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Some new nonlinear weakly singular difference inequalities are discussed, which generalize some known weakly singular
inequalities and can be used in the analysis of nonlinear Volterra-type difference equations with weakly singular kernel. An
application to the upper bound of solutions of a nonlinear difference equation is also presented.

1. Introduction

The discrete version of the well-known Gronwall-Bellman
inequality is an important tool in the development of the
theory of difference equations as well as the analysis of the
numerical schemes of differential equations. A great deal of
interest has been given to these inequalities, andmany results
on their generalizations have been found; for example, see [1–
4]. Among them, one of the fundamental cases is Pachpatte’s
result [3] for the difference inequality:

𝑢 (𝑛) ≤ 𝑎 (𝑛) +

𝑛−1

∑

𝑠=0

𝑓 (𝑠) 𝑢 (𝑠) . (1)

In particular, due to the study of the behavior and
numerical solutions for the singular integral equations, some
discrete weakly singular integral inequalities also have drawn
more and more attention [5–7]. Dixon and McKee [8]
investigated the convergence of discretization methods for
the Volterra integral and integrodifferential equations, by
using the following inequality:

𝑥
𝑖
≤ 𝜓
𝑖
+𝑀ℎ

1−𝛼

𝑖−1

∑

𝑗=0

𝑥
𝑗

(𝑖 − 𝑗)
𝛼
, 𝑖 = 1, 2, . . . , 𝑁,

𝑛 > 0, 𝑁ℎ = 𝑇.

(2)

Henry [9] presented a linear integral inequality with
weakly kernel:

𝑥 (𝑡) ≤ 𝑎 (𝑡) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛽−1

𝑏 (𝑠) 𝑥 (𝑠) 𝑑𝑠 (3)

to investigate some qualitative properties for a parabolic
equation. The corresponding discrete version was discussed
by Slodic̆ka [10]. But he studied the case 𝜏

𝑘
= 𝜏, that is, the

case of constant differences. Furthermore, the first formula-
tion of the inequality with a nonlinearity and 𝜏

𝑘
nonconstant

was studied in [6], in which the general nonlinear discrete
case as follows:

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) (4)

was considered. However, his results are based on the
so-called “(𝑞) condition”: (1) 𝜔 satisfies 𝑒

−𝑞𝑡

[𝜔(𝑢)]
𝑞

≤

𝑅(𝑡)𝜔(𝑒
−𝑞𝑡

)𝑢
𝑞; (2) there exists 𝑐 > 0 such that 𝑎

𝑛
𝑒
−𝜏𝑡
𝑛
≤ 𝑐.

Recently, a new nonlinear difference inequality:

𝑥
𝛼

𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝜆

𝑘
(5)

was discussed by Yang et al. [11]. For other new weakly
singular inequalities, lots of work can be found, for example,
in [12–22] and references therein.
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In this paper, we investigate the new nonlinear weakly
singular inequality:

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) , (6)

where 0 < 𝛽 ≤ 1, 𝑡
0
= 0, 𝜏

𝑘
= 𝑡
𝑘+1

− 𝑡
𝑘
, sup
𝑘∈N𝜏𝑘 = 𝜏,

and lim
𝑡→∞

𝑡
𝑘
= ∞. Compared to the existing result, our

result does not need the so-called “(𝑞) condition” proposed
in [6] and can be used to obtain pointwise explicit bounds
on solutions for a class of more general weakly singular
inequalities of Volterra type. Finally, we also present an
application to Volterra-type difference equation with weakly
singular kernel.

2. Preliminaries

Let R be the set of real numbers, R
+
= (0,∞), and N =

{0, 1, 2, . . .}. 𝐶(𝑋, 𝑌) denotes the collection of continuous
functions from the set 𝑋 to the set 𝑌. As usual, the empty
sum is taken to be 0.

Lemma 1 (Discrete Jensen inequality, [11]). Let 𝐴
1
, 𝐴
2
, . . . ,

𝐴
𝑛
be nonnegative real numbers, and let 𝑟 > 1 be a real

number. Then,

(𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
)
𝑟

≤ 𝑛
𝑟−1

(𝐴
𝑟

1
+ 𝐴
𝑟

2
+ ⋅ ⋅ ⋅ + 𝐴

𝑟

𝑛
) . (7)

Lemma 2 (Discrete Hölder inequality, [11]). Let 𝑎
𝑖
, 𝑏
𝑖
(𝑖 =

1, 2, . . . , 𝑛) be nonnegative real numbers, and let 𝑝, 𝑞 be
positive numbers such that (1/𝑝)+(1/𝑞) = 1 (or𝑝 = 1, 𝑞 = ∞).
Then,

𝑛

∑

𝑖=1

𝑎
𝑖
𝑏
𝑖
≤ (

𝑛

∑

𝑖=1

𝑎
𝑝

𝑖
)

1/𝑝

(

𝑛

∑

𝑖=1

𝑏
𝑞

𝑖
)

1/𝑞

. (8)

Furthermore, take 𝑝 = 𝑞 = 2; then, one gets the discrete
Cauchy-Schwarz inequality.

Lemma 3. Suppose that 𝜔(𝑢) ∈ 𝐶(R
+
,R
+
) is nondecreasing.

Let 𝑎
𝑛
, 𝑐
𝑛
be nonnegative and nondecreasing in 𝑛. If 𝑦

𝑛
is

nonnegative such that

𝑦
𝑛
≤ 𝑎
𝑛
+ 𝑐
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑘
𝜔 (𝑦
𝑘
) , 𝑛 ∈ N. (9)

Then,

𝑦
𝑛
≤ Ω
−1

[Ω (𝑎
𝑛
) + 𝑐
𝑛

𝑛−1

∑

𝑘=0

𝑏
𝑘
] , 0 ≤ 𝑛 ≤ 𝑀, (10)

where Ω(V) = ∫V
V
0

(1/𝜔(𝑠))𝑑𝑠, V ≥ V
0
, Ω−1 is the inverse func-

tion of Ω, and𝑀 is defined by

𝑀 = sup{𝑖 : Ω (𝑎
𝑖
) + 𝑐
𝑖

𝑖−1

∑

𝑘=0

𝑏
𝑘
∈ Dom (Ω

−1

)} . (11)

3. Main Results

Assume that

(A
1
) 𝑎
𝑛
, 𝑏
𝑛
are nonnegative functions for 𝑛 ∈ N,

respectively;
(A
2
) 𝜔(𝑢) ∈ 𝐶(R

+
,R
+
) is nondecreasing and 𝜔(0) =

0.

Define 𝑎
𝑛
= max

0≤𝑘≤𝑛,𝑘∈N𝑎𝑘 and 𝜏 = max
0≤𝑘≤𝑛−1,𝑘∈N𝜏𝑘,

where 𝜏
𝑘
is the variable time step.

Theorem 4. Under assumptions (𝐴
1
) and (𝐴

2
), if 𝑥

𝑛
is

nonnegative such that (6), then

(1) for 0 < 𝛽 ≤ 1/2, letting 𝑝 = 1 + 𝛽 and 𝑞 = (1 + 𝛽)/𝛽,
one has

𝑥
𝑛
≤ [Ω
−1

(Ω(2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

×𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
)]

1/𝑞

,

(12)

for 0 ≤ 𝑛 ≤ 𝑁
1
, where Ω(𝑢) = ∫𝑢

𝑢
0

(1/𝜔
𝑞

(𝑠
1/𝑞

)) 𝑑𝑠, 𝑢 ≥
𝑢
0
≥ 0, Ω−1 is the inverse function of Ω,

𝐾(𝛽) = (1 + 𝛽)
−𝛽
2

Γ (𝛽
2

) , (13)

and𝑁
1
is the largest integer number such that

Ω(2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

×

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
∈ Dom (Ω

−1

) ;

(14)

(2) for 1/2 < 𝛽 ≤ 1, letting 𝑝 = 2 and 𝑞 = 2, one has

𝑥
𝑛
≤ [Ω
−1

(Ω(2𝑎
2

𝑛
) + 𝐵 (𝛽) 𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
)]

1/2

,

(15)

for 0 ≤ 𝑛 ≤ 𝑁
2
, whereΩ(𝑢) = ∫𝑢

𝑢
0

(1/𝜔
2

(𝑠
1/2

))𝑑𝑠, 𝑢 ≥

𝑢
0
≥ 0,

𝐵 (𝛽) = 4
1−𝛽

Γ (2𝛽 − 1) , 𝛽 >

1

2

, (16)

and𝑁
2
is the largest integer number such that

Ω(2𝑎
2

𝑛
) + 𝐵 (𝛽) 𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
∈ Dom (Ω

−1

) . (17)

Proof. By definition of 𝑎
𝑛
and assumption (𝐴

1
), 𝑎
𝑛
is nonneg-

ative and nondecreasing and 𝑎
𝑛
≥ 𝑎
𝑛
. It follows from (6) that

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝜔 (𝑥
𝑘
) . (18)
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(1) If 0 < 𝛽 ≤ 1/2, using Lemma 2 with the indices 𝑝 =
1 + 𝛽, 𝑞 = (1 + 𝛽)/𝛽 for (18), we get

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/𝑝

𝑘
𝜏
1/𝑞

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/𝑞

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/𝑝

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/𝑞

[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝑝(𝛽−1)

𝜏
𝑘
𝑒
𝑝𝜏𝑡
𝑘

]

1/𝑝

× [

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
)]

1/𝑞

.

(19)

By Lemma 1, the inequality above yields

𝑥
𝑞

𝑛
≤ 2
𝑞−1

𝑎
𝑞

𝑛
+ 2
𝑞−1

𝜏[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝑝(𝛽−1)

𝜏
𝑘
𝑒
𝑝𝜏𝑡
𝑘

]

𝑞/𝑝

× [

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
)] .

(20)

Consider that

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝑝(𝛽−1)

𝜏
𝑘
𝑒
𝑝𝜏𝑡
𝑘

≤ ∫

𝑡
𝑛

0

(𝑡
𝑛
− 𝑠)
𝑝(𝛽−1)

𝑒
𝑝𝜏𝑠

𝑑𝑠

= 𝑒
𝑝𝜏𝑡
𝑛

∫

𝑡
𝑛

0

𝜂
𝑝(𝛽−1)

𝑒
−𝑝𝜏𝜂

𝑑𝜂,

=

𝑒
𝑝𝜏𝑡
𝑛

(𝑝𝜏)
1+𝑝(𝛽−1)

∫

𝑝𝜏𝑡
𝑛

0

𝜎
𝑝(𝛽−1)𝑒

−𝜎

𝑑𝜎 ≤ 𝐾 (𝛽) 𝜏
−𝛽
2

𝑒
𝑝𝜏𝑡
𝑛

,

(21)

where 𝐾(𝛽) = (1 + 𝛽)
−𝛽
2

Γ(𝛽
2

) and Γ(𝑧) = ∫

∞

0

𝑢
𝑧−1

𝑒
−𝑢

𝑑𝑢, (𝑅𝑒𝑧 > 0) is the well-known𝐺-function.Thus,
we have

𝑥
𝑞

𝑛
≤ 2
𝑞−1

𝑎
𝑞

𝑛
+ 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

× 𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(𝑥
𝑘
) .

(22)

Let V
𝑛
= 𝑥
𝑞

𝑛
, 𝐴
𝑛
= 2
𝑞−1

𝑎
𝑞

𝑛
, and 𝐶

𝑛
= 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

𝐾
𝑞/𝑝

(𝛽)𝑒
𝑞𝜏𝑡
𝑛 . Obviously, 𝐴

𝑛
, 𝐶
𝑛
are nondecreasing

for 𝑛 ∈ N and 𝜔𝑞(V1/𝑞
𝑘
) satisfies the assumption (𝐴

2
).

Equation (22) can be rewritten as

V
𝑛
≤ 𝐴
𝑛
+ 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
𝜔
𝑞

(V1/𝑞
𝑘
) , (23)

which is similar to inequality (9). Using Lemma 3,
from (23), we have

V
𝑛
≤ Ω
−1

[(Ω (𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
)] , (24)

for 0 ≤ 𝑛 ≤ 𝑁
1
, where𝑁

1
is the largest integer number

such that

Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
∈ Dom (Ω

−1

) . (25)

Therefore, by 𝑥
𝑛
= V1/𝑞
𝑛

, (12) holds for 0 ≤ 𝑛 ≤ 𝑁
1
.

(2) If 1/2 < 𝛽 ≤ 1, applying Cauchy-Schwarz inequality
for (18), that is, 𝑝 = 𝑞 = 2, we get

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/2

𝑘
𝜏
1/2

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/2

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
1/2

𝑘
𝑒
𝜏𝑡
𝑘

𝑒
−𝜏𝑡
𝑘

𝑏
𝑘
𝜔 (𝑥
𝑘
)

≤ 𝑎
𝑛
+ 𝜏
1/2

[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
2(𝛽−1)

𝜏
𝑘
𝑒
2𝜏𝑡
𝑘

]

1/2

× [

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(𝑥
𝑘
)]

1/2

.

(26)

By Lemma 1, the inequality above yields

𝑥
2

𝑛
≤ 2𝑎
2

𝑛
+ 2𝜏[

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
2(𝛽−1)

𝜏
𝑘
𝑒
2𝜏𝑡
𝑘

]

× [

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(𝑥
𝑘
)] .

(27)

Because

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
2(𝛽−1)

𝜏
𝑘
𝑒
2𝜏𝑡
𝑘

≤ ∫

𝑡
𝑛

0

(𝑡
𝑛
− 𝑠)
2(𝛽−1)

𝑒
2𝜏𝑠

𝑑𝑠

=

𝑒
2𝜏𝑡
𝑛

(2𝜏)
2𝛽−1

∫

2𝜏𝑡
𝑛

0

𝜎
2(𝛽−1)𝑒

−𝜎

𝑑𝜎

≤

1

2

𝐵 (𝛽) 𝜏
1−2𝛽

𝑒
2𝜏𝑡
𝑛

,

(28)

where 𝐵(𝛽) = 41−𝛽Γ(2𝛽 − 1), 𝛽 > 1/2, it follows from
(27) that

𝑥
2

𝑛
≤ 2𝑎
2

𝑛
+ 𝐵 (𝛽) 𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛

[

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(𝑥
𝑘
)] . (29)
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Let V
𝑛
= 𝑥
2

𝑛
, 𝐴
𝑛
= 2𝑎
2

𝑛
, and 𝐶

𝑛
= 𝐵(𝛽)𝜏

2−2𝛽

𝑒
2𝜏𝑡
𝑛 .

Similarly, 𝐴
𝑛
, 𝐶
𝑛
also are nondecreasing for 𝑛 ∈

N and 𝜔
2

(V1/2
𝑘
) also satisfies the assumption (𝐴

2
).

Equation (29) can be rewritten as

V
𝑛
≤ 𝐴
𝑛
+ 𝐶
𝑛
(

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
𝜔
2

(V1/2
𝑘
)) , (30)

which also is similar to inequality (9). Using
Lemma 3, from (30), we have

V
𝑛
≤ [Ω
−1

(Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
)] , (31)

for 0 ≤ 𝑛 ≤ 𝑁
2
, and𝑁

2
is the largest integer number

such that

Ω(𝐴
𝑛
) + 𝐶
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
∈ Dom (Ω

−1

) . (32)

Clearly, by 𝑥
𝑛
= V1/2
𝑛

, (15) also holds for 0 ≤ 𝑛 ≤ 𝑁
2
.

Remark 5. Here, we note that the most significant work in
the study of weakly singular inequalities is Medve ̆d’s method,
originally presented in the paper [6] and also applied in
the paper [18]. But his result holds under the assumption
“𝜔(𝑢) satisfies the condition (q),” that is, “𝑒−𝑞𝑡[𝜔(𝑢)]𝑞 ≤

𝑅(𝑡)𝜔(𝑒
−𝑞𝑡

𝑢
𝑞

), where 𝑅(𝑡) is a continuous, nonnegative func-
tion.” In our result, the condition (q) is eliminated.

Corollary 6. Under assumptions (𝐴
1
) and (𝐴

2
), let ] > 0,

𝜇 > 0(] > 𝜇). If 𝑥
𝑛
is nonnegative such that

𝑥
]
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝜇

𝑘
, (33)

then

(1) if 0 < 𝛽 ≤ 1/2, let 𝑝 = 1 + 𝛽 and 𝑞 = (1 + 𝛽)/𝛽, and
one gets

𝑥
𝑛
≤ [(2

𝑞−1

𝑎
𝑞

𝑛
)

(]−𝜇)/]
+

] − 𝜇

]
2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

×𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
]

1/(]−𝜇)𝑞
(34)

for 𝑛 ≥ 0, where 𝐾(𝛽) is defined as in Theorem 4;
(2) if 1/2 < 𝛽 ≤ 1, let 𝑝 = 𝑞 = 2, and one gets

𝑥
𝑛
≤ [(2𝑎

2

𝑛
)

(]−𝜇)/]
+

] − 𝜇

]
𝐵 (𝛽) 𝜏

2−2𝛽

× 𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
]

1/2(]−𝜇)

,

(35)

for 𝑛 ≥ 0, where 𝐵(𝛽) is defined as in Theorem 4

Proof. Let 𝑧
𝑛
= 𝑥

]
𝑛
, then 𝑥

𝑛
= 𝑧
1/]
𝑛

and 𝑥𝜇
𝑛
= 𝑧
𝜇/]
𝑛

. From (33),
we have

𝑧
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑧
𝜇/]
𝑘
. (36)

Clearly, 𝜔(𝑧
𝑘
) = 𝑧

𝜇/]
𝑘

satisfies the assumption (𝐴
2
). Ac-

cording to the definition ofΩ in Theorem 4, for 0 < 𝛽 ≤ 1/2,
letting 𝑢

0
= 0, we have

Ω (𝑢) = ∫

𝑢

𝑢
0

1

𝜔
𝑞
(𝑠
1/𝑞
)

𝑑𝑠 = ∫

𝑢

0

𝑑𝑠

𝑠
𝜇/]

=

]

] − 𝜇
𝑢
(]−𝜇)/]

, (37)

Ω
−1

(𝑢) = (

] − 𝜇

]
𝑢)

]/(]−𝜇)

, Dom (Ω
−1

) = [0,∞) .

(38)

It can be seen easily from (38) that𝑁
1
= ∞. Substituting

(37) and (38) into (12), we get

𝑧
𝑛
≤ [(2

𝑞−1

𝑎
𝑞

𝑛
)

(]−𝜇)/]
+

] − 𝜇

]
2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

× 𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
]

]/(]−𝜇)𝑞

.

(39)

In view of 𝑥
𝑛
= 𝑧
1/]
𝑛

, we can obtain (34). For the case that
1/2 < 𝛽 ≤ 1, in fact,Ω andΩ−1 are the same as (37) and (38),
respectively. So, it follows from (37), (38), and (15) that

𝑥
𝑛
≤ [(2𝑎

2

𝑛
)

(]−𝜇)/]
+

] − 𝜇

]
𝐵 (𝛽) 𝜏

2−2𝛽

× 𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
]

1/2(]−𝜇)

,

(40)

for 𝑛 > 0.

Remark 7. In [11], Yang et al. investigated inequality (33),
under the assumption that 𝑎

𝑛
is nondecreasing. Clearly, our

result does not need such condition, and we get a more
concise formula.

Remark 8. Letting ] = 2 and 𝜇 = 1, we can get the
interesting Henry version of the Ou-Iang-Pachpatte-type
difference inequality [3]. Thus, our result is a more general
discrete analogue for such inequality.

Corollary 9. Under assumptions (𝐴
1
) and (𝐴

2
), if 𝑥

𝑛
is

nonnegative such that

𝑥
𝑛
≤ 𝑎
𝑛
+

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
𝛽−1

𝜏
𝑘
𝑏
𝑘
𝑥
𝑘
, (41)



Abstract and Applied Analysis 5

then

(1) if 0 < 𝛽 ≤ 1/2, let 𝑝 = 1 + 𝛽 and 𝑞 = (1 + 𝛽)/𝛽, and
one gets

𝑥
𝑛
≤ 2
(𝑞−1)/𝑞

𝑎
𝑛
exp(2(𝑞−1)/𝑞𝜏1−(𝑞/𝑝)𝛽

2

𝐾
𝑞/𝑝

(𝛽)

× 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
) ,

(42)

for 𝑛 ≥ 0, where 𝐾(𝛽) is defined as in Theorem 4;

(2) if 1/2 < 𝛽 ≤ 1, let 𝑝 = 𝑞 = 2, and one gets

𝑥
𝑛
≤ √2𝑎

𝑛
exp(1

2

𝐵 (𝛽) 𝜏
2−2𝛽

𝑒
2𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−2𝜏𝑡
𝑘

𝑏
2

𝑘
) , (43)

for 𝑛 ≥ 0, where 𝐵(𝛽) is defined as in Theorem 4.

Proof. In (41), 𝜔(𝑢) = 𝑢 also satisfies the assumption (𝐴
2
).

Thus, we have

Ω (𝑢) = ∫

𝑢

𝑢
0

𝑑𝑠

𝑠

= ln 𝑢

𝑢
0

, Ω
−1

(𝑢) = 𝑢
0
exp (𝑢) ,

Dom (Ω
−1

) = [0,∞) .

(44)

Similarly to the computation in Corollary 6, the estimates
(42) and (43) hold, respectively.

4. Application

In this section, we apply our results to discuss the upper
bound of solution of a Volterra type difference equation with
weakly singular kernel.

Consider the following the inequality:

𝑥
𝑛
≤ 1 +

𝑛−1

∑

𝑘=0

(𝑡
𝑛
− 𝑡
𝑘
)
−1/2

𝜏
𝑘
√𝑥
𝑘
. (45)

Obviously, (45) is the special case of inequality (6), then
we get

𝑎
𝑛
= 1, 𝛽 =

1

2

, 𝜔 = √𝑢. (46)

Thus, we can take 𝑝 = 1 + 𝛽 = 3/2 and 𝑞 = (1 + 𝛽)/𝛽 = 3;
then, 𝑞/𝑝 = 2. Moreover,

𝑎
𝑛
= 1,

𝐾 (𝛽) = (1 + 𝛽)
−𝛽
2

Γ (𝛽
2

) = (

3

2

)

−1/4

Γ (

1

4

) ,

Ω (𝑢) = ∫

𝑢

0

𝑑𝑠

√𝑠

= 2√𝑢, Ω
−1

(𝑢) =

𝑢
2

4

.

(47)

According toTheorem 4, we obtain

𝑥
𝑛
≤ [Ω
−1

(Ω (2
𝑞−1

𝑎
𝑞

𝑛
) + 2
𝑞−1

𝜏
1−(𝑞/𝑝)𝛽

2

)

× 𝐾
𝑞/𝑝

(𝛽) 𝑒
𝑞𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−𝑞𝜏𝑡
𝑘

𝑏
𝑞

𝑘
]

1/𝑞

= [Ω
−1

(Ω (4) + 4𝜏
1/2

(

3

2

)

−1/2

)

×Γ
2

(

1

4

) 𝑒
3𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−3𝜏𝑡
𝑘

𝑏
3

𝑘
]

1/3

= [Ω
−1

(4 +

4

3

√6𝜏
1/2

Γ
2

(

1

4

) 𝑒
3𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−3𝜏𝑡
𝑘

𝑏
3

𝑘
)]

1/3

= 4
−1/3

(4 +

4

3

√6𝜏
1/2

Γ
2

(

1

4

) 𝑒
3𝜏𝑡
𝑛

𝑛−1

∑

𝑘=0

𝑒
−3𝜏𝑡
𝑘

𝑏
3

𝑘
)

2/3

(48)

for 𝑛 > 0, which indicates that we get the upper bound of 𝑥
𝑛
.
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[5] M. Medveď, “A new approach to an analysis of Henry type
integral inequalities and their Bihari type versions,” Journal of
Mathematical Analysis and Applications, vol. 214, no. 2, pp. 349–
366, 1997.



6 Abstract and Applied Analysis
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[18] M. Medveď, “On singular versions of Bihari and Wendroff-
Pachpatte type integral inequalities and their application,” Tatra
MountainsMathematical Publications, vol. 38, pp. 163–174, 2007.

[19] S. Szufla, “On the Volterra integral equation with weakly
singular kernel,”Mathematica Bohemica, vol. 131, no. 3, pp. 225–
231, 2006.

[20] N.-E. Tatar, “On an integral inequality with a kernel singular
in time and space,” Journal of Inequalities in Pure and Applied
Mathematics, vol. 4, no. 4, article 82, 2003.

[21] H. Wang and K. Zheng, “Some nonlinear weakly singular inte-
gral inequalities with two variables and applications,” Journal
of Inequalities and Applications, vol. 2010, Article ID 345701, 12
pages, 2010.

[22] K. Zheng, “Bounds on some new weakly singular Wendroff-
type integral inequalities and applications,” Journal of Inequali-
ties and Applications, vol. 2013, article 159, 2013.


