist 𝑓

𝜀
∈ 𝐵𝐶(R+,R𝑛)

and 𝑇
𝜀
> 0 such that ‖𝑓(𝑡) − 𝑓

𝜀
(𝑡)‖ < 𝜀 for all 𝑓 ∈ F and

𝑡 ≥ 𝑇
𝜀
. ThenF is precompact in 𝐵𝐶(R+,R𝑛).

Proof. By the condition (iii), for every 𝑘 ∈ N, there exist 𝑇
𝑘
>

0 such that

󵄩
󵄩
󵄩
󵄩
𝐹
1
(𝑡) − 𝐹

2
(𝑡)

󵄩
󵄩
󵄩
󵄩
<

1

𝑘

(5)

for all 𝐹
1
, 𝐹
2
∈ F and 𝑡 ≥ 𝑇

𝑘
.

Let {𝑓
𝑛
} be a sequence inF. By (i) and (ii), it follows from

Arzela-Ascoli theorem that for every 𝑘 ∈ N, there exists a sub-
sequence {𝑓

𝑘

𝑛
} ⊂ {𝑓

𝑛
} such that {𝑓𝑘

𝑛
} is uniformly convergent

on [0, 𝑇
𝑘
]. Then, by choosing the diagonal sequence, we can

get a subsequence {𝑓
𝑚
} ⊂ {𝑓

𝑛
} such that, for every 𝑘 ∈ N, {𝑓

𝑚
}

is uniformly convergent on [0, 𝑇
𝑘
].

It remains to show that {𝑓
𝑚
} is uniformly convergent on

R+. For every 𝜀 > 0, choose 𝑘
0
∈ N with 1/𝑘

0
< 𝜀. Since {𝑓

𝑚
}

is uniformly convergent on [0, 𝑇
𝑘
0

], for the above 𝜀 > 0, there
exists𝑁 ∈ N such that

sup
𝑡∈[0,𝑇

𝑘
0
]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝑚
1

(𝑡) − 𝑓
𝑚
2

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜀 (6)

for all𝑚
1
, 𝑚
2
≥ 𝑁; Combining this with (5), we conclude that

sup
𝑡∈R+

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓
𝑚
1

(𝑡) − 𝑓
𝑚
2

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
≤ 𝜀 (7)

for all 𝑚
1
, 𝑚
2
≥ 𝑁, that is, {𝑓

𝑚
} is uniformly convergent on

R+. This completes the proof.

Throughout the rest of this paper, for every 𝑖 ∈ {1, 2, . . . ,

𝑛}, we assume that

𝐴
𝑖
= sup
𝑡∈R+

󵄨
󵄨
󵄨
󵄨
𝐴
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
< +∞, (8)

where

𝐴
𝑖
(𝑡) = ∫

𝑡

0

𝑎
𝑖
(𝑠)

𝛽
𝑖
(𝑠)

𝑑𝑠,

𝛽
𝑖
(𝑡) = exp(∫

𝑡

0

𝑏
𝑖
(𝑠) 𝑑𝑠) , 𝑡 ∈ R

+
,

0 ≤ 𝑀
𝑖
:=

𝑛

∑

𝑗=1

∫

+∞

0

(∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
𝑖𝑗
(𝑡, 𝑠)

𝛽
𝑗
(𝑠)

𝛽
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠) 𝑑𝑡 < 1.

(9)

Theorem 3. Assume that

0 < lim inf
𝑡→+∞

𝛽
𝑖
(𝑡) ≤ lim sup

𝑡→+∞

𝛽
𝑖
(𝑡) < +∞,

𝑖 = 1, 2, . . . , 𝑛.

(10)

Let 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
)
𝑇

∈ R𝑛 with 𝑐
𝑖
+ 𝐴
𝑖
(𝑡) ≥ 0 for all

𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Then, there exists a solution 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
: R+ → R𝑛 of system (2) such that

𝑥
𝑖
(𝑡) ∼ (𝑐

𝑖
+ 𝐴
𝑖
(𝑡)) 𝛽
𝑖
(𝑡) , 𝑡 󳨀→ +∞, 𝑖 = 1, 2, . . . , 𝑛,

(11)

provided that lim inf
𝑡→+∞

(𝑐
𝑖
+ 𝐴
𝑖
(𝑡)) > 0.

Proof. We define that

𝛼
𝑖
(0) =

(𝑐
𝑖
+ 𝐴
𝑖
)𝑀
𝑖

1 − 𝑀
𝑖

,

𝛼
𝑖
(𝑡) = (𝑐

𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0))

×

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑝)𝑑𝑠,

(12)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Moreover, we define an
operator 𝜌 = (𝜌

1
, 𝜌
2
, . . . , 𝜌

𝑛
)
𝑇 on

𝑆 = {𝑧 ∈ 𝐵𝐶 (R
+
,R
𝑛
) : 𝑐
𝑖
+ 𝐴
𝑖
(𝑡) − 𝛼

𝑖
(0)

≤ 𝑧
𝑖
(𝑡) ≤ 𝑐

𝑖
+ 𝐴
𝑖
(𝑡) + 𝛼

𝑖
(0) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+
}

(13)

by

(𝜌
𝑖
𝑧) (𝑡) = 𝑐

𝑖
+ 𝐴
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠,

𝑖 = 1, 2 . . . , 𝑛,

(14)

for 𝑡 ∈ R+ and 𝑧 ∈ 𝑆. It is easy to see that 𝑆 is a nonempty,
closed, and convex set in 𝐵𝐶(R+,R𝑛). Next, we divide the
remaining proof into two steps.

Step 1. 𝜌(𝑆) ⊂ 𝑆, 𝜌 is continuous, and 𝜌(𝑆) is compact.
Let 𝑧 ∈ 𝑆. We have

󵄨
󵄨
󵄨
󵄨
(𝜌
𝑖
𝑧) (𝑡)

󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
𝑐
𝑖

󵄨
󵄨
󵄨
󵄨
+ 𝐴
𝑖
+ 𝑀
𝑖
⋅ ‖𝑧‖ < +∞,

𝑡 ∈ R
+
, 𝑖 = 1, 2, . . . , 𝑛.

(15)

In addition, since 𝑧 ∈ 𝑆, we have

󵄨
󵄨
󵄨
󵄨
𝑧
𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0) , 𝑡 ∈ R

+
, 𝑖 = 1, 2, . . . , 𝑛. (16)
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Then, it follows that

󵄨
󵄨
󵄨
󵄨
(𝜌
𝑖
𝑧) (𝑡) − (𝑐

𝑖
+ 𝐴
𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨

≤

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑝)𝑑𝑠

≤ [𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)] ⋅ 𝑀

𝑖
= 𝛼
𝑖
(0)

(17)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Thus, we conclude that
𝜌(𝑆) ⊂ 𝑆.

For every 𝜀 > 0, there exists a constant 𝛿 = 𝜀/max
1≤𝑖≤𝑛

𝑀
𝑖

such that for all 𝑧, 𝑦 ∈ 𝑆 with ‖𝑧 − 𝑦‖ < 𝛿, we have

󵄨
󵄨
󵄨
󵄨
(𝜌
𝑖
𝑧) (𝑡) − (𝜌

𝑖
𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠

−

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑦

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝛿 ⋅ 𝑀
𝑖
≤ 𝜀, 𝑖 ∈ {1, 2, . . . , 𝑛} , 𝑡 ∈ R

+
,

(18)

which means that 𝜌 is continuous.
Next, we show that 𝜌(𝑆) is precompact. Firstly, for every

𝑥 ∈ 𝑆, we have

󵄩
󵄩
󵄩
󵄩
𝜌𝑥

󵄩
󵄩
󵄩
󵄩
= sup
𝑡∈R+

max
1≤𝑖≤𝑛

󵄨
󵄨
󵄨
󵄨
(𝜌
𝑖
𝑥) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)] ,

(19)

which means that 𝜌(𝑆) is uniformly bounded. Secondly, for
every 𝑧 ∈ 𝑆, 𝑡

1
, 𝑡
2
∈ R+ and 𝑖 = 1, 2, . . . , 𝑛, we have

󵄨
󵄨
󵄨
󵄨
(𝜌
𝑖
𝑧) (𝑡
1
) − (𝜌

𝑖
𝑧) (𝑡
2
)
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

∫

+∞

𝑡
1

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠

−

𝑛

∑

𝑗=1

∫

+∞

𝑡
2

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)]

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

∑

𝑗=1

∫

𝑡
2

𝑡
1

(∫

𝑠

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑝)𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(20)

which yields that 𝜌(𝑆) is equiuniformly continuous on every
compact subsets of R+. Thirdly, by the definition of 𝑀

𝑖
, for

every 𝜀 > 0, there exists 𝑇 > 0 such that for all 𝑡 ≥ 𝑇 and
𝑧 ∈ 𝑆, we have

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑝)𝑑𝑠

<

𝜀

max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)]

, 𝑖 = 1, 2, . . . , 𝑛,

(21)

which yields that
󵄩
󵄩
󵄩
󵄩
𝜌
𝑖
𝑧 − 𝜌
𝑖
0
󵄩
󵄩
󵄩
󵄩
< 𝜀, 𝑖 = 1, 2, . . . , 𝑛, (22)

and thus ‖𝜌𝑧−𝜌0‖ < 𝜀.Then, by Lemma 2, we know that 𝜌(𝑆)
is precompact.

Step 2. By Step 1 and Schauder’s fixed-point theorem, 𝜌 has a
fixed point in 𝑆; that is, there exists 𝑧0 = (𝑧

0

1
, 𝑧
0

2
, . . . , 𝑧

0

𝑛
)
𝑇
∈ 𝑆

such that

𝑧
0

𝑖
(𝑡) = 𝑐

𝑖
+ 𝐴
𝑖
(𝑡)

−

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

𝐾
𝑖𝑗
(𝑠, 𝑝) 𝑧

0

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

𝑑𝑝)𝑑𝑠,

(23)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Noting that

sup
𝑧∈𝑆

‖𝑧‖ ≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)] , (24)

we have
󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
0

𝑖
(𝑡) − (𝑐

𝑖
+ 𝐴
𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨

≤ max
1≤𝑖≤𝑛

[𝑐
𝑖
+ 𝐴
𝑖
+ 𝛼
𝑖
(0)]

⋅

𝑛

∑

𝑗=1

∫

+∞

𝑡

(∫

𝑠

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
𝑖𝑗
(𝑠, 𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑝)𝑑𝑠,

(25)

for all 𝑖 ∈ {1, 2, . . . , 𝑛} and 𝑡 ∈ R+. Then, it is easy to see that

lim
𝑡→+∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑧
0

𝑖
(𝑡) − (𝑐

𝑖
+ 𝐴
𝑖
(𝑡))

󵄨
󵄨
󵄨
󵄨
󵄨
= 0, 𝑖 = 1, 2, . . . , 𝑛, (26)

Combining this with

lim inf
𝑡→+∞

(𝑐
𝑖
+ 𝐴
𝑖
(𝑡)) > 0, (27)

we have

lim
𝑡→+∞

𝑧
0

𝑖
(𝑡)

𝑐
𝑖
+ 𝐴
𝑖
(𝑡)

= 1, 𝑖 = 1, 2, . . . , 𝑛, (28)

that is,

𝑧
0

𝑖
(𝑡) ∼ 𝑐

𝑖
+ 𝐴
𝑖
(𝑡) , 𝑡 󳨀→ +∞, 𝑖 = 1, 2, . . . , 𝑛. (29)

Now, define a function 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
: R+ → R𝑛

by

𝑥
𝑖
(𝑡) = 𝑧

0

𝑖
(𝑡) 𝛽
𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R

+
. (30)
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It follows from (23) that

𝑑

𝑑𝑡

𝑧
0

𝑖
(𝑡)

=

𝑎
𝑖
(𝑡)

𝛽
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑝) 𝑧

0

𝑗
(𝑝)

𝛽
𝑗
(𝑝)

𝛽
𝑖
(𝑡)

𝑑𝑝,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+
,

(31)

which yields that

𝑥
󸀠

𝑖
(𝑡) 𝛽
𝑖
(𝑡) − 𝑥

𝑖
(𝑡) 𝛽
󸀠

𝑖
(𝑡)

𝛽
2

𝑖
(𝑡)

=

𝑎
𝑖
(𝑡)

𝛽
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠)

𝑥
𝑗
(𝑠)

𝛽
𝑖
(𝑡)

𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+
.

(32)

Then, we get

𝑥
󸀠

𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+

𝑛

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠) 𝑥

𝑗
(𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ∈ R
+
,

(33)

which means that 𝑥 is a solution to system (2). In addition,
combining (28) with the assumption

0 < lim inf
𝑡→+∞

𝛽
𝑖
(𝑡) ≤ lim sup

𝑡→+∞

𝛽
𝑖
(𝑡) < +∞,

𝑖 = 1, 2, . . . , 𝑛,

(34)

we get

lim
𝑡→+∞

𝑥
𝑖
(𝑡)

(𝑐
𝑖
+ 𝐴
𝑖
(𝑡)) 𝛽
𝑖
(𝑡)

= 1, 𝑖 = 1, 2, . . . , 𝑛, (35)

which yields (11).

Example 4. Let 𝑛 = 1, and for all 𝑡, 𝑠 ∈ R+,

𝑎
1
(𝑡) = exp (sin𝜋𝑡) cos 𝑡,

𝑏
1
(𝑡) = 𝜋 cos𝜋𝑡,

𝐾
11

(𝑡, 𝑠) =

exp (sin𝜋𝑡)

(1 + 𝑡 + 𝑠)
3 exp (sin𝜋𝑠)

.

(36)

Then, for all 𝑡 ∈ R+, we have 𝛽
1
(𝑡) = exp(sin𝜋𝑡),

𝐴
1
(𝑡) = ∫

𝑡

0

𝑎
1
(𝑠)

𝛽
1
(𝑠)

𝑑𝑠 = sin 𝑡,

𝐴
1
= sup
𝑡∈R+

{
󵄨
󵄨
󵄨
󵄨
𝐴
1
(𝑡)

󵄨
󵄨
󵄨
󵄨
} = 1 ∈ (0, +∞) ,

𝑀
1
= ∫

+∞

0

(∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
11

(𝑡, 𝑠)

𝛽 (𝑠)

𝛽 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠) 𝑑𝑡

= ∫

+∞

0

(∫

𝑡

0

1

(1 + 𝑡 + 𝑠)
3
𝑑𝑠) 𝑑𝑡

= ∫

+∞

0

1

2

[

1

(1 + 𝑡)
2
−

1

(1 + 2𝑡)
2
] 𝑑𝑡

=

1

2

∫

+∞

0

1

(1 + 𝑡)
2
𝑑𝑡 −

1

2

∫

+∞

0

1

(1 + 2𝑡)
2
𝑑𝑡

=

1

2

−

1

4

=

1

4

∈ (0, 1) .

(37)

In addition, it is easy to see that

0 < 𝑒
−1

= lim inf
𝑡→+∞

𝛽
1
(𝑡)

≤ lim sup
𝑡→+∞

𝛽
1
(𝑡) = 𝑒 < +∞.

(38)

Thus, by Theorem 3, we conclude that for every 𝑐 > 1,
there exists a solution 𝑥 : R+ → R for (2) such that

𝑥 (𝑡) ∼ (𝑐 + sin 𝑡) exp (sin𝜋𝑡) , 𝑡 󳨀→ +∞. (39)

Remark 5. It is needed to note that in the above example, (𝑐+
sin 𝑡) exp(sin𝜋𝑡) is not a solution to (2).

Example 6. Consider the following system:

𝑥
󸀠

𝑖
(𝑡) = 𝑎

𝑖
(𝑡) + 𝑏

𝑖
(𝑡) 𝑥
𝑖
(𝑡)

+

2

∑

𝑗=1

∫

𝑡

0

𝐾
𝑖𝑗
(𝑡, 𝑠) 𝑥

𝑗
(𝑠) 𝑑𝑠, 𝑖 = 1, 2,

(40)

where

𝑎
1
(𝑡) = exp (sin𝜋𝑡) cos 𝑡,

𝑎
2
(𝑡) = − exp (cos𝜋𝑡) sin 𝑡,

𝑏
1
(𝑡) = 𝜋 cos𝜋𝑡,

𝑏
2
(𝑡) = −𝜋 sin𝜋𝑡,

𝐾
𝑖𝑗
(𝑡, 𝑠) =

(−1)
𝑖+𝑗 exp (sin𝜋𝑡)

16 (1 + 𝑡 + 𝑠)
3 exp (sin𝜋𝑠)

(41)

for all 𝑖, 𝑗 = 1, 2, and 𝑡, 𝑠 ∈ R+. By a direct calculation, we get

𝛽
1
(𝑡) = exp (sin𝜋𝑡) ,

𝛽
2
(𝑡) = exp (−1 + cos𝜋𝑡) ,

𝐴
1
(𝑡) = ∫

𝑡

0

𝑎
1
(𝑠)

𝛽
1
(𝑠)

𝑑𝑠 = sin 𝑡, 𝐴
1
= 1,

𝐴
2
(𝑡) = ∫

𝑡

0

𝑎
2
(𝑠)

𝛽
2
(𝑠)

𝑑𝑠 = (−1 + cos 𝑡) 𝑒, 𝑡 ∈ R
+
, 𝐴
2
= 2𝑒,
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𝑀
1
=

2

∑

𝑗=1

∫

+∞

0

(∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
1𝑗

(𝑡, 𝑠)

𝛽
𝑗
(𝑠)

𝛽
1
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠) 𝑑𝑡

≤

1 + 𝑒

64

< 1,

𝑀
2
=

2

∑

𝑗=1

∫

+∞

0

(∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝐾
2𝑗

(𝑡, 𝑠)

𝛽
𝑗
(𝑠)

𝛽
2
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝑠) 𝑑𝑡

≤

𝑒 + 2𝑒
3

64

< 1.

(42)

Moreover, we have

0 < 𝑒
−1

= lim inf
𝑡→+∞

𝛽
1
(𝑡)

≤ lim sup
𝑡→+∞

𝛽
1
(𝑡) = 𝑒 < +∞,

0 < 𝑒
−2

= lim inf
𝑡→+∞

𝛽
2
(𝑡)

≤ lim sup
𝑡→+∞

𝛽
2
(𝑡) = 1 < +∞.

(43)

Then, by Theorem 3, for every 𝑐 = (𝑐
1
, 𝑐
2
)
𝑇

∈ R2 with 𝑐
1
> 1

and 𝑐
2
> 2𝑒, there exists a solution 𝑥 = (𝑥

1
, 𝑥
2
) : R+ → R2

of system (40) such that

𝑥
1
(𝑡) ∼ (𝑐

1
+ sin 𝑡) exp (sin𝜋𝑡) , 𝑡 󳨀→ +∞,

𝑥
2
(𝑡) ∼ [𝑐

2
+ (−1 + cos 𝑡) 𝑒] exp (−1 + cos𝜋𝑡) , 𝑡 󳨀→ +∞.

(44)
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