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A class of even order damped differential equations with distributed deviating arguments are investigated. Several new criteria that
ensure the oscillation of solutions are obtained. To demonstrate the validity of the results obtained, two examples are given.

1. Introduction and Lemmas

Oscillatory behavior of solutions for different types of
second-order differential equations with damping has been
widely discussed by using different techniques. Here, we
particularly refer the reader to the papers [1-9] and the
references quoted therein. However, very little is known
for the case of higher order damped functional differential
equations with deviating arguments, especially the case with
distributed deviating arguments. In this paper, we deal with
the following class of even order functional differential
equations with damping:

@)+ p @) £ (1)

B
+ [ a7 (=0 @D). . x[a, @ D) du @ =0,

t>t,>0.

@)

Our aim is to get the criteria for the oscillatory solutions of

.
Throughout this paper, we assume that the following
conditions hold:

(H,) nis an even positive integer;

(H,) p(t) € C([ty, 00), R,), q(t. §) € C([ty, o) x [ax, BI, R,)
is notidentically zero on any [T, co)x[«, B] for T > t,
and

t s
lim J exp (—J p(T)dT) ds=o00, t;=2t; (2)

t— 00 t t

(H;) f(uy,uy,...,u,,) € C(R™ R) has the same sign as
Uy, Uy, ..., U, Whenu, u,,...,u,, have the same sign,
gi(t) E) € C([t()7 00) X [(X, /—;]a R+)) ”(E) € ([OC, ﬁ]) R)
is nondecreasing, and the integral of (1) is a Stieltjes
one.

In the sequel, it will be always assumed that solutions
of (1) exist for any t, > 0. A solution x(t) of (1) is called
eventually positive solution (or negative solution) if there
exists a sufficiently large positive number t; > t, such that
x(t) > 0 (or x(t) < 0) for all t > t;. A nontrivial solution
x(t) of (1) is called oscillatory if it has arbitrary large zeros;
otherwise it is called nonoscillatory. Equation (1) is called
oscillatory if all its solutions are oscillatory.

Remark 1. Since the integral of (1) is a Stieltjes one, it includes
the following equations:

x(n) ) + p(t) x("—l) ®)
£330 f(x[g®],...x[g. 0O =0, (1)
i=1
t>t,>0.

The following lemmas will be useful to the proof of the
main results to be presented in this paper.



Lemma 2 (see [10]). Let u(t) be a positive and n times
differentiable function on R,. If u™(t) is of constant sign and
not identically zero on any ray [t,,+00) fort, > 0, then there
existsat, > t, and an integer | (0 <[ < n), withn + 1 even for
u®u™(t) > 00rn+l odd for u(®)u™(t) < 0; and fort > t,,

u®u® @) >0, 0<k<l
(3)

DM umu® @) >0, I<k<n

Lemma 3 (see [11]). Suppose that the conditions of Lemma 2
are satisfied, and

WD Hu @)y <0, txt, (4)

then there exists a constant 0 € (0, 1) such that for sufficiently
large t, there exists a constant My > 0 satisfying

)
J(5
2

We say that a function H = H(Z, s) belongs to a function

class @, denoted by H € @, if H € C(D,R,), where D =
{(t,s) : —00 < s £t < 00}, satisfies

> Myt" > |u(”‘” (t)| ) (5)

(i) H(t,t) = 0, fort > t,and H(t,s) > 0, fort > s > t,;
(ii) partial derivatives OH /0t and 0H /0s exist, and

aai;l = hl (t) S) VH(t’ S))

aaij =—h, () \/m,

(6)

where hy, h, € L|,.(D,R).

2. Oscillation Results for
f(uy, ..., u,) with Monotonicity

Throughout this section, we assume that the following condi-
tions hold.

(A,) There exist functions o,(t) € C' ([t,,00), (0,00)),
such that 0;(t) = min{t,infze( g g;(t 5} lim, o,
0;(t) = 00, oi'(t) >0,andi=1,2,...,m.

(A,) @fouy) f(uy,...,u,,) = fi'(ul,...,um) exists, and
fluy,.. . u,) = A > 0foru; 20, i = 1,2,...,m,
where A; > 0 are some constants, and i = 1,2,...,m.

Lemma 4. Let x(t) be an eventually positive solution of (1).
Then, there exists a sufficiently large T, > t, such that for all
t>T,

@)<0. ()

x' (t) >0, ") >0,

Proof. From the assumption, there exists a sufficiently large
t, > t,, such that x(¢) > 0 for t > ¢,. Further from (A,), there
exists t, > t; such that forall t > t,

o; (t) = t, g;:(t,8) 20;(t) 2 t),

(8)
i=1,2,...,m; &€ [, f].
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Hence, forall t > t,

x[o; (t)] >0, x[g; (£,9)] >0, o
i=12,...,m; &€ [, f],
and from (H;), we have for allt > ¢, and & € [a, f3]
fx[oy®],....x [0, (1)]) >0,
(10)

fx[g &9],....x[gn & E)]) > 0.
Let

v(t) = exp r p()ds, wt)=x"V®Ov), t=t,
2 (a

then it is easy to know that

w' )= (x" O+ p)x""®)v(t)

B
- [ 4.5 £ (x[9, D). x[g, 5] 2

xdu @) v(t) <0,

which implies that w(t) is nonincreasing on [t,, +00).
Now, we claim that x" V(¢) > 0, ¢ > t,. Otherwise, there
exists t; > t, such that x""V(t,) < 0. Therefore,

D)) < x"V () v (), =t

t>ts,

t t
(n-1) (n-1) 1
dr < t t J —dr,
Lx ()dr < x (t5)v(t5) e T

t
() <507 (1) 4207 (8)v(e) |
t; V

Using (H,), we see that lim, _, , x""?(t) = —co. Ulteriorly,
we can prove lim, _, , x(t) = —0o, which contradicts x(t) >
0,t >t,.

Furthermore, from (1), for all t > t,, we have

() = -p &) <"V (@)

B
- [[465 £ (<[00 0] o x (g, (D)) 09

x du (&) <0.

Thus, from Lemma 2, there exist T; > t, and an odd number
1 (0 <1 < n), such that for t > T, we have
@)y>0, 0<k<
(15)
D)x® >0, I<k<n
By choosing k = 1 and n— 1, we have x'(t) > 0and x"V(¢) >
0 for t > T,,. The proof is completed. O
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Lemma 5. Let x(t) be an eventually positive solution of (1).
Then, there exists a sufficiently large Ty > t,, such that for any
interval [c,b) C [T, 00), if let

p (&) x" ()
) /2],..., x[o,, @) /2])

y(t)= fE[C,b),

f(x[o
(16)

where p(t) € C'([ty, 00), (0, 00)), then for any H € @,

b B
j H(b,s>p(s>(j q(s,f)d#(f)>ds

p(s)
A Mot (s) o] (s)

b
<H(bc)y(c)+1J 57 17)
i=17"i

2
X [hz(b,S) - VH(bs) (Z(—()) - pls ))]

Proof. From (1) and (16), we have that for t € [c, b),
y' ()

p ) x" () +p' (t) x" 7V (1)
fx[oy(®)/2],....x][0, (1) /2])

y ()
"~ f(x[o, 0 /2],

(5]

x [0, (1) /2])

C’1 (t)

.....

: [“mf) |)<[%%]0)

[£at.8 f (xlagy O] x[g, 0. O] dus (©)
f(x[oy®)/2],..., x[o,, (t) /2])

+("Ti))—p(t))y(r>

=—p(t)

_ y (@)
f(x[oy@®)/2],..., x[o,, (t) /2])

()
[20]u0)

From Lemma 4, there exists a sufficiently large T, > ¢, such
that x'(£) > 0 and x™(¢) < 0 for t > T,. Further from (A,),
forallt > T,

(18)

o; (t)

o; (t) <t, g (6,8 >0, (t) > —=

ym; &€ [a, B].

(19)
i=1,2,...

3
Hence, for all t > T|), we have
x[g;(68)] 2 x [07(0] I CACI A OR
i=1,2....,m &€, f].
(20)
In view of (20) and (A,), forall t > T},
flxlg 9], x[g, (£ 8)])
o, (1) 0, (t) (21)
5 (+[22] on[29)), el
Thus, forallt > T
[£at® £ (x[g0 6] x (9 (6O)]) du (B)
f (X [01 (t) /2] """ X [Um (t) /2]) (22)
B
> J q(t,8)du(f).
Therefore, from (18)-(22) and Lemma 3, we obtain
B
y () <-p) j q(t,&) du &) + (pT(t)) —p(t))y(t)
- £V (@)
f(x[oy@®)/2],..., x [0, () /2])
( > Y AiMgal () o (t)) y(t)
i=1
o p ()
= —p(®) j q (6,8 du (§) + ( g p(t))y(t)
—p! (t)( ZA Mol () o} (t)) 2 (t)
i=1 (23)

forallt > T,.

Multiplying (23) by H(t,s), then integrating it with
respect to s from ¢ to t for t € [c,b) and using (i) and (ii),
we get that

t B
| H(t,s)p<s)(j q(s,E)du(E))ds

_ Jt H (t,s) y' (s)ds

(s)

LH(ts)( 9

_ JtH(t,s) ! (s)( =Y NiMgo! ™ (s) o] (s)>y (s)ds
¢ i=1

(S)) y(s)ds



=H(t,c)y(c) + J
pl

(s)
j H, s)( 5 p(s>)y(s)ds
_ Lt H(t,s)p " (s) (%gAngoi"_z (s)o; (s)> v (s)ds

=H(t,c)y(c) - J VH (t,s)

X [hz (t,s) - \/H(t,s)<PT()) —p(s))] y(s)ds

_ JtH(t,s) p (s)( Z/\ Mg 2 (s) o] (s)>y (s)ds

i=1
= H(t7C)y(C)

L1 J ! p(s)
Y AiMgal 2 (s) o} (s)

2
x [hz (t,5) - vHa,s)(PT()) —pGs ))]

~ J‘C \jH(t ,S) <ZZA Myo'™ 2(5)0 (S)))’(S)

p(s) =

2
NACDEREICD (")) = p(9) .

V207 () (X1 AiMgo7 2 ()0} (5))
<H(tc)y(c)

1 p(s)
"3 j Y7 A My 2 (s) 0! (s)

2
X [hz(f,S)— VH(t’S)(F/;T()) —pls ))]

(24)
Letting t — b~ in the above, we obtain (17). The proof is
completed. O
Lemma 6. Let x(t) be an eventually positive solution of (1).
Then, there exists a sufficiently large T, > t, such that for any

interval (a, c] C [T,, 00), if let y(t) be defined by (16) on (a, c],
then for any H € O,

c B
j H(s,mp(s)(j q(s,f)du<£))ds

< -H(c,a) y(c)
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lj p(s)
2 Ja Y2 AiMgo™ 2 (s) o] (s)

, 2
x [hl (s,a) + VH (5, a) (’; ((55)) - p(s))] ds.

(25)

Proof. Similar to the proof of Lemma 5, by multiplying (23)
by H(s, t), then integrating it with respect to s from ¢ to ¢ for
t € (a,c], and then using (i) and (ii), we get that

c B
L H(s,t)p(s>(j q(s,ady(&))ds
_ jCH(s, t) y' (s)ds

[ He t)("(()) p<s>)y(s>ds

_ J: H(s,t)p ' (s) <%iAiMeoin_2 (s)o] (s)) ¥ (s)ds

O0H (s,t)
3s y(s)ds

= —H(c,t)y(c)+J

+L H(s,t)(/;T(ss)) —p(s))y(S)ds

_ JCH(s, t)p " (s)< Z)\ Mpa! ™ (s) o] (s)> y* (s)ds
t i=1
= -H (c,t) y (c)

+ JE VH (s,t) [hl (s, 1)

+vH<s,t>("T()) —p<s>)] »(9)ds

‘ -1 1 n-2 ' 2
_ L H(s,t)p ~(s) <E;AiM90i (s)o; (s)) y (s)ds

p(s)
A Mgo?* (s) o] (s)

—H(ct)y(c)+lj 57
i=17"i

) 2
X [hl (s,t) + VH (s, 1) (’;((SS)) —p(s))] ds

-| JP(SS)”@ZL Myo” >>y(s>
£ i=1

)+ VHGD (P 6)/p($) - p ()
V207 () (2 AiMgo7 2 (9) 0] (5))
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p(s)

< —H (c, t)y(C)+_J Y AMyot 2 (s) o] (s)

, 2
X [hl (s,£) + VH (5, 1) (’; ((SS)) - p(s))] ds.

(26)

Letting t — a" in the above, we obtain (25). The proof is
completed. O

The following theorem is an immediate result from
Lemmas 5 and 6.

Theorem 7. Assume that for each T > t, there exist H € @,
p e C'([to,oo), (0,00)) and a,b,c € R, such thatT <a <c<
b and

1 € B
H (ca) J H(sa)p(s) (J q(s,8)du (5)) ds

1 B
H(b 5 J H (b, s)p(s)(L q(S,f)d.“(f))dS

21 1 r p(s)
%) H(c,a) Ja Y2, A;Mgo?*(s) o] (s)

2
x [hl (s,a) + \/H(s,a)<p (( )) ps ))]

1
T H®o

J b p(s)
Zz 1 IMGGn 2(5)0 (5)

/ 2
\/H(b,s)</;—(ss)) —p(s))] ds}.

X [hz (b,s) -
(27)
Then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution x(t).
Without loss of generality, we assume that x(f) is an even-
tually positive solution of (1). Then from Lemmas 5 and 6,
there exists a sufficiently large T, > t,, such that for any
(a,b) c [T,,00), and for any ¢ € (a,b), H € ® and
p € C'([to,oo), (0,00)), (17) and (25) hold. By dividing (17)
and (25) by H(b, ¢) and H(c, a), respectively, and then adding
them, we have

1 B
He, )J H(s,a)P(S)(L q(S,f)dy(f))ds
1 B
Hb,0 J H (b, s)P(s)(L q(s,E)d‘u(g))ds

BT I O
2 |H(ca) Ja Y A Mgo? 2 (s) 0! (s)

) 2
X [hl (s,a) + \/H(s,a)(i—(ss)) —p(s))] ds

(b <)

H
J p(s)
Zl 1 Aj MGUH z (S)U (s)

X [hz (b,s) — VH (b, s)
p'(s) )]2
(p(s) —P0)

which contradicts the assumption (27) and completes the
proof. O

(28)

Theorem 8. Assume that for some H € ®, p € C'([t,,00),
(0,00)) and for each r > t,,

t B
limsupj {H(s,r)p(S)J q(s,&)du(&)

t— 00 r

p(s)
221 L AiMgo 2 (s) 0! (s)

X [hl (s,7)

' 2
+\/H(s,r)<P—(S) —p(s))] ]»ds > 0,
p(s)

t B
lim sup J {H (t,s)p(s) J q(s,&)du()

t— 00 r

p(s)
221 L AiMgo 2 (s) 0! (s)

X [hz (t,s)

! 2
—\/H(t,S)(’;—(SS)) —p(s))] }ds > 0.

(30)

Then (1) is oscillatory.

Proof. Forany T > t, leta = T. In (29), we choose r = a.
Then there exists ¢ > a such that

¢ B
J {H(s,a)p(s)] q(s,§)du ()



B p(s)
2370 AiMga} 2 (s) o (s)

! 2
X [hl (s,a) + \VH (s,a) <p ((S)) —p(s))] }ds > 0.
p(s
(31)
In (30), we choose r = c, then there exists b > ¢ such that

b B
J <|H(b,s)p(s)J- q(s,8) du (&)

B p(s)
237 AiMgo 2 (s) 0! (s)

! 2
x [hz (b,s) - \/H(b,S)( p (SS)) —p(s))] }ds > 0.
(32)

By dividing (31) and (32) by H(c, a) and H (b, ¢), respectively,
and then adding them, we obtain (27). The conclusion thus
comes from Theorem 7. The proof is completed. O

For the case of H := H(t — s) € @, we have that
hy(t —s) = h,(t — s) and thus denote them by h(t — s). The
subclass of @ containing such H(t — s) is denoted by @,.
Applying Theorem 7 to @, and choosing p = 1, we obtain
the following.

Theorem 9. Assume that for each T > t there exist H € @,
and a,c € Rsuchthat T < a < c and

c B
jH<s—a>(j [q<s,s>+q<zc—s,mdu(s))ds

>

Jc { [h(s—a)-p() VHEG-a)]

Y AiMgal 2 (s) o] (s)

[h(s—a)+p(2c—s) VH (s — a) ] }

Z; L AiMgo? 2 (2¢ - ) 0] (2¢ — )

(33)
Then (1) is oscillatory.
Proof. Letb = 2c—a.Then H(b—c) = H(c—a) = H((b-a)/2),
and for any ¢ € L[a, b], we have
b c
J @ (s)ds = J ¢ (2c - s)ds. (34)

Hence

b B
j H(b—s)(j q(s,adu(a) ds

c

c B
:J H(S—a)(J q(2::—s,£)dpt(f)>ds,
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J [hb-9)+p(s) x/H(b—s]

Y AiMgo} 2 (s) o] (s)

J' [h(s—a)+p(2c—s)\/H(s— ]

Y AiMgo % (2c - s) o] (ZC—S)

(35)

Thus (33) holds and implies that (27) holds for H € @, p =
1 and therefore (1) is oscillatory by Theorem 7. The proof is
completed. O

From the above oscillation criteria, we can obtain dif-
ferent sufficient conditions for oscillation of (1) by different
choices of H(t, s) and p(s). For example, let

H(ts) = (t-s)",

where A > 1 is a constant. Then, H € ®; and h(t - s) =
At — 5)M2

t>s>t, (36)

. From Theorem 8, we have the following result.

Corollary10. Ifthere exists a function p € C'([to, 00), (0, 00))
and a constant A > 1 such that for each r > t,

I 1
msup—~— -1
t— 00

t
<[ =n'w

B
X H q(s,§)du ()

1
2 Y AiMgo % (s) o] (s)

A (P ’
X [:Jr(p(s) —p(s))] ]»ds>0,

i 1
msup—— 1
t— 00

X J (t-9"p(s)

B
xH q(8) du ()

1
23" AiMgo™ % (s) ol (s)

N TAS) ’
X [:_<P(S) P())] }d5>0.

(37)
Then (1) is oscillatory.

3. Oscillation Results for
f(uy, ..., u,) without Monotonicity

Throughout this section we assume that the following condi-
tions hold:
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(A'l) there exists a function o(t) € C'([to,oo),(O, 00))
such that o(t) = min{t, min, ., {infe (o g 9:(t: I,

lim, _, ,o(t) = 00,0 (t) > 0.

(A}) there exists a constant y > 0 and iy € {1,2,...,m}

such that for sufficiently large |u;| (i #1,)

fupeow)

I/lzo

lim inf
l”iol -

>y>0. (38)

Lemma 11. Let x(t) be an eventually positive solution of (1).
Then, there exists a sufficiently large T, > t,, such that fort >
T,, we have

>0, " PV@so  xP@<o0 (39

The proof is similar to that of Lemma 4, thus we omit the

details here.

Lemma 12. Let x(t) be an eventually positive solution of (1).

Then, there exists a sufficiently large T, > t,, such that for any

interval [c,b) C [T, 00), if let

p () X" (t)
x[o(t)/2] °

where p(t) € C'([t,, 00), (0, 00)), then for any H € ®,

u(t) = € [c,b), (40)

b B
| yH(b,s>p(s)(j q(s,adu(&))ds

<H(b,c)u(c)
L1 J pGs) ()
2 ) Myo™2(s)a’ (s)

2
x [hz b,s) - VH (b,3) (” (( )) (s))]
Proof. From (1) and (40) we have that for ¢ € [c,b)
u' (1)

p () x™ )+ p' (1) x"V (1)
x[o(t) /2]
u® x,[a(t)
2x [0 (¢) /2] 2

" [£a® f (x[g 6O x (g (0. O]) du®)

x[o(t) /2]
(P (t)
(1)

x'[o (1) /2]
2x [0 (t) /2]

From Lemma 11, there exists a sufficiently large T,, > ¢, such

that for all t > T|, (39) hold and further from (A')

a(t)

] o ()

p())u(t)— o (Ou(t).

(42)

a(t)
2 (43)
ym; &€ [a, .

<o) <t, gt =20()>——

i=12,...

Hence, we have for all t > T,

SV [ED) D0, (g, 68 2 xl0 ()21,

i=12,....m&€ [ B].
(44)
From (44) and (A;), forallt > T,
f(X [gl (t,f)] R A [gm (t>€)])
(45)
> yx[g, 0] 2yx [T2], g elap).
Thus, for all t > T,
1248 F(x[g .O].....x [, (1. E]) du ©)
x[0 (/2] o)
B
>y [ du®.
Therefore, from (42)-(46) and Lemma 3, we obtain
, B
W O<pp® | atEdu®
p (1) 47
(20 p0)utn @)

- % p () Mpa™ 2 (t) o' (t) u® (t).

The rest of the proof is similar to that of Lemma 5 and thus
we omit the details here. O

Similar to the proof in Section 2, we have the following
results.

Lemma 13. Let x(t) be an eventually positive solution of (1).
Then, there exists a sufficiently large Ty > t, such that, for any

interval (a, c] C [T, 00), if let u(t) be defined by (40) on (a, cl,
then for any H € O,

¢ B
[ yH(w)p(s)(j q(s,f)du(é))dss—H(c,a)u(C)

L (¢ p(s)
2 I Myo™2(s) o' (s)

) 2
X [hl (s,a) + VH (s,a) (/;—(SS)) —p(s))] ds
(48)

The following theorem is an immediate result from
Lemmas 12 and 13.



Theorem 14. Assume that for each T > t there exist H € @,
pe C'([to,oo), (0,00)) and a,b,c € R, such that T <a < c <
b and

1 ¢ B
T j VH (5,a) p (5) (j q (&) du (5)) ds
1 b B
) j VH (b,5) p (5) (j q(8) du(5)>ds

1 { 1 J“ p(s)
>
2My | H(c,a) Ja 0"72(s)a’ (s)

) 2
X [hl (s,a) + \/H(s,a)<p—(5) —p(s))] ds

p(s)
1 (" p®)
' H (b,c) L "% (s)a’ (s)
' (s) ’
X [hz (b,s)— VH (5, 5) (’;TSS) —p(s))] ds}.
(49)

Then (1) is oscillatory.

Theorem 15. Assume that for some H € @ and p €
C'([ty, 00), (0, 00)), and for each r > t,

t B
lim sup J <|yH (s,7) p(s) J- q(s,&)du (&)

t — 0o

P
2Myo™ 2 (s) o’ (s)

X [hl (s,7)

! 2
+\/H(s,r)<p—(s) —p(s))] }ds > 0,

p(s)
(50)

t B
li:nsupj ‘IYH(RS)P(S)J q(s,§)du(§)
B p(s)
2Myo™ 2 (s) o’ (s)

X [h2 (t,s)

) 2
—\/H(t,s)(iT(ss)) —p(s))] ]»ds > 0.

(51)

Then (1) is oscillatory.
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Theorem 16. Assume that for each T > t,, there exist H € @,
and a,c € Rsuch thatT < a < c and

c B
J VH(s—a)<J [q(s,8) +q(2c-5,8)] d#(E))ds

. Jc{[h(s—a)—p(s) VEG-a)|’

>
2My "2 (s) o’ (s)

+

[h(s—a) +pQc—ys) \/H(s—a)]2 p
0"2(2c—s)o’ (2c-s) >

(52)
Then (1) is oscillatory.

Corollary17. Ifthere exists a function p € C'([t,, 00), (0, 00))
and a constant A > 1 such that for each v > t,, the following
two inequalities hold

. I
lim supt/\—71 J y(s— r)’\p (s)

B 1

X { L q(s,8)du (&) - WMo (5) 0 (5) (53)

A p'(s) ’

x :+(p(s) _p(s))] }d5>0’

1 t

lim sup J y(t-s)p(s)

B 1

X L q(s,&)du ) - Mo (5) 0" (5) (54)

LG ’
X :-(P(S) —p(s)):| }d5>0.
Then (1) is oscillatory.

4. Examples

In this section we demonstrate the applications of our
oscillation criteria through two examples. We will see that the
equations in the examples are oscillatory based on the results
in Sections 2 and 3.

Example 1. Consider the following nonlinear damped differ-
ential equation:

2t
)+ ———x )
(94

p(t?)
1

+ J e [x(t +&) +x(3t +Ez)
0

Xt +E) +x (3t + 52)] dé =0,
(55)
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where t > 1, p(t) = (2t/ eXP(tz))> qt, &) = e, flu,uy) =

iy +ul + 1, g (LE) =t + & gy(t,8) = 3t + 8, u(®) = &
It is clear that for t; > 1

t s
lim j exp (-j p(r)dr)ds
—oo )y t

= lim Jtex _JSLdT ds =00
_t—>oo t P t exp(‘rz) a ’

o, () =t, o, ()=t (56)
d

a—i:1+3uf21:)tl,

of

a—%:1+5u§21=)t2.

Applying Corollary 10 with A = 2 and p(s) = s°, we have
through a straightforward computation that

t
lim supt)tL71 J (s— r))‘p (s)

t — 0o

B 1
X { J-a q(Sa g) d,"i (E) - 22:21 AiMea_in—Z (S) O.il (S)
L (P ’
x [:*(pw ‘“”)] }ds
= h?lilip% J: (s—1)s

1 1 _
% {J 62s+€d£ _ - [ 5s = 3r
0 4Mgs* [s(s—1)

2
2s
- ds = 0o,
exp<s2>H T

li 1
1m supﬁ
t— 0o

JREEFI0

B
x“ q(8) du ()

o

1
2 Y AiMgo % (s) o] (s)

A (P ’
[ (55 e0)] e

. 1
= lim sup—
t— 0o

X Jt (t - s)*s’

r

9
1
™ { j eZS+fd£
0
1 [ss-3t 2 ?
4Mps? [s(t—s) exp(s?)
X ds = 00.
(57)

Therefore (37) hold and we conclude by Corollary 10 that (55)
is oscillatory.

Example 2. Consider the following nonlinear damped differ-
ential equation:

x® (1) + exp (-1) xP (1)

>

+J"/2 t% sin 2& x (t +sin&) B
0 1+sin*E2 —exp (-« (t + cosé)) B

t>1,
(58)

where p(t) = 1/¢, q(t,&) = t% sin 2£/(1 + sin®§), flu,u,) =
u,/(2 - exp(—uf)), g(t,E) =t + cos&, g, (t,E) = t+
sin&, p(&) = &. In this example,

i - 2u,u, exp (—ufz . (59)
- (2-exp(-u}))

Clearly, Corollary 10 does not apply to (58). However, with
A = 2and p(t) = 1, we can prove the oscillatory character of
(58) by Corollary 17. Noting that

f(ulyuz) — 1 Zl:y’ Vuzio’
u, 2—exp(-u?) 2
t s
tlim J exp (— J p (1) dT) ds (60)
=00 Jy, t

t s
= lim J exp(—J idT)dS=00,
t— 0o t, t, et

fort, > 1 and o(t) = t, we have

. 1
lim Sllpﬁ

t— 00

t A
<[ vs=nte

1
2Myo™ 2 (s) o’ (s)

A (P ’
[ (5G-r0)] |

B
x{j q(5,8) duu () -
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1 (1
:limsup?J' E(s—r)2

t— oo r

" J"/z % sin 2€
o 1+sin%

1 2 177
el 2]
2Mgs*ls—r ¢

_ ("1 2 2
:hmsup?j {EIHZS (s—r1)

t— 00 r
208 —s+r)
_g}dszoo,

4Mys?e®
. I A
lim supt)t—_1 J y(t—s)p(s)
t— 00 r

B
x“ q(5.8) du ()

1
- 2Myo" 2 (s) o’ (s)

A (P N,
x [:‘(ms) ‘p“))] }"5‘“”

(61)

therefore (53) and (54) hold and we conclude by Corollary 10
that (58) is oscillatory.
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