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The mathematical model for the incompressible two-dimensional/axisymmetric non-Newtonian fluid flows and heat transfer
analysis in the region of stagnation point over a stretching/shrinking sheet and axisymmetric shrinking sheet is presented. The
governing equations are transformed into dimensionless nonlinear ordinary differential equations by similarity transformation.
Analytical technique, namely, the homotopy perturbation method (HPM) with general form of linear operator is used to
solve dimensionless nonlinear ordinary differential equations. The series solution is obtained without using the diagonal Padé
approximants to handle the boundary condition at infinity which can be considered as a clear advantage of homotopy perturbation
technique over the decomposition method. The effects of the pertinent parameters on the velocity and temperature field are
discussed through graphs. To the best of authors’ knowledge, HPM solution with general form of linear operator for two-
dimensional/axisymmetric non-Newtonian fluid flows and heat transfer analysis in the region of stagnation point is presented
for the first time in the literature.

1. Introduction

Stagnation point flow is of great importance in the prediction
of skin friction as well as heat/mass transfer near stagnation
regions of bodies in high speed flows and also in the
design of thrust bearings and radial diffusers, drag reduction,
transpiration cooling, and thermal oil. In 1911, Hiemenz [1]
revealed that stagnation point flow can be examined by
the Navier-Stokes (NS) equations. He used the similarity
of the solution to reduce number of variables by means of
a coordinate transformation. Later Howann [2] discovered
the stagnation point flow in case of axisymmetric situation.
Recently, a number of researchers studied the stagnation
point flow considering different fluids models, geometries,
and assumptions that were proposed in the literature. The
literature on the topic is quite extensive and hence cannot be
described here in detail. However some most recent works
of eminent researchers regarding the analytical/numerical

solution of stagnation point for different geometries may be
mentioned in [3–5]. Attia [6], Massoudi and Ramezan [7],
and Garg [8] extended the stagnation point flow for heat
transfer.

The main aim of this paper is to extend the HPM [9–
17] for solving non-Newtonian fluid flow and heat transfer
analysis in the region of stagnation point flow towards a
stretching/shrinking and axisymmetric shrinking sheet. Also
the main motivation is to perform such analysis [3] (shrink-
ing/axisymmetric shrinking sheet) for a non-Newtonian fluid
in the presence of heat transfer. Heat transfer plays very
important role in nuclear energy because nuclear chain
reaction creates heat, and it is used to boil water, produce
steam, and drive a steam turbine. The steady Navier-Stokes
equations are reduced to the nonlinear ordinary differential
equations by using similarity solutions. Graphical results
explicitly reveal the complete reliability and efficiency of the
suggested algorithm.
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2. Governing Equations

The flow and heat characteristics are governed by the follow-
ing equations [3]:
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The similarity transformations for two-dimensional stag-
nation flow case are as follows [3]:
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The steady Navier-Stokes equations yield a system of
nonlinear ordinary differential equations in the form
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and corresponding boundary conditions take the form
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The similarity transformations for axisymmetric stagna-
tion flow towards an axisymmetric shrinking surface are as
follows [3]:
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Uponmaking use of the above substitutions in (2) and (3),
the resulting nonlinear system has the following form:
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3. Analytical Solution

For the HPM [9] solution, we select

𝑓
0
(𝜂) = (1 − 𝛼) (𝑒

−𝜂
− 1) + 𝜂, ℎ

0
(𝜂) = 𝑒

−𝜂
, (9)

𝜃
0
(𝜂) = 𝑒

−𝜂
, (10)

as initial approximations of𝑓, ℎ, and 𝜃.We further choose the
following auxiliary linear operators:
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In view of the basic idea of the HPM [9], (5) is expressed
as
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and rearrangement based on powers of 𝑝-terms, we have
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Figure 1: Effect of 𝛼 on 𝑓 for two-dimensional case.
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Figure 2: Effect of 𝛽 on ℎ for two-dimensional case.
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Figure 3: Effect of Pr on 𝜃 for two-dimensional case.
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Figure 4: Effect of 𝛼 on 𝑔 for axisymmetric case.
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Figure 5: Effect of 𝛽 on 𝑙 for axisymmetric case.
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Figure 6: Effect of Pr on 𝜃 for axisymmetric case.
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On solving (14) in any software like Mathematica, Maple
or MATLAB we can get any order of approximation.

Adopting the same procedure for axisymmetric stagna-
tion flow towards an axisymmetric shrinking surface (8), we
can get the required solution for (8)
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4. Concluding Remarks

In this paper, we have studied non-Newtonian Stagnation
point flow in the presence of heat transfer by using HPM.
The HPM is used in a direct way without using linearization,
discretization, or restrictive assumption. The variations of
various emerging parameters on the velocities (𝑓, ℎ, 𝑔, 𝑙)
and temperature field (𝜃) are discussed through Figures 1, 2,
3, 4, 5, and 6. The main results of the present analysis are as
follows:

(i) for two-dimensional case, the velocity 𝑓decreases
for shrinking parameter 𝛼 while for axisymmetric
shrinking surface, the velocity 𝑔 shows opposite
behavior for 𝛼;

(ii) for two dimensional case and axisymmetric shrinking
surface, the velocity profiles ℎ and 𝑙 increase with
increasing value of 𝛽;

(iii) the effects of Prandtl number Pr are same on the
temperature field for both cases.

Notations

𝜌: Density of fluid
𝜐: Kinematic viscosity
𝛼
1
: Second grade parameter
𝑇: Temperature
𝛼: Stretching and shrinking parameter
𝑘: Thermal conductivity
𝑐
𝑝
: Specific heat
𝑇
0
and 𝑇

∞
: The temperatures at and far away from the
plate

Pr: Prandtl number
𝛽: Dimensionless second grade parameter
𝑓, 𝑔, ℎ, 𝑙: Dimensionless velocity profiles
𝜃: Dimensionless temperature profile
𝑢: Velocity component in 𝑥 direction
V: Velocity component in 𝑦 direction
𝑤: Velocity component in 𝑧 direction
𝜂: Independent dimensionless parameter.
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