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We introduce and analyze hybrid implicit and explicit extragradient methods for finding a zero of an accretive operator and solving
a general system of variational inequalities and a fixed point problem of an infinite family of nonexpansive self-mappings in a
uniformly convex Banach space 𝑋 which has a uniformly Gateaux differentiable norm. We establish some strong convergence
theorems for hybrid implicit and explicit extra-gradient algorithms under suitable assumptions. Furthermore, we derive the strong
convergence of hybrid implicit and explicit extragradient algorithms for finding a common element of the set of zeros of an accretive
operator and the commonfixed point set of an infinite family of nonexpansive self-mappings and a self-mappingwhose complement
is strictly pseudocontractive and strongly accretive in 𝑋. The results presented in this paper improve, extend, supplement, and
develop the corresponding results announced in the earlier and very recent literature.

1. Introduction

Let 𝑋 be a real Banach space whose dual space is denoted by
𝑋
∗. Let 𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1} denote the unite sphere of 𝑋.

A Banach space 𝑋 is said to be uniformly convex if, for each
𝜖 ∈ (0, 2], there exists 𝛿 > 0 such that for all 𝑥, 𝑦 ∈ 𝑈,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ≥ 𝜖 󳨐⇒

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ 1 − 𝛿. (1)

It is known that a uniformly convex Banach space is reflexive
and strict convex. The normalized duality mapping 𝐽 : 𝑋 →

2
𝑋
∗

is defined by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

} , ∀𝑥 ∈ 𝑋,

(2)

where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
𝐽(𝑥) is nonempty for each 𝑥 ∈ 𝑋. Moreover, it is known

that 𝐽 is single-valued if and only if 𝑋 is smooth, whereas if
𝑋 is uniformly smooth, then 𝐽 is norm-to-norm uniformly
continuous on bounded subsets of 𝑋. If 𝑋 has a uniformly
Gateaux differentiable norm, then the duality mapping 𝐽 is
norm-to-weak∗ uniformly continuous on bounded subsets of
𝑋; see for example [1].

Let𝐶 be a nonempty closed convex subset of a real Banach
space𝑋. A mapping 𝑇 : 𝐶 → 𝐶 is called nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶. (3)

The set of fixed points of 𝑇 is denoted by Fix(𝑇). We use
the notation⇀ to indicate the weak convergence and → to
indicate the strong convergence.

Recall that (possibly multivalued) operator 𝐴 ⊂ 𝐸 × 𝐸

with domain𝐷(𝐴) and range𝑅(𝐴) in𝐸 is accretive if, for each
𝑥
𝑖
∈ 𝐷(𝐴) and 𝑦

𝑖
∈ 𝐴𝑥
𝑖
(𝑖 = 1, 2), there exists a 𝑗(𝑥

1
− 𝑥
2
) ∈

𝐽(𝑥
1
−𝑥
2
) such that ⟨𝑦

1
−𝑦
2
, (𝑥
1
−𝑥
2
)⟩ ≥ 0 (here 𝐽 is the duality

mapping). An accretive operator𝐴 is said to satisfy the range
condition if 𝐷(𝐴) ⊂ 𝑅(𝐼 + 𝑟𝐴) for all 𝑟 > 0. An accretive
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operator 𝐴 is 𝑚-accretive if 𝑅(𝐼 + 𝑟𝐴) = 𝐸 for each 𝑟 > 0. If
𝐴 is an accretive operator which satisfies the range condition,
thenwe can define, for each 𝑟 > 0, amapping 𝐽

𝑟
: 𝑅(𝐼+𝑟𝐴) →

𝐷(𝐴) defined by 𝐽
𝑟
= (𝐼 + 𝑟𝐴)

−1, which is called the resolvent
of𝐴. We know that 𝐽

𝑟
is nonexpansive and Fix(𝐽

𝑟
) = 𝐴
−1

0 for
all 𝑟 > 0. Hence

Fix (𝐽
𝑟
) = 𝐴
−1

0 = {𝑧 ∈ 𝐷 (𝐴) : 0 ∈ 𝐴𝑧} . (4)

If 𝐴−10 ̸= 0, then the inclusion 0 ∈ 𝐴𝑧 is solvable.
The following resolvent identity is well known to us; see

[2], where more details on accretive operators can be found.

Proposition 1 (resolvent identity). For 𝜆 > 0, 𝜇 > 0, and 𝑥 ∈
𝑋,

𝐽
𝜆
𝑥 = 𝐽
𝜇
(
𝜇

𝜆
𝑥 + (1 −

𝜇

𝜆
) 𝐽
𝜆
𝑥) . (5)

Recently, Aoyama et al. [3] studied the following iterative
scheme in a uniformly convex Banach space having a uni-
formly Gareaux differentiable norm: for resolvents 𝐽

𝑟
𝑛

of an
accretive operator 𝐴 such that 𝐴−10 ̸= 0 and 𝐷(𝐴) ⊂ 𝐶 ⊂

⋂
𝑟>0

𝑅(𝐼 + 𝑟𝐴) and {𝛼
𝑛
} ⊂ (0, 1),

𝑥
0
= 𝑥 ∈ 𝐶,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥 + (1 − 𝛼

𝑛
) 𝐽
𝑟
𝑛

𝑥
𝑛
.

(6)

They proved that the sequence {𝑥
𝑛
} generated by (6) con-

verges strongly to a zero of𝐴 under appropriate assumptions
on {𝛼
𝑛
} and {𝑟

𝑛
}. Subsequently, Ceng et al. [4] introduced and

analyzed the following composite iterative scheme in either a
uniformly smooth Banach space or a reflexive Banach space
having a weakly sequentially continuous duality mapping,

𝑥
0
= 𝑥 ∈ 𝐸,

𝑦
𝑛
= 𝛼
𝑛
𝑢 + (1 − 𝛼

𝑛
) 𝐽
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝐽
𝑟
𝑛

𝑦
𝑛
,

(7)

where 𝑢 ∈ 𝐷(𝐴) is an arbitrary (but fixed) element, under the
following control conditions:

(H1) lim
𝑛→∞

𝛼
𝑛
= 0;

(H2) ∑∞
𝑛=0

𝛼
𝑛
= ∞, or, equivalently,∏∞

𝑛=0
(1 − 𝛼

𝑛
) = 0;

(H3) ∑∞
𝑛=1

|𝛼
𝑛
− 𝛼
𝑛−1
| < ∞;

(H4) 𝑟
𝑛
≥ 𝜀, for all 𝑛 ≥ 0, for some 𝜀 > 0 and ∑∞

𝑛=1
|𝑟
𝑛
−

𝑟
𝑛−1
| < ∞;

(H5) 𝛽
𝑛
∈ [0, 𝑎) for some 𝑎 ∈ (0, 1) and ∑∞

𝑛=1
|𝛽
𝑛
− 𝛽
𝑛−1
| <

∞.

Furthermore, as the viscosity approximation method,
Jung [5] purposed and analyzed the following composite
iterative scheme for finding a zero of an accretive operator𝐴:
for resolvent 𝐽

𝑟
𝑛

of an accretive operator𝐴 such that𝐴−10 ̸= 0

and 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂
𝑟>0

𝑅(𝐼 + 𝑟𝐴), 𝑓 ∈ Ξ
𝐶
(Ξ
𝐶
denotes the set

of all contractions on 𝐶) and {𝛼
𝑛
}, {𝛽
𝑛
} ⊂ (0, 1),

𝑥
0
= 𝑥 ∈ 𝐶,

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝐽
𝑟
𝑛

𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑦
𝑛
+ 𝛽
𝑛
𝐽
𝑟
𝑛

𝑦
𝑛
.

(8)

He established the strong convergence of the sequence {𝑥
𝑛
}

generated by (8) to a zero of 𝐴 under certain appropriate
conditions.

Theorem 2 (see [5, Theorem 3.1]). Let 𝑋 be a strictly convex
and reflexive Banach space having a uniformly Gateaux
differentiable norm. Let 𝐶 be a nonempty closed convex subset
of 𝑋 and 𝐴 ⊂ 𝑋 × 𝑋 an accretive operator in 𝑋 such that
𝐴
−1

0 ̸= 0 and 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂
𝑟>0

𝑅(𝐼 + 𝑟𝐴). Let {𝛼
𝑛
} and {𝛽

𝑛
}

be sequences in (0, 1) which satisfy the following conditions:

(C1) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(B1) 𝛽
𝑛
∈ [0, 𝑎) for some 0 < 𝑎 < 1 for all 𝑛 ≥ 0.

Let 𝑓 ∈ Ξ
𝐶
and 𝑥

0
∈ 𝐶 be chosen arbitrarily. Let {𝑥

𝑛
} be a

sequence generated by (8) for 𝑟
𝑛
> 0. If {𝑥

𝑛
} is asymptotically

regular, that is, lim
𝑛→∞

‖ 𝑥
𝑛+1

− 𝑥
𝑛
‖= 0, then {𝑥

𝑛
} converges

strongly to 𝑞 ∈ 𝐴
−1

0, which is the unique solution of the
variational inequality problem (VIP)

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑓 ∈ Ξ
𝐶
, 𝑝 ∈ 𝐴

−1

0. (9)

On the other hand, we first recall the following concepts.

Definition 3. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝑋 and let 𝐴 : 𝐶 → 𝑋 be a mapping of 𝐶
into𝑋. Then 𝐴 is said to be:

(i) accretive if, for each 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥 − 𝑦) ∈
𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0, (10)

where 𝐽 is the normalized duality mapping;
(ii) 𝛼-strongly accretive if, for each 𝑥, 𝑦 ∈ 𝐶, there exists

𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

, (11)

for some 𝛼 ∈ (0, 1);
(iii) 𝛽-inverse-strongly-accretive if, for each 𝑥, 𝑦 ∈ 𝐶,

there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛽
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

, (12)

for some 𝛽 > 0;
(iv) 𝜆-strictly pseudocontractive [6] if, for each 𝑥, 𝑦 ∈ 𝐶,

there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝜆
󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

(13)

for some 𝜆 ∈ (0, 1).
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It is worth emphasizing that the definition of the inverse
strongly accretive mapping is based on that of the inverse
strongly monotone mapping, which was studied by so many
authors; see, for example, [7–9].

Very recently, Cai and Bu [10] considered the following
general system of variational inequalities (GSVI) in a real
smooth Banach space 𝑋, which involves finding (𝑥∗, 𝑦∗) ∈
𝐶 × 𝐶 such that

⟨𝜇
1
𝐵
1
𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2
𝐵
2
𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(14)

where 𝐶 is a nonempty, closed, and convex subset of 𝑋,
𝐵
1
, 𝐵
2
: 𝐶 → 𝑋 are two nonlinear mappings, and 𝜇

1
and 𝜇

2

are two positive constants. Here the set of solutions of GSVI
(14) is denoted by GSVI(𝐶, 𝐵

1
, 𝐵
2
). In particular, if 𝑋 = 𝐻,

a real Hilbert space, then GSVI (14) reduces to the following
GSVI of finding (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that

⟨𝜇
1
𝐵
1
𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2
𝐵
2
𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝑥 − 𝑦
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(15)

where 𝜇
1
and 𝜇

2
are two positive constants. The set of

solutions of problem (15) is still denoted by GSVI(𝐶, 𝐵
1
, 𝐵
2
).

In particular, if 𝐵
1
= 𝐵
2
= 𝐴, then problem (15) reduces to

the new system of variational inequalities (NSVI), introduced
and studied by Verma [11]. Furthermore, if 𝑥∗ = 𝑦

∗ addi-
tionally, then the NSVI reduces to the classical variational
inequality problem (VIP) of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐴𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (16)

The solution set of the VIP (16) is denoted by VI(𝐶, 𝐴). Vari-
ational inequality theory has been studied quite extensively
and has emerged as an important tool in the study of a
wide class of obstacle, unilateral, free, moving, equilibrium
problems. It is now well known that the variational inequal-
ities are equivalent to the fixed point problems, the origin
of which can be traced back to Lions and Stampacchia [12].
This alternative formulation has been used to suggest and
analyze projection iterative method for solving variational
inequalities under the conditions that the involved operator
must be strongly monotone and Lipschitz continuous.

Recently, Ceng et al. [13] transformed problem (15) into a
fixed point problem in the following way.

Lemma 4 (see [13]). For a given 𝑥, 𝑦 ∈ 𝐶, (𝑥, 𝑦) is a solution
of problem (15) if and only if 𝑥 is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by

𝐺 (𝑥) = 𝑃
𝐶
[𝑃
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)

−𝜇
1
𝐵
1
𝑃
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] , ∀𝑥 ∈ 𝐶,

(17)

where 𝑦 = 𝑃
𝐶
(𝑥−𝜇

2
𝐵
2
𝑥) and 𝑃

𝐶
is the projection of𝐻 onto𝐶.

In particular, if the mapping 𝐵
𝑖
: 𝐶 → 𝐻 is 𝛽

𝑖
-inverse

strongly monotone for 𝑖 = 1, 2, then the mapping 𝐺 is nonex-
pansive provided 𝜇

𝑖
∈ (0, 2𝛽

𝑖
) for 𝑖 = 1, 2.

In 1976, Korpelevič [14] proposed an iterative algorithm
for solving the VIP (16) in Euclidean space R𝑛 as follows:

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜏𝐴𝑥

𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝜏𝐴𝑦

𝑛
) , 𝑛 ≥ 0,

(18)

with 𝜏 > 0 a given number, which is known as the
extragradientmethod (see also [15]).The literature on theVIP
is vast and Korpelevich’s extragradient method has received
great attention given by many authors, who improved it
in various ways; see, for example, [10, 13, 16–23] the and
references therein, to name but a few.

In particular, whenever 𝑋 is still a real smooth Banach
space, 𝐵

1
= 𝐵
2
= 𝐴, and 𝑥∗ = 𝑦

∗, then GSVI (17) reduces
to the variational inequality problem (VIP) of finding 𝑥∗ ∈ 𝐶
such that

⟨𝐴𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (19)

which was considered by Aoyama et al. [24]. Note that VIP
(19) is connected with the fixed point problem for nonlinear
mapping (see, e.g., [15, 25]), the problem of finding a zero
point of a nonlinear operator (see, e.g., [1, 26]), and so on.
It is clear that VIP (19) extends VIP (16) from Hilbert spaces
to Banach spaces.

In order to find a solution of VIP (19), Aoyama et al. [24]
introduced the following iterative scheme for an accretive
operator 𝐴:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
)Π
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) , ∀𝑛 ≥ 1, (20)

whereΠ
𝐶
is a sunny nonexpansive retraction from𝑋 onto𝐶.

Then they proved a weak convergence theorem.
Beyond doubt, it is an interesting and valuable problem

of constructing some algorithms with strong convergence
for solving GSVI (14) which contains VIP (19) as a special
case. Very recently, Cai and Bu [10] constructed an iterative
algorithm for solving GSVI (14) and a common fixed point
problem of an infinite family of nonexpansive mappings in
a uniformly convex and 2-uniformly smooth Banach space.
They proved the strong convergence of the proposed algo-
rithm by virtue of the following inequality in a 2-uniformly
smooth Banach space𝑋.

Lemma 5 (see [27]). Let 𝑋 be a 2-uniformly smooth Banach
space. Then

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥)⟩ + 2
󵄩󵄩󵄩󵄩𝜅𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝑋, (21)

where 𝜅 is the 2-uniformly smooth constant of 𝑋 and 𝐽 is the
normalized duality mapping from 𝑋 into𝑋∗.

Define the mapping 𝐺 : 𝐶 → 𝐶 as follows:

𝐺 (𝑥) := Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥, ∀𝑥 ∈ 𝐶. (22)

The fixed point set of 𝐺 is denoted by Ω. Then their strong
convergence theorem on the proposed method is stated as
follows.
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Theorem 6 (see [10, Theorem 3.1]). Let 𝐶 be a nonempty
closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let the mapping 𝐵
𝑖
: 𝐶 → 𝑋 be

𝛽
𝑖
-inverse strongly accretive with 0 < 𝜇

𝑖
< 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2.

Let 𝑓 be a contraction of𝐶 into itself with coefficient 𝛿 ∈ (0, 1).
Let {𝑆

𝑛
}
∞

𝑛=1
be an infinite family of nonexpansive mappings of

𝐶 into itself such that 𝐹 = ⋂∞
𝑖=1

Fix(𝑆
𝑖
) ∩ Ω ̸= 0, where Ω is the

fixed point set of the mapping𝐺 defined by (22). For arbitrarily
given 𝑥

1
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆
𝑛
𝑦
𝑛
,

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑧
𝑛
,

𝑧
𝑛
= Π
𝐶
(𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
) ,

𝑢
𝑛
= Π
𝐶
(𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
) , ∀𝑛 ≥ 1.

(23)

Suppose that {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1) satisfying

the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that∑∞
𝑛=1

sup
𝑥∈𝐷

‖𝑆
𝑛+1
𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into 𝑋 defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑛=1
Fix(𝑆
𝑛
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ 𝐹, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (24)

Corollary 7 (see [10, Corollary 3.2]). Let 𝐶 be a nonempty
closed convex subset of a uniformly convex and 2-uniformly
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let the mapping 𝐵
𝑖
: 𝐶 → 𝑋 be

𝛽
𝑖
-inverse strongly accretive with 0 < 𝜇

𝑖
< 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2.

Let 𝑓 be a contraction of𝐶 into itself with coefficient 𝛿 ∈ (0, 1).
Let 𝑆 be a nonexpansive mapping of 𝐶 into itself such that
𝐹 = Fix(𝑆) ∩ Ω ̸= 0, where Ω is the fixed point set of the
mapping 𝐺 defined by (22). For arbitrarily given 𝑥

1
∈ 𝐶, let

{𝑥
𝑛
} be the sequence generated by

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆𝑦
𝑛
,

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑧
𝑛
,

𝑧
𝑛
= Π
𝐶
(𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
) ,

𝑢
𝑛
= Π
𝐶
(𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
) , ∀𝑛 ≥ 1.

(25)

Suppose that {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1) satisfying

the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Then {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹, which solves the follow-

ing VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (26)

We remark that in Theorem 6, the Banach space 𝑋 is
both uniformly convex and 2-uniformly smooth. According
to Lemma 5, the 2-uniform smoothness of 𝑋 guarantees
the nonexpansivity of the mapping 𝐼 − 𝜇

𝑖
𝐵
𝑖
for 𝛼
𝑖
-inverse-

strongly accretive mapping 𝐵
𝑖
: 𝐶 → 𝑋 with 0 ≤ 𝜇

𝑖
≤ 𝛼
𝑖
/𝜅
2

for 𝑖 = 1, 2, and hence the composite mapping 𝐺 : 𝐶 → 𝐶

is nonexpansive where 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
).

In the meantime, for the convenience of implementing the
argument techniques in [13], they have applied the following
inequality in a real smooth and uniform convex Banach space
𝑋.

Proposition 8 (see [28]). Let𝑋 be a real smooth and uniform
convex Banach space and let 𝑟 > 0. Then there exists a strictly
increasing, continuous, and convex function 𝑔 : [0, 2𝑟] → R,
𝑔(0) = 0 such that

𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) ≤ ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽 (𝑦)⟩ +
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐵
𝑟
,

(27)

where 𝐵
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}.

Let 𝐶 be a nonempty closed convex subset of a uniformly
convex Banach space 𝑋 which has a uniformly Gateaux dif-
ferentiable norm. LetΠ

𝐶
be a sunny nonexpansive retraction

from 𝑋 onto 𝐶. Motivated and inspired by the research
going on this area, we introduce and analyze hybrid implicit
and explicit extragradient methods for finding a zero of an
accretive operator 𝐴 ⊂ 𝑋 × 𝑋 such that 𝐷(𝐴) ⊂ 𝐶 ⊂

⋂
𝑟>0

𝑅(𝐼 + 𝑟𝐴) and solving GSVI (14) and a fixed point prob-
lem of an infinite family of nonexpansive self-mappings on𝐶.
We establish some strong convergence theorems for hybrid
implicit and explicit extragradient algorithms under suitable
assumptions. Furthermore, we derive the strong convergence
of hybrid implicit and explicit extragradient algorithms for
finding a common element of the set of zeros of an accretive
operator and the common fixed point set of an infinite family
of nonexpansive self-mappings on 𝐶 and a self-mapping
whose complement is strictly pseudocontractive and strongly
accretive on 𝐶. The results presented in this paper improve,
extend, supplement, and develop the corresponding results
announced in the earlier and very recent literature; see, for
example, [5, 10, 13, 16].

2. Preliminaries

Let 𝑋 be a real Banach space. 𝑋 is said to be smooth if the
limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡
, (28)

exists for all 𝑥, 𝑦 ∈ 𝑈; in this case, 𝑋 is also said to have a
Gateaux differentiable norm. 𝑋 is said to have a uniformly
Gateaux differentiable norm if for each 𝑦 ∈ 𝑈, the limit
is attained uniformly for 𝑥 ∈ 𝑈. Moreover, it is said to be
uniformly smooth if this limit is attained uniformly for 𝑥, 𝑦 ∈
𝑈. The norm of 𝑋 is said to be the Frechet differential if, for
each 𝑥 ∈ 𝑈, this limit is attained uniformly for 𝑦 ∈ 𝑈. In
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addition, we define a function 𝜌 : [0,∞) → [0,∞) called
the modulus of smoothness of𝑋 as follows:

𝜌 (𝜏) = sup {1
2
(
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

−1 : 𝑥, 𝑦 ∈ 𝑋, ‖𝑥‖ = 1,
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 𝜏} .

(29)

It is known that 𝑋 is uniformly smooth if and only if
lim
𝜏→0

𝜌(𝜏)/𝜏 = 0. Let 𝑞 be a fixed real number with 1 < 𝑞 ≤
2. Then a Banach space 𝑋 is said to be 𝑞-uniformly smooth
if there exists a constant 𝑐 > 0 such that 𝜌(𝜏) ≤ 𝑐𝜏

𝑞 for all
𝜏 > 0. As pointed out in [29], no Banach space is 𝑞-uniformly
smooth for 𝑞 > 2.

We list some lemmas that will be used in the sequel.
Lemma 9 can be found in [30]. Lemma 10 is an immediate
consequence of the subdifferential inequality of the function
(1/2)‖ ⋅ ‖

2.

Lemma 9. Let {𝑠
𝑛
} be a sequence of nonnegative real numbers

satisfying

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝛽
𝑛
+ 𝛾
𝑛
, ∀𝑛 ≥ 0, (30)

where {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} satisfy the following conditions:

(i) {𝛼
𝑛
} ⊂ [0, 1] and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛽
𝑛
≤ 0;

(iii) 𝛾
𝑛
≥ 0, for all 𝑛 ≥ 0, and ∑∞

𝑛=0
𝛾
𝑛
< ∞.

Then lim sup
𝑛→∞

𝑠
𝑛
= 0.

Lemma 10. In a smooth Banach space 𝑋, there holds the
inequality

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥 + 𝑦)⟩ , ∀𝑥, 𝑦 ∈ 𝑋. (31)

Lemma 11 (see [6]). Let𝐶 be a nonempty closed convex subset
of a real smooth Banach space 𝑋 and let 𝐴 : 𝐶 → 𝑋 be a 𝜆-
strictly pseudocontractive mapping.Then𝐴 is Lipschitz contin-
uous with constant 1 + 1/𝜆.

Proof. Since 𝐴 : 𝐶 → 𝑋 is a 𝜆-strictly pseudocontractive
mapping, we have for all 𝑥, 𝑦 ∈ 𝐶

⟨𝐴𝑥 − 𝐴𝑦, 𝐽 (𝑥 − 𝑦)⟩ ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− 𝜆
󵄩󵄩󵄩󵄩𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

,

(32)

and hence

𝜆
󵄩󵄩󵄩󵄩(𝐼 − 𝐴) 𝑥 − (𝐼 − 𝐴) 𝑦

󵄩󵄩󵄩󵄩

2

≤ ⟨(𝐼 − 𝐴) 𝑥 − (𝐼 − 𝐴) 𝑦, 𝐽 (𝑥 − 𝑦)⟩ .

(33)

This yields

󵄩󵄩󵄩󵄩(𝐼 − 𝐴) 𝑥 − (𝐼 − 𝐴) 𝑦
󵄩󵄩󵄩󵄩 ≤

1

𝜆

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶.

(34)

Therefore,
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝐼 − 𝐴) 𝑥 − (𝐼 − 𝐴) 𝑦

󵄩󵄩󵄩󵄩

≤ (1 +
1

𝜆
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶.

(35)

Let 𝐷 be a subset of 𝐶 and let Π be a mapping of 𝐶 into
𝐷. Then Π is said to be sunny if

Π [Π (𝑥) + 𝑡 (𝑥 − Π (𝑥))] = Π (𝑥) , (36)

whenever Π(𝑥) + 𝑡(𝑥 − Π(𝑥)) ∈ 𝐶 for 𝑥 ∈ 𝐶 and 𝑡 ≥ 0. A
mapping Π of 𝐶 into itself is called a retraction if Π2 = Π. If
a mappingΠ of 𝐶 into itself is a retraction, thenΠ(𝑧) = 𝑧 for
every 𝑧 ∈ 𝑅(Π) where 𝑅(Π) is the range of Π. A subset 𝐷 of
𝐶 is called a sunny nonexpansive retract of 𝐶 if there exists a
sunny nonexpansive retraction from𝐶 onto𝐷.The following
lemma concerns the sunny nonexpansive retraction.

Lemma 12 (see [31]). Let 𝐶 be a nonempty closed convex
subset of a real smooth Banach space 𝑋. Let 𝐷 be a nonempty
subset of 𝐶. LetΠ be a retraction of 𝐶 onto𝐷. Then the follow-
ing are equivalent:

(i) Π is sunny and nonexpansive;

(ii) ‖Π(𝑥) − Π(𝑦)‖2 ≤ ⟨𝑥 − 𝑦, 𝐽(Π(𝑥) − Π(𝑦))⟩, for all
𝑥, 𝑦 ∈ 𝐶;

(iii) ⟨𝑥 − Π(𝑥), 𝐽(𝑦 − Π(𝑥))⟩ ≤ 0, for all 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

It is well known that if 𝑋 = 𝐻 a Hilbert space, then
a sunny nonexpansive retraction Π

𝐶
is coincident with the

metric projection from 𝑋 onto 𝐶; that is, Π
𝐶
= 𝑃
𝐶
. If 𝐶

is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space 𝑋 and if 𝑇 : 𝐶 → 𝐶 is
a nonexpansive mapping with the fixed point set Fix(𝑇) ̸= 0,
then the set Fix(𝑇) is a sunny nonexpansive retract of 𝐶.

Lemma 13 (see [32]). Let 𝑋 be a uniformly convex Banach
space and 𝐵

𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}, 𝑟 > 0. Then there exists

a continuous, strictly increasing, and convex function 𝑔 : [0,

∞] → [0,∞], 𝑔(0) = 0 such that

󵄩󵄩󵄩󵄩𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧
󵄩󵄩󵄩󵄩

2

≤ 𝛼‖𝑥‖
2

+ 𝛽
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

+ 𝛾‖𝑧‖
2

− 𝛼𝛽𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

(37)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐵
𝑟
and all 𝛼, 𝛽, 𝛾 ∈ [0, 1] with 𝛼 + 𝛽 + 𝛾 = 1.

Lemma 14 (see [33]). Let 𝐶 be a nonempty closed convex
subset of a Banach space 𝑋. Let 𝑆

0
, 𝑆
1
, . . . be a sequence

of mappings of 𝐶 into itself. Suppose that ∑∞
𝑛=1

sup{‖𝑆
𝑛
𝑥 −

𝑆
𝑛−1
𝑥‖ : 𝑥 ∈ 𝐶} < ∞. Then for each 𝑦 ∈ 𝐶, {𝑆

𝑛
𝑦} converges

strongly to some point of 𝐶. Moreover, let 𝑆 be a mapping of 𝐶
into itself defined by 𝑆𝑦 = lim

𝑛→∞
𝑆
𝑛
𝑦 for all 𝑦 ∈ 𝐶. Then

lim
𝑛→∞

sup{‖𝑆𝑥 − 𝑆
𝑛
𝑥‖ : 𝑥 ∈ 𝐶} = 0.

Let 𝐶 be a nonempty closed convex subset of a Banach
space𝑋 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive mapping with
Fix(𝑇) ̸= 0. As previously mentioned, let Ξ

𝐶
be the set of all

contractions on𝐶. For 𝑡 ∈ (0, 1) and 𝑓 ∈ Ξ
𝐶
, let 𝑥
𝑡
∈ 𝐶 be the

unique fixed point of the contraction 𝑥 󳨃→ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑇𝑥

on 𝐶; that is,

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
) + (1 − 𝑡) 𝑇𝑥

𝑡
. (38)
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Lemma 15 (see [15]). Let 𝑋 be a reflexive and strictly convex
Banach space with a uniformly Gateaux differentiable norm.
Let 𝐶 a nonempty closed convex subset of 𝑋,𝑇 : 𝐶 → 𝐶 a
nonexpansive mapping with Fix(𝑇) ̸= 0, and 𝑓 ∈ Ξ

𝐶
. Then the

net {𝑥
𝑡
} defined by 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
) + (1 − 𝑡)𝑇𝑥

𝑡
converges strongly

to a point in Fix(𝑇). If we define a mapping 𝑄 : Ξ
𝐶
→ Fix(𝑇)

by 𝑄(𝑓) := 𝑠 − lim
𝑡→0

𝑥
𝑡
, for all 𝑓 ∈ Ξ

𝐶
, then 𝑄(𝑓) solves the

following VIP:

⟨(𝐼 − 𝑓)𝑄 (𝑓) , 𝐽 (𝑄 (𝑓) − 𝑝)⟩ ≤ 0,

∀𝑓 ∈ Ξ
𝐶
, 𝑝 ∈ Fix (𝑇) .

(39)

Lemma 16 (see [34]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝑋. Let {𝑇

𝑛
}
∞

𝑛=0

be a sequence of nonexpansive mappings on 𝐶. Suppose
⋂
∞

𝑛=0
Fix(𝑇
𝑛
) is nonempty. Let {𝜆

𝑛
} be a sequence of positive

numbers with ∑∞
𝑛=0

𝜆
𝑛
= 1. Then a mapping 𝑆 on 𝐶 defined by

𝑆𝑥 = ∑
∞

𝑛=0
𝜆
𝑛
𝑇
𝑛
𝑥 for 𝑥 ∈ 𝐶 is well defined, nonexpansive and

Fix(𝑆) = ⋂∞
𝑛=0

Fix(𝑇
𝑛
) holds.

Lemma 17 (see [27]). Given a number 𝑟 > 0. A real Banach
space 𝑋 is uniformly convex if and only if there exists a
continuous strictly increasing function 𝑔 : [0,∞) → [0,∞),
𝑔(0) = 0, such that

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑦
󵄩󵄩󵄩󵄩

2

≤ 𝜆‖𝑥‖
2

+ (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆) 𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

(40)

for all 𝜆 ∈ [0, 1] and 𝑥, 𝑦 ∈ 𝑋 such that ‖𝑥‖ ≤ 𝑟 and ‖𝑦‖ ≤ 𝑟.

Lemma 18 (see [24]). Let 𝐶 be a nonempty closed convex
subset of a smooth Banach space 𝑋. Let Π

𝐶
be a sunny

nonexpansive retraction from 𝑋 onto 𝐶 and let 𝐴 be an
accretive operator of 𝐶 into𝑋. Then, for all 𝜆 > 0,

VI (𝐶, 𝐴) = Fix (Π
𝐶
(𝐼 − 𝜆𝐴)) . (41)

Lemma 19. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋 and let the mapping 𝐵

𝑖
: 𝐶 → 𝑋

be 𝜁
𝑖
strictly pseudocontractive and 𝜃

𝑖
strongly accretive with

𝜃
𝑖
+ 𝜁
𝑖
≥ 1 for 𝑖 = 1, 2. Then, for 𝜇

𝑖
∈ (0, 1], we have

󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝑖𝐵𝑖) 𝑥 − (𝐼 − 𝜇𝑖𝐵𝑖) 𝑦
󵄩󵄩󵄩󵄩

≤ {√
1 − 𝜃
𝑖

𝜁
𝑖

+ (1 − 𝜇
𝑖
) (1 +

1

𝜁
𝑖

)}

×
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐶,

(42)

for 𝑖 = 1, 2. In particular, if 1− (𝜁
𝑖
/(1 + 𝜁

𝑖
))(1 −√(1 − 𝜃

𝑖
)/𝜁
𝑖
) ≤

𝜇
𝑖
≤ 1, then 𝐼 − 𝜇

𝑖
𝐵
𝑖
is nonexpansive for 𝑖 = 1, 2.

Proof. Taking into account the 𝜁
𝑖
-strict pseudocontractivity

of 𝐵
𝑖
, by Lemma 11 we derive for every 𝑥, 𝑦 ∈ 𝐶

󵄩󵄩󵄩󵄩𝐵𝑖𝑥 − 𝐵𝑖𝑦
󵄩󵄩󵄩󵄩 ≤ (1 +

1

𝜁
𝑖

)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 . (43)

Utilizing the 𝜃
𝑖
-strong accretivity and 𝜁

𝑖
-strict pseudocon-

tractivity of 𝐵
𝑖
, we get

𝜁
𝑖

󵄩󵄩󵄩󵄩(𝐼 − 𝐵𝑖) 𝑥 − (𝐼 − 𝐵𝑖) 𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

− ⟨𝐵
𝑖
𝑥 − 𝐵
𝑖
𝑦, 𝐽 (𝑥 − 𝑦)⟩

≤ (1 − 𝜃
𝑖
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(44)

So, we have

󵄩󵄩󵄩󵄩(𝐼 − 𝐵𝑖) 𝑥 − (𝐼 − 𝐵𝑖) 𝑦
󵄩󵄩󵄩󵄩 ≤

√
1 − 𝜃
𝑖

𝜁
𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 .

(45)

Therefore, for 𝜇
𝑖
∈ (0, 1], we have

󵄩󵄩󵄩󵄩(𝐼 − 𝜇𝑖𝐵𝑖) 𝑥 − (𝐼 − 𝜇𝑖𝐵𝑖) 𝑦
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝐵𝑖) 𝑥 − (𝐼 − 𝐵𝑖) 𝑦

󵄩󵄩󵄩󵄩

+ (1 − 𝜇
𝑖
)
󵄩󵄩󵄩󵄩𝐵𝑖𝑥 − 𝐵𝑖𝑦

󵄩󵄩󵄩󵄩

≤ √
1 − 𝜃
𝑖

𝜁
𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + (1 − 𝜇𝑖) (1 +

1

𝜁
𝑖

)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

= {√
1 − 𝜃
𝑖

𝜁
𝑖

+ (1 − 𝜇
𝑖
) (1 +

1

𝜁
𝑖

)}
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(46)

Since 1 − (𝜁
𝑖
/(1 + 𝜁

𝑖
))(1 − √(1 − 𝜃

𝑖
)/𝜁
𝑖
) ≤ 𝜇

𝑖
≤ 1, it follows

immediately that

√
1 − 𝜃
𝑖

𝜁
𝑖

+ (1 − 𝜇
𝑖
) (1 +

1

𝜁
𝑖

) ≤ 1. (47)

This implies that 𝐼 − 𝜇
𝑖
𝐵
𝑖
is nonexpansive for 𝑖 = 1, 2.

Lemma 20. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶 and let the mapping 𝐵
𝑖
: 𝐶 → 𝑋

be 𝜁
𝑖
strictly pseudocontractive and 𝜃

𝑖
strongly accretive with

𝜃
𝑖
+ 𝜁
𝑖
≥ 1 for 𝑖 = 1, 2. Let 𝐺 : 𝐶 → 𝐶 be the mapping defined

by

𝐺 (𝑥) = Π
𝐶
[Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)

−𝜇
1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] , ∀𝑥 ∈ 𝐶.

(48)

If 1 − (𝜁
𝑖
/(1 + 𝜁

𝑖
))(1 −√(1 − 𝜃

𝑖
)/𝜁
𝑖
) ≤ 𝜇
𝑖
≤ 1, then 𝐺 : 𝐶 → 𝐶

is nonexpansive.
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Proof. According to Lemma 19, we know that 𝐼 − 𝜇
𝑖
𝐵
𝑖
is

nonexpansive for 𝑖 = 1, 2. Hence, for all 𝑥, 𝑦 ∈ 𝐶, we have
󵄩󵄩󵄩󵄩𝐺 (𝑥) − 𝐺 (𝑦)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩Π𝐶 [Π𝐶 (𝑥 − 𝜇2𝐵2𝑥)

−𝜇
1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)]

− Π
𝐶
[Π
𝐶
(𝑦 − 𝜇

2
𝐵
2
𝑦)

−𝜇
1
𝐵
1
Π
𝐶
(𝑦 − 𝜇

2
𝐵
2
𝑦)]

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩Π𝐶 (𝐼 − 𝜇1𝐵1)Π𝐶 (𝐼 − 𝜇2𝐵2) 𝑥

−Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝜇1𝐵1)Π𝐶 (𝐼 − 𝜇2𝐵2) 𝑥

− (𝐼 − 𝜇
1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩Π𝐶 (𝐼 − 𝜇2𝐵2) 𝑥 − Π𝐶 (𝐼 − 𝜇2𝐵2) 𝑦

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝐼 − 𝜇2𝐵2) 𝑥 − (𝐼 − 𝜇2𝐵2) 𝑦

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(49)

This shows that 𝐺 : 𝐶 → 𝐶 is nonexpansive. This completes
the proof.

Lemma 21. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶 and let 𝐵
1
, 𝐵
2
: 𝐶 → 𝑋 be two

nonlinear mappings. For a given 𝑥
∗

, 𝑦
∗

∈ 𝐶, (𝑥
∗

, 𝑦
∗

) is a
solution of GSVI (14) if and only if 𝑥∗ = Π

𝐶
(𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

)

where 𝑦∗ = Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

).

Proof. We can rewrite GSVI (14) as

⟨𝑥
∗

− (𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

) , 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝑦
∗

− (𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) , 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(50)

which is obviously equivalent to

𝑥
∗

= Π
𝐶
(𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

) ,

𝑦
∗

= Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) ,

(51)

because of Lemma 12. This completes the proof.

Remark 22. By Lemma 21, we observe that

𝑥
∗

= Π
𝐶
[Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) − 𝜇
1
𝐵
1
Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

)] ,

(52)

which implies that 𝑥∗ is a fixed point of the mapping 𝐺 =

Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
). Throughout this paper, the set of

fixed points of the mapping 𝐺 is denoted by Ω.

3. Hybrid Implicit Extragradient Algorithm

In this section, let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly

Gateaux differentiable norm.We suggest and analyze a hybrid
implicit extragradient algorithm for finding a zero of𝐴 ⊂ 𝑋×

𝑋 an accretive operator in 𝑋 with 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂
𝑟>0

𝑅(𝐼 +

𝑟𝐴) and solving a general system of variational inequalities
and a common fixed point problem of an infinite family of
nonexpansive self-mappings in 𝑋.

Theorem 23. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let 𝐴 ⊂ 𝑋 × 𝑋 be an accretive
operator in 𝑋 such that 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂

𝑟>0
𝑅(𝐼 + 𝑟𝐴). Let

𝐵
𝑖
: 𝐶 → 𝑋 be 𝜁

𝑖
strictly pseudocontractive and 𝜃

𝑖
strongly

accretive with 𝜃
𝑖
+ 𝜁
𝑖
≥ 1 for each 𝑖 = 1, 2. Define the mapping

𝐺 : 𝐶 → 𝐶 by 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) where

1 − (𝜁
𝑖
/(1 + 𝜁

𝑖
))(1 − √(1 − 𝜃

𝑖
)/𝜁
𝑖
) ≤ 𝜇

𝑖
≤ 1 for 𝑖 = 1, 2.

Let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient 𝜌 ∈ (0, 1).
Let {𝑆

𝑖
}
∞

𝑖=0
be an infinite family of nonexpansive mappings of 𝐶

into itself such that 𝐹 = ⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Ω ∩ 𝐴

−1

0 ̸= 0 where
Ω = Fix(𝐺). For arbitrarily given 𝑥

0
∈ 𝐶, let {𝑥

𝑛
} be the

sequence generated by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)

× Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦
𝑛
, ∀𝑛 ≥ 0.

(53)

Suppose that {𝑟
𝑛
} ⊂ (0,∞), {𝜎

𝑛
}, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [0, 1],

𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 and the following conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1
(|𝜎
𝑛
−𝜎
𝑛−1
|+ |𝛼
𝑛
−𝛼
𝑛−1
|+ |𝛽
𝑛
−𝛽
𝑛−1
|+ |𝛾
𝑛
−𝛾
𝑛−1
|+

|𝛿
𝑛
− 𝛿
𝑛−1
|) < ∞;

(iv) ∑∞
𝑛=1

|𝑟
𝑛
− 𝑟
𝑛−1
| < ∞ and 𝑟

𝑛
≥ 𝜀 > 0, for all 𝑛 ≥ 0 for

some 𝜀 > 0;

(v) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1
𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ 𝐹, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (54)

Proof. It is easy to see that (53) can be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
) 𝐺𝑦
𝑛
, ∀𝑛 ≥ 0,

(55)

where𝐺 = Π
𝐶
(𝐼−𝜇
1
𝐵
1
) Π
𝐶
(𝐼−𝜇
2
𝐵
2
). By Lemma 20we know

that 𝐺 is a nonexpansive self-mapping on 𝐶.
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Now, let us show that the sequence {𝑥
𝑛
} is bounded.

Indeed, take a fixed 𝑝 ∈ 𝐹 arbitrarily.Then from (55), we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝

󵄩󵄩󵄩󵄩 + 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛾𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

= (1 − 𝛿
𝑛
− (1 − 𝜌) 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

(56)

which hence implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ (1 −

(1 − 𝜌) 𝛼
𝑛

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+
𝛼
𝑛

1 − 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩 .

(57)

So, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ 𝜎𝑛
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + (1 − 𝜎𝑛)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 −
(1 − 𝜌) 𝛼

𝑛

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+
𝛼
𝑛

1 − 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

= (1 −
(1 − 𝜌) 𝛼

𝑛

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+
(1 − 𝜌) 𝛼

𝑛

1 − 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
} .

(58)

By induction, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
} , ∀𝑛 ≥ 0. (59)

Hence {𝑥
𝑛
} is bounded and so are {𝑦

𝑛
}, {𝐺𝑦
𝑛
}, {𝑓(𝑥

𝑛
)}, {𝐽
𝑟
𝑛

𝑥
𝑛
},

and {𝑆
𝑛
𝑦
𝑛
}.

Let us show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (60)

As amatter of fact, observe that𝑦
𝑛
can be rewritten as follows:

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑧
𝑛
, (61)

where 𝑧
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛
)/(1 − 𝛽

𝑛
). Observe

that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

1 − 𝛽
𝑛

−

𝛼
𝑛−1
𝑓(𝑥
𝑛−1
)+𝛾
𝑛−1
𝐽
𝑟
𝑛−1

𝑥
𝑛−1
+𝛿
𝑛−1
𝑆
𝑛−1
𝑦
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

+
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛 − (𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 − 𝛽
𝑛

−
1

1 − 𝛽
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛 − (𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

− 𝛼
𝑛−1
𝑓 (𝑥
𝑛−1
) − 𝛾
𝑛−1
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

−𝛿
𝑛−1
𝑆
𝑛−1
𝑦
𝑛−1

󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛

[𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩



Abstract and Applied Analysis 9

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

×
󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩 .

(62)

On the other hand, if 𝑟
𝑛−1

≤ 𝑟
𝑛
, using the resolvent identity

in Proposition 1,

𝐽
𝑟
𝑛

𝑥
𝑛
= 𝐽
𝑟
𝑛−1

(
𝑟
𝑛−1

𝑟
𝑛

𝑥
𝑛
+ (1 −

𝑟
𝑛−1

𝑟
𝑛

) 𝐽
𝑟
𝑛

𝑥
𝑛
) , (63)

we get

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐽
𝑟
𝑛−1

(
𝑟
𝑛−1

𝑟
𝑛

𝑥
𝑛
+ (1 −

𝑟
𝑛−1

𝑟
𝑛

) 𝐽
𝑟
𝑛

𝑥
𝑛
) − 𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑟
𝑛−1

𝑟
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 + (1 −

𝑟
𝑛−1

𝑟
𝑛

)
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
𝑟
𝑛
− 𝑟
𝑛−1

𝑟
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩 +
1

𝜀

󵄨󵄨󵄨󵄨𝑟𝑛 − 𝑟𝑛−1
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
.

(64)

If 𝑟
𝑛
≤ 𝑟
𝑛−1

, we derive in a similar way

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+
1

𝜀

󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(65)

Thus, combining the above cases we obtain

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝑀
0

󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛
󵄨󵄨󵄨󵄨 , ∀𝑛 ≥ 1,

(66)

where sup
𝑛≥1
{(1/𝜀)(‖𝐽

𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1
‖ + ‖𝐽

𝑟
𝑛−1

𝑥
𝑛−1

− 𝑥
𝑛
‖)} ≤ 𝑀

0

for some𝑀
0
> 0. Substituting (66) into (62), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩 ≤

1

1 − 𝛽
𝑛

[𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝑀0
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛

[𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝑀0
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑆𝑛𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩

+𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

×
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛−1
𝑓 (𝑥
𝑛−1
) + 𝛾
𝑛−1
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

+𝛿
𝑛−1
𝑆
𝑛−1
𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛

[(𝛼
𝑛
𝜌 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+𝑀(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩]

+
1

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀,

(67)

where sup
𝑛≥0
{𝑀
0
+‖𝑓(𝑥

𝑛
)‖+‖𝐽

𝑟
𝑛

𝑥
𝑛
‖+‖𝑆
𝑛
𝑦
𝑛
‖} ≤ 𝑀 for some

𝑀 > 0. In the meantime, simple calculations show that

𝑦
𝑛
− 𝑦
𝑛−1

= 𝛽
𝑛
(𝑥
𝑛
− 𝑥
𝑛−1
) + (1 − 𝛽

𝑛
) (𝑧
𝑛
− 𝑧
𝑛−1
)

+ (𝛽
𝑛
− 𝛽
𝑛−1
) (𝑥
𝑛−1

− 𝑧
𝑛−1
) .

(68)
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Taking into account condition (iv), we may assume, without
loss of generality, that {𝛽

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1).

Hence, from (67) and (68) we deduce that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩 ≤ 𝛽𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ (1 − 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩 + (1 − 𝛽𝑛)

× {
1

1 − 𝛽
𝑛

[(𝛼
𝑛
𝜌 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+𝑀(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩]

+
1

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀}

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

= (𝛼
𝑛
𝜌 + 𝛽
𝑛
+ 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+𝑀(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
1

1 − 𝛽
𝑛−1

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

= (1 − 𝛿
𝑛
− 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+𝑀(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
1

1 − 𝛽
𝑛−1

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩

≤ (1 − 𝛿
𝑛
− 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+ 𝑀̃
0
(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩 ,

(69)

where sup
𝑛≥0
{(𝑀/(1−𝑏)) +‖𝑥

𝑛
−𝑧
𝑛
‖} ≤ 𝑀̃

0
for some 𝑀̃

0
> 0.

Thus, from condition (ii) we immediately get

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩 ≤ (1 −

1 − 𝜌

1 − 𝛿
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
𝑀̃
0

1 − 𝛿
𝑛

(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
𝛿
𝑛

1 − 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩

≤ (1 −
1 − 𝜌

1 − 𝛿
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
𝑀̃
0

1 − 𝑑
(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
𝑑

1 − 𝑑

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩 .

(70)

Also, from (55) we have

𝑥
𝑛+1

− 𝑥
𝑛
= 𝜎
𝑛
(𝑦
𝑛
− 𝑦
𝑛−1
)

+ (𝜎
𝑛
− 𝜎
𝑛−1
) (𝑦
𝑛−1

− 𝐺𝑦
𝑛−1
)

+ (1 − 𝜎
𝑛
) (𝐺𝑦
𝑛
− 𝐺𝑦
𝑛−1
) .

(71)

Taking into account condition (v), we may assume, without
loss of generality, that {𝛽

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1). This

together with (70) implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ 𝜎𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝐺𝑦𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩
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≤ (1 −
1 − 𝜌

1 − 𝛿
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
𝑀̃
0

1 − 𝑑
(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
𝑑

1 − 𝑑

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩

≤ (1 −
1 − 𝜌

1 − 𝛿
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+𝑀
1
(
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
𝑑

1 − 𝑑

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛−1 − 𝑆𝑛−1𝑦𝑛−1
󵄩󵄩󵄩󵄩 ,

(72)

where sup
𝑛≥0
{(𝑀̃
0
/(1−𝑑))+‖𝑦

𝑛
−𝐺𝑦
𝑛
‖} ≤ 𝑀

1
for some𝑀

1
>

0. Since ∑∞
𝑛=0

𝛼
𝑛
= ∞ and ((1 − 𝜌)/(1 − 𝛿

𝑛
))𝛼
𝑛
≥ (1 − 𝜌)𝛼

𝑛
,

we know that ∑∞
𝑛=0
((1 − 𝜌)/(1 − 𝛿

𝑛
))𝛼
𝑛
= ∞. So, applying

Lemma 9 to (72), we obtain from conditions (iii), (iv), and
the assumption on {𝑆

𝑛
} that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (73)

Next we show that ‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, according to Lemma 10 we have from (55)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑝))

+ 𝛽
𝑛
(𝑥
𝑛
− 𝑝) + 𝛾

𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝)

+𝛿
𝑛
(𝑆
𝑛
𝑦
𝑛
− 𝑝) + 𝛼

𝑛
(𝑓 (𝑝) − 𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑝)) + 𝛽𝑛 (𝑥𝑛 − 𝑝)

+𝛾
𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝) + 𝛿

𝑛
(𝑆
𝑛
𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

≤ 𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

= (𝛼
𝑛
𝜌 + 𝛽
𝑛
+ 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

≤ (1 − 𝛿
𝑛
− 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩ ,

(74)

which hence implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
𝛼
𝑛

1 − 𝛿
𝑛

2 ⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦
𝑛
− 𝑝)⟩

≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
𝛼
𝑛

1 − 𝛿
𝑛

2
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(75)

Utilizing Lemma 17, we get from (55) and (75)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜎𝑛 (𝑦𝑛 − 𝑝)

+ (1 − 𝜎
𝑛
) (𝐺𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
𝛼
𝑛

1 − 𝛿
𝑛

2
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+
𝛼
𝑛

1 − 𝛿
𝑛

2
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩) ,

(76)
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which hence yields

𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+
𝛼
𝑛

1 − 𝛿
𝑛

2
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+
𝛼
𝑛

1 − 𝑑
2
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(77)

Since 𝛼
𝑛
→ 0 and ‖𝑥

𝑛+1
−𝑥
𝑛
‖ → 0, from condition (iv) and

the boundedness of {𝑥
𝑛
} and {𝑦

𝑛
}, it follows that

lim
𝑛→∞

𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩) = 0. (78)

Utilizing the properties of 𝑔
1
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (79)

Observe that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞,

(80)

and hence
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩 ≤ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(81)

That is,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (82)

Next, let us show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (83)

Indeed, observe that 𝑦
𝑛
can be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ (𝛾
𝑛
+ 𝛿
𝑛
)

𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

𝛾
𝑛
+ 𝛿
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝑒
𝑛
𝑧̂
𝑛
,

(84)

where 𝑒
𝑛
= 𝛾
𝑛
+ 𝛿
𝑛
and 𝑧̂

𝑛
= (𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛
)/(𝛾
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 13 and (84), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑝)

+𝛽
𝑛
(𝑥
𝑛
− 𝑝) + 𝑒

𝑛
(𝑧̂
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝)

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

]

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

]

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (𝛽
𝑛
+ 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
− 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)
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≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ,

(85)

which hence implies that

𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝

󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 .

(86)

Utilizing (82), conditions (i), (ii), and (v), and the bounded-
ness of {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑓(𝑥

𝑛
)}, we get

lim
𝑛→∞

𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩) = 0. (87)

From the properties of 𝑔
2
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (88)

Utilizing Lemma 17 and the definition of 𝑧̂
𝑛
, we have

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝)

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2
𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
) ,

(89)

which leads to

𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2
𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

)

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

)

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧̂𝑛

󵄩󵄩󵄩󵄩

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧̂𝑛

󵄩󵄩󵄩󵄩

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧̂𝑛

󵄩󵄩󵄩󵄩

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

× (
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧̂𝑛

󵄩󵄩󵄩󵄩) .

(90)

Since {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑧̂

𝑛
} are bounded, ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0, and

‖𝑧̂
𝑛
− 𝑥
𝑛
‖ → 0 as 𝑛 → ∞, we deduce from condition (ii)

that

lim
𝑛→∞

𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0. (91)

From the properties of 𝑔
3
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (92)

On the other hand, 𝑦
𝑛
can also be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛

+ (𝛼
𝑛
+ 𝛿
𝑛
)
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

𝛼
𝑛
+ 𝛿
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝑑
𝑛
𝑧̃
𝑛
,

(93)
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where 𝑑
𝑛
= 𝛼
𝑛
+ 𝛿
𝑛
and 𝑧̃
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛
)/(𝛼
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 13 and the convexity of ‖ ⋅ ‖2, we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝)

+ 𝛾
𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(𝑧̃
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩𝑧̃𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛

𝛼
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑓 (𝑥
𝑛
) − 𝑝)

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛
[

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

]

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (𝛽
𝑛
+ 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
− 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) ,

(94)

which hence implies that

𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) ≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛿
𝑛
) (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝

󵄩󵄩󵄩󵄩

2

+ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 .

(95)

From (82), conditions (i), (ii), and (v), and the boundedness
of {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑓(𝑥

𝑛
)}, we have

lim
𝑛→∞

𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0. (96)

Utilizing the properties of 𝑔
4
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (97)

Note that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 .

(98)

From (82), (92), and (97), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (99)

In terms of (99) and Lemma 14, we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(100)

That is,
lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (101)

Furthermore, we claim that lim
𝑛→∞

‖𝑥
𝑛
− 𝐽
𝑟
𝑥
𝑛
‖ = 0 for a

fixed number 𝑟 such that 𝜀 > 𝑟 > 0. In fact, from the resolvent
identity in Proposition 1, we have

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐽
𝑟
(
𝑟

𝑟
𝑛

𝑥
𝑛
+ (1 −

𝑟

𝑟
𝑛

) 𝐽
𝑟
𝑛

𝑥
𝑛
) − 𝐽
𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (1 −
𝑟

𝑟
𝑛

)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(102)
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So, we get from (102)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐽𝑟𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

= 2
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
.

(103)

Thus, from (97) it follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐽𝑟𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (104)

Define a mapping𝑊𝑥 = (1−𝜃
1
−𝜃
2
)𝐽
𝑟
𝑥+𝜃
1
𝑆𝑥+𝜃

2
𝐺𝑥, where

𝜃
1
, 𝜃
2
∈ (0, 1) are two constants with 𝜃

1
+ 𝜃
2
< 1. Then, by

Lemma 16, we have that Fix(𝑊) = Fix(𝐽
𝑟
) ∩Fix(𝑆)∩Fix(𝐺) =

𝐹. We observe that

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝜃1 − 𝜃2) (𝑥𝑛 − 𝐽𝑟𝑥𝑛)

+𝜃
1
(𝑥
𝑛
− 𝑆𝑥
𝑛
) + 𝜃
2
(𝑥
𝑛
− 𝐺𝑥
𝑛
)
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
1
− 𝜃
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐽𝑟𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝜃
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝜃2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 .

(105)

From (82), (101), and (104), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (106)

Now, we claim that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0, (107)

where 𝑞 = 𝑠 − lim
𝑡→0

𝑥
𝑡
with 𝑥

𝑡
being the fixed point of the

contraction

𝑥 󳨃󳨀→ 𝑡𝑓 (𝑥) + (1 − 𝑡)𝑊𝑥. (108)

Then 𝑥
𝑡
solves the fixed point equation 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
) + (1 −

𝑡)𝑊𝑥
𝑡
. Thus we have

𝑥
𝑡
− 𝑥
𝑛
= (1 − 𝑡) (𝑊𝑥

𝑡
− 𝑥
𝑛
) + 𝑡 (𝑓 (𝑥

𝑡
) − 𝑥
𝑛
) . (109)

By Lemma 10, we conclude that

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩(1 − 𝑡) (𝑊𝑥𝑡 − 𝑥𝑛)

+𝑡 (𝑓 (𝑥
𝑡
) − 𝑥
𝑛
)
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑡)
2󵄩󵄩󵄩󵄩𝑊𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

≤ (1 − 𝑡)
2

(
󵄩󵄩󵄩󵄩𝑊𝑥𝑡 −𝑊𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑊𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)
2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

≤ (1 − 𝑡)
2

(
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑊𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)
2

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

= (1 − 𝑡)
2

[
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

+ 2
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑊𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑊𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

]

+ 2𝑡 ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

+ 2𝑡 ⟨𝑥
𝑡
− 𝑥
𝑛
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

= (1 − 2𝑡 + 𝑡
2

)
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

+ 𝑓
𝑛
(𝑡) + 2𝑡 ⟨𝑓 (𝑥

𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑡
− 𝑥
𝑛
)⟩

+ 2𝑡
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩

2

,

(110)

where

𝑓
𝑛
(𝑡) = (1 − 𝑡)

2

(2
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥𝑛

󵄩󵄩󵄩󵄩)

×
󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(111)

It follows from (110) that

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤

𝑡

2

󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑥𝑛
󵄩󵄩󵄩󵄩

2

+
1

2𝑡
𝑓
𝑛
(𝑡) . (112)

Letting 𝑛 → ∞ in (112) and noticing (111), we derive

lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤

𝑡

2
𝑀
2
, (113)

where𝑀
2
> 0 is a constant such that ‖𝑥

𝑡
− 𝑥
𝑛
‖
2

≤ 𝑀
2
for all

𝑡 ∈ (0, 1) and 𝑛 ≥ 0. Taking 𝑡 → 0 in (113), we have

lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑥
𝑡
− 𝑓 (𝑥

𝑡
) , 𝐽 (𝑥

𝑡
− 𝑥
𝑛
)⟩ ≤ 0. (114)
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On the other hand, we have

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ = ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛
− 𝑞)⟩

− ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

− ⟨𝑓 (𝑞) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑞) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

− ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩

= ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑥
𝑡
− 𝑞, 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑞) − 𝑓 (𝑥
𝑡
) , 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+ ⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩ .

(115)

It follows that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

≤ lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑥
𝑡
)⟩

+
󵄩󵄩󵄩󵄩𝑥𝑡 − 𝑞

󵄩󵄩󵄩󵄩 lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑡
󵄩󵄩󵄩󵄩

+ 𝜌
󵄩󵄩󵄩󵄩𝑞 − 𝑥𝑡

󵄩󵄩󵄩󵄩 lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑡
󵄩󵄩󵄩󵄩

+ lim sup
𝑛→∞

⟨𝑓 (𝑥
𝑡
) − 𝑥
𝑡
, 𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩ .

(116)

Taking into account that 𝑥
𝑡
→ 𝑞 as 𝑡 → 0, we have

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

= lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

≤ lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)

−𝐽 (𝑥
𝑛
− 𝑥
𝑡
)⟩ .

(117)

Since 𝑋 has a uniformly Gateaux differentiable norm, the
duality mapping 𝐽 is norm-to-weak∗ uniformly continuous
on bounded subsets of 𝑋. Consequently, the two limits are
interchangeable and hence (107) holds. From (82), we get
(𝑦
𝑛
−𝑞)−(𝑥

𝑛
−𝑞) → 0. Noticing the norm-to-weak∗ uniform

continuity of 𝐽 on bounded subsets of 𝑋, we deduce from
(107) that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

= lim sup
𝑛→∞

(⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

+ ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞) − 𝐽 (𝑥

𝑛
− 𝑞)⟩)

= lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0.

(118)

Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Indeed,

observe that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑞))

+ 𝛽
𝑛
(𝑥
𝑛
− 𝑞) + 𝛾

𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑞)

+𝛿
𝑛
(𝑆
𝑛
𝑦
𝑛
− 𝑞) + 𝛼

𝑛
(𝑓 (𝑞) − 𝑞)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑞))

+ 𝛽
𝑛
(𝑥
𝑛
− 𝑞) + 𝛾

𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑞)

+𝛿
𝑛
(𝑆
𝑛
𝑦
𝑛
− 𝑞)

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑞)
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

≤ 𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

= (1 − 𝛿
𝑛
− 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩ ,

(119)

which implies that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛

1 − 𝛿
𝑛

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩ .

(120)
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Thus, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+
2𝛼
𝑛

1 − 𝛿
𝑛

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛿
𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+
𝛼
𝑛
(1 − 𝜌)

1 − 𝛿
𝑛

2 ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

1 − 𝜌
.

(121)

Applying Lemma 9 to (121), we conclude from condition (i)
and (118) that 𝑥

𝑛
→ 𝑞 as 𝑛 → ∞. This completes the proof.

The following results can be obtained from Theorem 23.
We, therefore, omit the proof.

Corollary 24. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let 𝐴 ⊂ 𝑋 × 𝑋 be an accretive
operator in 𝑋 such that 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂

𝑟>0
𝑅(𝐼 + 𝑟𝐴). Let

𝐵
𝑖
: 𝐶 → 𝑋 be 𝜁

𝑖
strictly pseudocontractive and 𝜃

𝑖
strongly

accretive with 𝜃
𝑖
+ 𝜁
𝑖
≥ 1 for each 𝑖 = 1, 2. Define the mapping

𝐺 : 𝐶 → 𝐶 by 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) where

1 − (𝜁
𝑖
/(1 + 𝜁

𝑖
))(1 − √(1 − 𝜃

𝑖
)/𝜁
𝑖
) ≤ 𝜇

𝑖
≤ 1 for 𝑖 = 1, 2.

Let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient 𝜌 ∈ (0, 1).
Let 𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping such that 𝐹 =

Fix(𝑆) ∩ Ω ∩𝐴
−1

0 ̸= 0 whereΩ = Fix(𝐺). For arbitrarily given
𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆𝑦
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)

× Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦
𝑛
, ∀𝑛 ≥ 0.

(122)

Suppose that {𝑟
𝑛
} ⊂ (0,∞), {𝜎

𝑛
}, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [0, 1],

𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1, and the following conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1
(|𝜎
𝑛
−𝜎
𝑛−1
|+ |𝛼
𝑛
−𝛼
𝑛−1
|+ |𝛽
𝑛
−𝛽
𝑛−1
|+ |𝛾
𝑛
−𝛾
𝑛−1
|+

|𝛿
𝑛
− 𝛿
𝑛−1
|) < ∞;

(iv) ∑∞
𝑛=1

|𝑟
𝑛
− 𝑟
𝑛−1
| < ∞ and 𝑟

𝑛
≥ 𝜀 > 0, for all 𝑛 ≥ 0 for

some 𝜀 > 0;
(v) 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

Then {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹, which solves the follow-

ing VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (123)

Corollary 25. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let 𝐴 ⊂ 𝑋 × 𝑋 be an accretive
operator in 𝑋 such that 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂

𝑟>0
𝑅(𝐼 + 𝑟𝐴). Let

𝑓 : 𝐶 → 𝐶 be a contraction with coefficient 𝜌 ∈ (0, 1). Let
𝑉 : 𝐶 → 𝐶 be a self-mapping such that 𝐼 − 𝑉 : 𝐶 → 𝑋 is 𝜁
strictly pseudocontractive and 𝜃 strongly accretive with 𝜃 + 𝜁 ≥
1. Let {𝑆

𝑖
}
∞

𝑖=0
be an infinite family of nonexpansive mappings of

𝐶 into itself such that 𝐹 = ⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Fix(𝑉) ∩ 𝐴−10 ̸= 0.

For arbitrarily given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated

by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑦
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
)

× ((1 − 𝛼) 𝐼 + 𝛼𝑉) 𝑦
𝑛
, ∀𝑛 ≥ 0,

(124)

where 1 − (𝜁/(1 + 𝜁))(1 − √(1 − 𝜃)/𝜁) ≤ 𝛼 ≤ 1. Suppose that
{𝑟
𝑛
} ⊂ (0,∞), {𝜎

𝑛
}, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [0, 1], 𝛼

𝑛
+𝛽
𝑛
+𝛾
𝑛
+

𝛿
𝑛
= 1, and the following conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1
(|𝜎
𝑛
−𝜎
𝑛−1
|+ |𝛼
𝑛
−𝛼
𝑛−1
|+ |𝛽
𝑛
−𝛽
𝑛−1
|+ |𝛾
𝑛
−𝛾
𝑛−1
|+

|𝛿
𝑛
− 𝛿
𝑛−1
|) < ∞;

(iv) ∑∞
𝑛=1

|𝑟
𝑛
− 𝑟
𝑛−1
| < ∞ and 𝑟

𝑛
≥ 𝜀 > 0, for all 𝑛 ≥ 0 for

some 𝜀 > 0;

(v) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1
𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ 𝐹, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (125)

Proof. In Theorem 23, we put 𝐵
1
= 𝐼 − 𝑉, 𝐵

2
= 0, and 𝜇

1
= 𝛼

where 1 − (𝜁/(1 + 𝜁))(1 − √(1 − 𝜃)/𝜁) ≤ 𝛼 ≤ 1. Then GSVI
(14) is equivalent to the VIP of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐵
1
𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (126)
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In this case, 𝐵
1
: 𝐶 → 𝑋 is 𝜁 strictly pseudocontractive and

𝜃 strongly accretive. It is not hard to see that Fix(𝑉) = VI(𝐶,
𝐵
1
). As a matter of fact, we have, for 𝛼 > 0,

𝑢 ∈ VI (𝐶, 𝐵
1
) ⇐⇒ ⟨𝐵

1
𝑢, 𝐽 (𝑦 − 𝑢)⟩ ≥ 0, ∀𝑦 ∈ 𝐶

⇐⇒ ⟨𝑢 − 𝛼𝐵
1
𝑢 − 𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≥ 0,

∀𝑦 ∈ 𝐶

⇐⇒ 𝑢 = Π
𝐶
(𝑢 − 𝛼𝐵

1
𝑢)

⇐⇒ 𝑢 = Π
𝐶
(𝑢 − 𝛼𝑢 + 𝛼𝑉𝑢)

⇐⇒ ⟨𝑢 − 𝛼𝑢 + 𝛼𝑉𝑢 − 𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≥ 0,

∀𝑦 ∈ 𝐶

⇐⇒ ⟨𝑢 − 𝑉𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≤ 0, ∀𝑦 ∈ 𝐶

⇐⇒ 𝑢 = 𝑉𝑢

⇐⇒ 𝑢 ∈ Fix (𝑉) .
(127)

Accordingly, we know that 𝐹 = ⋂
∞

𝑖=1
Fix(𝑆
𝑖
) ∩ Ω ∩ 𝐴

−1

0 =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Fix(𝑉) ∩ 𝐴−10, and

Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦
𝑛

= Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
) 𝑦
𝑛

= Π
𝐶
((1 − 𝛼) 𝑦

𝑛
+ 𝛼𝑉𝑦

𝑛
)

= (1 − 𝛼) 𝑦
𝑛
+ 𝛼𝑉𝑦

𝑛
.

(128)

So, the scheme (53) reduces to (124). Therefore, the desired
result follows fromTheorem 23.

Corollary 26. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let 𝐴 ⊂ 𝑋 × 𝑋 be an accretive
operator in 𝑋 such that 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂

𝑟>0
𝑅(𝐼 + 𝑟𝐴). Let

𝑓 : 𝐶 → 𝐶 be a contraction with coefficient 𝜌 ∈ (0, 1). Let
𝑉 : 𝐶 → 𝐶 be a self-mapping such that 𝐼 − 𝑉 : 𝐶 → 𝑋

is 𝜁 strictly pseudocontractive and 𝜃 strongly accretive with
𝜃 + 𝜁 ≥ 1. Let 𝑆 : 𝐶 → 𝐶 be a nonexpansivemapping such that
𝐹 = Fix(𝑆) ∩ Fix(𝑉) ∩ 𝐴−10 ̸= 0. For arbitrarily given 𝑥

0
∈ 𝐶,

let {𝑥
𝑛
} be the sequence generated by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆𝑦
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
) ((1 − 𝛼) 𝐼 + 𝛼𝑉) 𝑦

𝑛
, ∀𝑛 ≥ 0,

(129)

where 1 − (𝜁/(1 + 𝜁))(1 − √(1 − 𝜃)/𝜁) ≤ 𝛼 ≤ 1. Suppose that
{𝑟
𝑛
} ⊂ (0,∞), {𝜎

𝑛
}, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [0, 1], 𝛼

𝑛
+𝛽
𝑛
+𝛾
𝑛
+

𝛿
𝑛
= 1, and the following conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1
(|𝜎
𝑛
−𝜎
𝑛−1
|+ |𝛼
𝑛
−𝛼
𝑛−1
|+ |𝛽
𝑛
−𝛽
𝑛−1
|+ |𝛾
𝑛
−𝛾
𝑛−1
|+

|𝛿
𝑛
− 𝛿
𝑛−1
|) < ∞;

(iv) ∑∞
𝑛=1

|𝑟
𝑛
− 𝑟
𝑛−1
| < ∞ and 𝑟

𝑛
≥ 𝜀 > 0, for all 𝑛 ≥ 0 for

some 𝜀 > 0;
(v) 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

Then {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹, which solves the follow-

ing VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (130)

Remark 27. Our Theorem 23 improves, extends, supple-
ments, and develops Cai and Bu [10, Theorem 3.1 and
Corollary 3.2] and Jung [5, Theorems 3.1] in the following
aspects.

(i) The problem of finding a point 𝑞 ∈ ⋂
𝑛
Fix(𝑆
𝑛
) ∩ Ω ∩

𝐴
−1

0 in our Theorem 23 is more general and more subtle
than every one of both the problem of finding a point 𝑞 ∈

⋂
𝑛
Fix(𝑆
𝑛
) ∩ Ω in Cai and Bu [10, Theorem 3.1] and the

problem of finding a point 𝑞 ∈ 𝐴−10 in Jung [5,Theorem 3.1].
(ii) Our Theorem 23 drops the assumption of the

asymptotical regularity of {𝑥
𝑛
} in [5, Theorems 3.1] (i.e.,

lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+1
‖ = 0).

(iii) Cai and Bu’s proof in [10, Theorem 3.1] depends
on the argument techniques in [13], inequality (21) in 2-
uniformly smooth Banach spaces, and inequality (27) in
smooth and uniform convex Banach spaces. Jung’s proof
in [5, Theorem 3.1] depends on the resolvent identity in
Proposition 1. It is worth emphasizing that the proof of our
Theorem 23 does not depend on the argument techniques in
[13], inequality (21) in 2-uniformly smooth Banach spaces,
and inequality (27) in smooth and uniform convex Banach
spaces. However, it depends on the resolvent identity in
Proposition 1 and the inequalities in uniform convex Banach
spaces; see Lemmas 13 and 17 in Section 2 of this paper.

(iv) The assumption of the uniformly convex and 2-
uniformly smooth Banach space 𝑋 in [10, Theorem 3.1] is
weakened to the one of the uniformly convex Banach space
𝑋 having a uniformly Gateaux differentiable norm in our
Theorem 23.

(v) The iterative scheme in our Theorem 23 is very
different from every one in both [10, Theorem 3.1] and [5,
Theorem 3.1] because the first iteration step in our iterative
scheme is implicit.

(vi) The problem of finding a point 𝑞 ∈ Fix(𝑆) ∩ Ω in [10,
Corollary 3.2] is extended to develop the problem of finding
a point 𝑞 ∈ Fix(𝑆) ∩ Ω ∩ 𝐴

−1

0 in our Corollary 24.

4. Hybrid Explicit Extragradient Algorithm

In this section, let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm.We suggest and analyze a hybrid
explicit extragradient algorithm for finding a zero of𝐴 ⊂ 𝑋×

𝑋 an accretive operator in 𝑋 with 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂
𝑟>0

𝑅(𝐼 +

𝑟𝐴) and solving a general system of variational inequalities
and a common fixed point problem of an infinite family of
nonexpansive self-mappings in 𝑋.
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Theorem 28. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let 𝐴 ⊂ 𝑋 × 𝑋 be an accretive
operator in 𝑋 such that 𝐷(𝐴) ⊂ 𝐶 ⊂ ⋂

𝑟>0
𝑅(𝐼 + 𝑟𝐴). Let

𝐵
𝑖
: 𝐶 → 𝑋 be 𝜁

𝑖
strictly pseudocontractive and 𝜃

𝑖
strongly

accretive with 𝜃
𝑖
+ 𝜁
𝑖
≥ 1 for each 𝑖 = 1, 2. Define the mapping

𝐺 : 𝐶 → 𝐶 by 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) where

1 − (𝜁
𝑖
/(1 + 𝜁

𝑖
))(1 − √(1 − 𝜃

𝑖
)/𝜁
𝑖
) ≤ 𝜇

𝑖
≤ 1 for 𝑖 = 1, 2.

Let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient 𝜌 ∈ (0, 1).
Let {𝑆

𝑖
}
∞

𝑖=0
be an infinite family of nonexpansive mappings of 𝐶

into itself such that 𝐹 = ⋂
∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Ω ∩ 𝐴

−1

0 ̸= 0 where
Ω = Fix(𝐺). For arbitrarily given 𝑥

0
∈ 𝐶, let {𝑥

𝑛
} be the

sequence generated by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)

× Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦
𝑛
, ∀𝑛 ≥ 0.

(131)

Suppose that {𝑟
𝑛
} ⊂ (0,∞), {𝜎

𝑛
}, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [0, 1],

𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1, and the following conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1
(|𝜎
𝑛
−𝜎
𝑛−1
|+ |𝛼
𝑛
−𝛼
𝑛−1
|+ |𝛽
𝑛
−𝛽
𝑛−1
|+ |𝛾
𝑛
−𝛾
𝑛−1
|+

|𝛿
𝑛
− 𝛿
𝑛−1
|) < ∞;

(iv) ∑∞
𝑛=1

|𝑟
𝑛
− 𝑟
𝑛−1
| < ∞ and 𝑟

𝑛
≥ 𝜀 > 0, for all 𝑛 ≥ 0 for

some 𝜀 > 0;

(v) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1
𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined by
𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then {𝑥

𝑛
} converges strongly to 𝑞 ∈ 𝐹, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (132)

Proof. It is easy to see that (131) can be rewritten as follows

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
) 𝐺𝑦
𝑛
, ∀𝑛 ≥ 0,

(133)

where𝐺 = Π
𝐶
(𝐼−𝜇
1
𝐵
1
)Π
𝐶
(𝐼−𝜇
2
𝐵
2
). By Lemma 20 we know

that 𝐺 is a nonexpansive self-mapping on 𝐶.

Now, let us show that the sequence {𝑥
𝑛
} is bounded.

Indeed, take a fixed 𝑝 ∈ 𝐹 arbitrarily. Then from (133), we
have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝛼𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝛼
𝑛
(𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝

󵄩󵄩󵄩󵄩)

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

= (1 − (1 − 𝜌) 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

= (1 − (1 − 𝜌) 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ (1 − 𝜌) 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
,

(134)

and hence

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝜎𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − (1 − 𝜌) 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

+ (1 − 𝜌) 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌

≤ max{󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
} .

(135)

By induction, we obtain

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 ≤ max{󵄩󵄩󵄩󵄩𝑥0 − 𝑝

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

1 − 𝜌
} , ∀𝑛 ≥ 0.

(136)

It immediately follows that {𝑥
𝑛
} is bounded and so are {𝑦

𝑛
},

{𝐺𝑦
𝑛
}, {𝑓(𝑥

𝑛
)}, {𝐽
𝑟
𝑛

𝑥
𝑛
}, and {𝑆

𝑛
𝑥
𝑛
}.

Let us show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (137)

As amatter of fact, observe that𝑦
𝑛
can be rewritten as follows:

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑧
𝑛
, (138)
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where 𝑧
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
)/(1 − 𝛽

𝑛
). Observe

that

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−

𝛼
𝑛−1
𝑓(𝑥
𝑛−1
)+𝛾
𝑛−1
𝐽
𝑟
𝑛−1

𝑥
𝑛−1
+𝛿
𝑛−1
𝑆
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

+
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1
𝑥
𝑛−1

1 − 𝛽
𝑛−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛 − (𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1 − 𝛽
𝑛

−
1

1 − 𝛽
𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝛽𝑛𝑥𝑛 − (𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

=
1

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛

+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
− 𝛼
𝑛−1
𝑓 (𝑥
𝑛−1
)

−𝛾
𝑛−1
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

− 𝛿
𝑛−1
𝑆
𝑛−1
𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛

[𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩 .

(139)

On the other hand, repeating the same arguments as those of
(66) in the proof of Theorem 23, we can derive

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+𝑀
0

󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛
󵄨󵄨󵄨󵄨 , ∀𝑛 ≥ 1,

(140)

where sup
𝑛≥1
{(1/𝜀)(‖𝐽

𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛−1
‖ + ‖𝐽

𝑟
𝑛−1

𝑥
𝑛−1

− 𝑥
𝑛
‖)} ≤ 𝑀

0

for some𝑀
0
> 0. Substituting (140) into (139), we have

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧𝑛−1
󵄩󵄩󵄩󵄩 ≤

1

1 − 𝛽
𝑛

[𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +𝑀0
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝛽𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛

[𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛾
𝑛
(
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +𝑀0
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑛𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛−1)
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

󵄩󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩]

+

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

×
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛−1
𝑓 (𝑥
𝑛−1
) + 𝛾
𝑛−1
𝐽
𝑟
𝑛−1

𝑥
𝑛−1

+𝛿
𝑛−1
𝑆
𝑛−1
𝑥
𝑛−1

󵄩󵄩󵄩󵄩

≤
1

1 − 𝛽
𝑛

[(𝛼
𝑛
𝜌 + 𝛾
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1
󵄩󵄩󵄩󵄩

+𝑀(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩]

+
1

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀
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=
1

1 − 𝛽
𝑛

[(1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝜌)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+𝑀(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩]

+
1

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀

= (1 −
1 − 𝜌

1 − 𝛽
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
𝑀

1 − 𝛽
𝑛

(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
𝛿
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
1

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀,

(141)

where sup
𝑛≥0
{𝑀
0
+‖𝑓(𝑥

𝑛
)‖+‖𝐽

𝑟
𝑛

𝑥
𝑛
‖+‖𝑆
𝑛
𝑥
𝑛
‖} ≤ 𝑀 for some

𝑀 > 0. Also, from (133) we have

𝑥
𝑛+1

− 𝑥
𝑛
= 𝜎
𝑛
(𝑦
𝑛
− 𝑦
𝑛−1
)

+ (𝜎
𝑛
− 𝜎
𝑛−1
) (𝑦
𝑛−1

− 𝐺𝑦
𝑛−1
)

+ (1 − 𝜎
𝑛
) (𝐺𝑦
𝑛
− 𝐺𝑦
𝑛−1
) .

(142)

Taking into account condition (v), we may assume, without
loss of generality, that {𝛽

𝑛
} ⊂ [𝑎, 𝑏] for some 𝑎, 𝑏 ∈ (0, 1). This

together with (141) implies that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤ 𝜎𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝐺𝑦𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1
󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩

≤ (1 −
1 − 𝜌

1 − 𝛽
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
𝑀

1 − 𝛽
𝑛

(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
𝛿
𝑛

1 − 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1
󵄩󵄩󵄩󵄩

+
1

(1 − 𝛽
𝑛−1
) (1 − 𝛽

𝑛
)

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1
󵄨󵄨󵄨󵄨𝑀

+
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝐺𝑦𝑛−1
󵄩󵄩󵄩󵄩

≤ (1 −
1 − 𝜌

1 − 𝛽
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+𝑀
1
(
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨𝑀1 +
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨𝑀1

= (1 −
1 − 𝜌

1 − 𝛽
𝑛

𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛−1

󵄩󵄩󵄩󵄩

+𝑀
1
(
󵄨󵄨󵄨󵄨𝜎𝑛 − 𝜎𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛼𝑛 − 𝛼𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝛾𝑛 − 𝛾𝑛−1

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝛿𝑛 − 𝛿𝑛−1

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑟𝑛−1 − 𝑟𝑛

󵄨󵄨󵄨󵄨)

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛−1 − 𝑆𝑛−1𝑥𝑛−1

󵄩󵄩󵄩󵄩 ,

(143)

where sup
𝑛≥0
{(𝑀/(1−𝑏)

2

) +‖𝑦
𝑛
−𝐺𝑦
𝑛
‖} ≤ 𝑀

1
for some𝑀

1
>

0. Since ∑∞
𝑛=0

𝛼
𝑛
= ∞ and ((1 − 𝜌)/(1 − 𝛽

𝑛
))𝛼
𝑛
≥ (1 − 𝜌)𝛼

𝑛
,

we know that ∑∞
𝑛=0
((1 − 𝜌)/(1 − 𝛿

𝑛
))𝛼
𝑛
= ∞. So, applying

Lemma 9 to (143), we obtain from conditions (iii) and (iv)
and the assumption on {𝑆

𝑛
} that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (144)

Next we show that ‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, according to Lemma 10 we have from (133)

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑝))

+ 𝛽
𝑛
(𝑥
𝑛
− 𝑝) + 𝛾

𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝)

+𝛿
𝑛
(𝑆
𝑛
𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(𝑓 (𝑝) − 𝑝)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑝)) + 𝛽𝑛 (𝑥𝑛 − 𝑝)

+𝛾
𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝) + 𝛿

𝑛
(𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩
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≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑝)
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

≤ 𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

= (𝛼
𝑛
𝜌 + 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩ .

(145)

Utilizing Lemma 17 we get from (133) and (145)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝜎𝑛 (𝑦𝑛 − 𝑝)

+ (1 − 𝜎
𝑛
) (𝐺𝑦
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

=
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑦

𝑛
− 𝑝)⟩

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩) ,

(146)

which hence yields

𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+ 2𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑝) − 𝑝
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 .

(147)

Since 𝛼
𝑛
→ 0 and ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ → 0, from condition (v) and

the boundedness of {𝑥
𝑛
} and {𝑦

𝑛
}, it follows that

lim
𝑛→∞

𝑔
1
(
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩) = 0. (148)

Utilizing the properties of 𝑔
1
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (149)

Observe that

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞,

(150)

and hence

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝐺𝑥𝑛

󵄩󵄩󵄩󵄩

≤ 2
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝐺𝑦𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(151)

That is,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (152)

Next, let us show that

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0, lim

𝑛→∞

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (153)

Indeed, observe that 𝑦
𝑛
can be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ (𝛾
𝑛
+ 𝛿
𝑛
)

𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝑒
𝑛
𝑧̂
𝑛
,

(154)
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where 𝑒
𝑛
= 𝛾
𝑛
+ 𝛿
𝑛
and 𝑧̂

𝑛
= (𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
)/(𝛾
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 13 and (154), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑝)

+𝛽
𝑛
(𝑥
𝑛
− 𝑝) + 𝑒

𝑛
(𝑧̂
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝)

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

]

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

]

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ,

(155)

which hence implies that

𝛽
𝑛
𝑒
𝑛
𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ≤ 𝛼𝑛
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 .

(156)

Utilizing (152), conditions (i), (ii), and (v) and the bounded-
ness of {𝑥

𝑛
}, {𝑦
𝑛
}, and {𝑓(𝑥

𝑛
)}, we get

lim
𝑛→∞

𝑔
2
(
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩) = 0. (157)

From the properties of 𝑔
2
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (158)

Utilizing Lemma 17 and the definition of 𝑧̂
𝑛
, we have

󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝) +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2
𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) ,

(159)

which leads to
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑧̂𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧̂𝑛

󵄩󵄩󵄩󵄩 .

(160)

Since {𝑥
𝑛
} and {𝑧̂

𝑛
} are bounded and ‖𝑧̂

𝑛
− 𝑥
𝑛
‖ → 0 as 𝑛 →

∞, we deduce from condition (ii) that

lim
𝑛→∞

𝑔
3
(
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0. (161)

From the properties of 𝑔
3
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (162)
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On the other hand, 𝑦
𝑛
can also be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛

+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛

+ (𝛼
𝑛
+ 𝛿
𝑛
)
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝑑
𝑛
𝑧̃
𝑛
,

(163)

where 𝑑
𝑛
= 𝛼
𝑛
+ 𝛿
𝑛
and 𝑧̃
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
)/(𝛼
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 13 and the convexity of ‖ ⋅ ‖2, we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛽𝑛 (𝑥𝑛 − 𝑝)

+𝛾
𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(𝑧̃
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩𝑧̃𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

− 𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑓 (𝑥
𝑛
) − 𝑝)

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝑥
𝑛
− 𝑝)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ 𝑑
𝑛
[

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

]

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) ,

(164)

which hence implies that

𝛽
𝑛
𝛾
𝑛
𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) ≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓(𝑥𝑛) − 𝑝
󵄩󵄩󵄩󵄩

2

+ (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 .

(165)

From (152), conditions (i), (ii), and (v), and the boundedness
of {𝑥
𝑛
}, {𝑦
𝑛
}, and {𝑓(𝑥

𝑛
)}, we have

lim
𝑛→∞

𝑔
4
(
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
) = 0. (166)

Utilizing the properties of 𝑔
4
, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
= 0. (167)

Note that
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝐽
𝑟
𝑛

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑆
𝑛
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
. (168)

From (162) and (167), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (169)

In terms of (169) and Lemma 14, we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑛𝑥𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑆𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ as 𝑛 󳨀→ ∞.

(170)

That is,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (171)

Furthermore, repeating the same arguments as those of (104)
in the proof of Theorem 23, we can conclude that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐽𝑟𝑥𝑛
󵄩󵄩󵄩󵄩 = 0 (172)

for a fixed number 𝑟 such that 𝜀 > 𝑟 > 0.
Define a mapping𝑊𝑥 = (1 − 𝜃

1
− 𝜃
2
)𝐽
𝑟
𝑥 + 𝜃
1
𝑆𝑥 + 𝜃

2
𝐺𝑥,

where 𝜃
1
, 𝜃
2
∈ (0, 1) are two constants with 𝜃

1
+ 𝜃
2
< 1.

Then by Lemma 16, we have that Fix(𝑊) = Fix(𝐽
𝑟
) ∩ Fix(𝑆) ∩

Fix(𝐺) = 𝐹. We observe that
󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩(1 − 𝜃1 − 𝜃2) (𝑥𝑛 − 𝐽𝑟𝑥𝑛)

+𝜃
1
(𝑥
𝑛
− 𝑆𝑥
𝑛
) + 𝜃
2
(𝑥
𝑛
− 𝐺𝑥
𝑛
)
󵄩󵄩󵄩󵄩

≤ (1 − 𝜃
1
− 𝜃
2
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐽𝑟𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝜃
1

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑆𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝜃2

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝐺𝑥𝑛
󵄩󵄩󵄩󵄩 .

(173)

From (152), (171), and (172), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 −𝑊𝑥𝑛
󵄩󵄩󵄩󵄩 = 0. (174)
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Repeating the same arguments as those of (107) in the
proof of Theorem 23, we can deduce that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0. (175)

Since 𝐽 is norm-to-weak∗ uniformly continuous over
bounded subsets of𝑋, we obtain from ‖𝑥

𝑛
− 𝑦
𝑛
‖ → 0 that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩ ≤ 0. (176)

Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Indeed, observe

that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑞))

+ 𝛽
𝑛
(𝑥
𝑛
− 𝑞) + 𝛾

𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑞)

+𝛿
𝑛
(𝑆
𝑛
𝑥
𝑛
− 𝑞) + 𝛼

𝑛
(𝑓 (𝑞) − 𝑞)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝛼𝑛 (𝑓 (𝑥𝑛) − 𝑓 (𝑞)) + 𝛽𝑛 (𝑥𝑛 − 𝑞)

+𝛾
𝑛
(𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑞) + 𝛿

𝑛
(𝑆
𝑛
𝑥
𝑛
− 𝑞)

󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑛) − 𝑓 (𝑞)
󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑟
𝑛

𝑥
𝑛
− 𝑞

󵄩󵄩󵄩󵄩󵄩

2

+ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑆𝑛𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

≤ 𝛼
𝑛
𝜌
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 𝛾
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩 + 𝛿𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

= (𝛼
𝑛
𝜌 + 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩ ,

(177)

and hence
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ 𝜎
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ (1 − 𝜎
𝑛
)
󵄩󵄩󵄩󵄩𝐺𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑞

󵄩󵄩󵄩󵄩

2

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑞
󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩ .

(178)

Applying Lemma 9 to (178), we conclude from condition (i)
and (178) that 𝑥

𝑛
→ 𝑞 as 𝑛 → ∞. This completes the proof.

The following results can be obtained from Theorem 28.
We, therefore, omit the proof.

Corollary 29. Under the same conditions as those in Corollary
24, let {𝑥

𝑛
} be the sequence generated from any given 𝑥

0
∈ 𝐶

by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆𝑥
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)

×Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦
𝑛
, ∀𝑛 ≥ 0.

(179)

Then {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹 = Fix(𝑆) ∩ Ω ∩ 𝐴

−1

0,
which solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (180)

Corollary 30. Under the same conditions as those in Corollary
25, let {𝑥

𝑛
} be the sequence generated from any given 𝑥

0
∈ 𝐶

by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
) ((1 − 𝛼) 𝐼 + 𝛼𝑉) 𝑦

𝑛
, ∀𝑛 ≥ 0.

(181)

Then {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹 = ⋂∞

𝑖=0
Fix(𝑆
𝑖
)∩Fix(𝑉)∩

𝐴
−1

0 , which solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (182)

Corollary 31. Under the same conditions as those in Corollary
26, let {𝑥

𝑛
} be the sequence generated from any given 𝑥

0
∈ 𝐶

by

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐽
𝑟
𝑛

𝑥
𝑛
+ 𝛿
𝑛
𝑆𝑥
𝑛
,

𝑥
𝑛+1

= 𝜎
𝑛
𝑦
𝑛
+ (1 − 𝜎

𝑛
) ((1 − 𝛼) 𝐼 + 𝛼𝑉) 𝑦

𝑛
, ∀𝑛 ≥ 0.

(183)

Then {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹 = Fix(𝑆) ∩ Fix(𝑉) ∩

𝐴
−1

0, which solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (184)

Remark 32. Our Theorem 28 improves, extends, supple-
ments, and develops Cai and Bu [10, Theorem 3.1 and
Corollary 3.2] and Jung [5, Theorems 3.1] in the following
aspects.

(i) The problem of finding a point 𝑞 ∈ ⋂
𝑛
Fix(𝑆
𝑛
) ∩ Ω ∩

𝐴
−1

0 in our Theorem 28 is more general and more subtle
than every one of both the problem of finding a point 𝑞 ∈

⋂
𝑛
Fix(𝑆
𝑛
) ∩ Ω in Cai and Bu [10, Theorem 3.1] and the

problem of finding a point 𝑞 ∈ 𝐴−10 in Jung [5,Theorem 3.1].
(ii) Our Theorem 28 drops the assumption of the

asymptotical regularity of {𝑥
𝑛
} in [5, Theorems 3.1] (i.e.,

lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+1
‖ = 0).

(iii) Cai and Bu’s proof in [10, Theorem 3.1] depends on
the argument techniques in [13], inequality (21) in 2-uni-
formly smooth Banach spaces, and inequality (27) in
smooth and uniform convex Banach spaces. Jung’s proof in
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[5, Theorem 3.1] depends on the resolvent identity in Propo-
sition 1. It is worth emphasizing that the proof of ourTheorem
28 does not depend on the argument techniques in [13],
inequality (21) in 2-uniformly smooth Banach spaces, and
inequality (27) in smooth anduniform convexBanach spaces.
However, it depends on the resolvent identity in Proposition
1 and the inequalities in uniform convex Banach spaces; see
Lemmas 13 and 17 in Section 2 of this paper.

(iv) The assumption of the uniformly convex and 2-
uniformly smooth Banach space 𝑋 in [10, Theorem 3.1] is
weakened to the one of the uniformly convex Banach space
𝑋 having a uniformly Gateaux differentiable norm in our
Theorem 28.

(v) The iterative scheme in our Theorem 28 is very
different from every one in both [10, Theorem 3.1] and [5,
Theorem 3.1] because the first iteration step in the iterative
scheme of [10, Theorem 3.1] is given by 𝑦

𝑛
= 𝛼
𝑛
𝑓(𝑥
𝑛
) +

(1 − 𝛼
𝑛
)Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
)𝑥
𝑛
and the first iteration

step in the iterative scheme of [5, Theorem 3.1] is given by
𝑦
𝑛
= 𝛼
𝑛
𝑓(𝑥
𝑛
) + (1 − 𝛼

𝑛
)𝐽
𝑟
𝑛

𝑥
𝑛
. In the meantime, it is clear that

the second iteration steps for 𝑥
𝑛+1

in three iterative schemes
are completely different.

(vi) The problem of finding a point 𝑞 ∈ Fix(𝑆) ∩ Ω in [10,
Corollary 3.2] is extended to develop the problem of finding
a point 𝑞 ∈ Fix(𝑆) ∩ Ω ∩ 𝐴

−1

0 in our Corollary 29.
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