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We consider a generalized equilibrium problem involving DC functions. By using the properties of the epigraph of the conjugate
functions, some sufficient and/or necessary conditions for the weak and strong duality results and optimality conditions for
generalized equilibrium problems are provided.

1. Introduction

Consider the following generalized equilibrium problem:

(GEP) Find 𝑥 ∈ 𝐶 such that
𝑓 (𝑥, 𝑦) + 𝜓 (𝑦) ≥ 𝜓 (𝑥) for each𝑦 ∈ 𝐶,

(1)

where𝑋 is a locally convex Hausdorff topological space, 𝐶 is
a nonempty convex subset of𝑋,𝑓 : 𝑋×𝑋 → R := R∪{+∞},
and𝜓 : 𝑋 → R are proper functions satisfying the following.

(a) 𝑓(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶.
(b) 𝑓
𝑥
(⋅) := 𝑓(𝑥, ⋅) is proper convex for all 𝑥 ∈ 𝐶.

(c) 𝜓 := 𝑔 − ℎ, where 𝑔, ℎ : 𝑋 → R are two proper con-
vex functions.

Here and throughout the whole paper, following [1, page 39],
we adapt the convention that (+∞)+(−∞) = (+∞)−(+∞) =

+∞.
As mentioned in [2], equilibrium problems theory pro-

vides us with a unified, natural, innovative, and general
framework to study a wide class of problems arising in
finance, economics, network analysis, transportation, elastic-
ity, and optimization. This theory has witnessed an explosive
growth in theoretical advances and applications across all dis-
ciplines of pure and applied sciences. Equilibrium problems

have been studied extensively, and many problems such as
optimization problems, Nash equilibria problems, com-
plementarity problems, fixed point problems, variational
inequality problems, and convex vector optimization prob-
lems can be recast into the form (GEP); see, for example, [3–
10] and the references therein.

Duality for equilibrium problems was first studied in
[11]. The schemes proposed in that paper are extensions of
a classical duality theory for variational inequalities. In spirit
of convex optimization, duality results and optimality condi-
tions have been obtained for equilibrium problems by Mar-
t́ınez-Legaz and Sosa [12] when 𝜓 = 0 and by Jacinto and
Scheimberg [13] when𝜓 is convex, which extended the classi-
cal convex duality results. Recently, the authors in [5] consid-
ered the generalized equilibrium problems in the case where
𝜓 is a DC function. Under the assumptions that 𝐶 is closed
and functions 𝑓(⋅, 𝑥), 𝑔, ℎ are lower semicontinuous (lsc in
brief), they gave some weak and strong duality results and
optimality conditions for (GEP) via a closedness qualification
condition.

Inspired by the works mentioned above, we continue to
study the generalized equilibrium problems. Our main aim
in the present paper is to give some new regularity conditions
which characterize the weak duality, the strong duality, and
optimality conditions for (GEP). In general, we donot impose
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any topological assumption on𝐶 or on 𝑓
𝑥
(⋅), 𝑔, and ℎ; that is,

𝐶 is not necessarily closed, and 𝑓
𝑥
(⋅), 𝑔, and ℎ are not neces-

sarily lsc. Most of results obtained in the present paper are
proper extensions of the early results (e.g., [5, 14–16]). In
particular, even in the special case when the closedness of 𝐶
and lower semicontinuity of 𝑓

𝑥
(⋅), 𝑔, and ℎ are satisfied, our

results provide improved versions of [5,Theorems 4.2, 4.3 and
4.4].

Thepaper is organized as follows. Section 2 contains some
necessary notations and preliminary results. In Section 3,
we develop general duality and optimality results for a DC
optimization problem. The weak and strong duality results
and optimality conditions for generalized equilibrium prob-
lems are given in Section 4.

2. Notations and Preliminaries

The notation used in the present paper is standard (cf. [1]). In
particular, we assume throughout the whole paper that 𝑋 is
a real locally convex Hausdorff topological vector space, and
𝑋
∗ denotes the dual space, endowedwith theweak∗-topology

𝑤∗(𝑋∗, 𝑋). By ⟨𝑥∗, 𝑥⟩ we will denote the value of the func-
tional𝑥∗ ∈ 𝑋∗ at𝑥 ∈ 𝑋; that is, ⟨𝑥∗, 𝑥⟩ = 𝑥∗(𝑥). Let𝑍 be a set
in 𝑋. The closure of 𝑍 is denoted by cl𝑍. If 𝑊 ⊆ 𝑋∗, then
cl𝑊 denotes theweak∗-closure of𝑊. For thewhole paper, we
endow 𝑋∗ × R with the product topology of 𝑤∗(𝑋∗, 𝑋) and
the usual Euclidean topology.

The indicator function 𝛿
𝑍
of a nonempty set 𝑍 is defined

by 𝛿
𝑍
(𝑥) = 0 if 𝑥 ∈ 𝑍 and 𝛿

𝑍
(𝑥) = +∞ if 𝑥 ∉ 𝑍. Let 𝑓 : 𝑋 →

R be a proper function. The conjugate function and the epi-
graph of 𝑓 are denoted by 𝑓∗ and epi𝑓, respectively; they are
defined by

𝑓
∗

(𝑥
∗

) := sup
𝑥∈dom𝑓

{⟨𝑥
∗

, 𝑥⟩ − 𝑓 (𝑥)} for each 𝑥
∗

∈ 𝑋
∗

,

epi𝑓 := {(𝑥, 𝑟) ∈ 𝑋 ×R : 𝑓 (𝑥) ≤ 𝑟} ,

(2)

where the effective domain dom𝑓 := {𝑥 ∈ 𝑋 : 𝑓(𝑥) < +∞}.
It is well known and easy to verify that epi𝑓∗ is weak∗-closed.
The lsc hull of 𝑓, denoted by cl𝑓, is defined by

epi (cl𝑓) = cl (epi𝑓) . (3)

Then, by [1, Theorem 2.3.1], 𝑓∗ = (cl𝑓)∗ and by [1, Theorem
2.3.4], if cl𝑓 is proper and convex, then𝑓∗∗ = cl𝑓. Let𝑥 ∈ 𝑋.
The subdifferential of 𝑓 at 𝑥 is defined by

𝜕𝑓 (𝑥) := {𝑥
∗

∈ 𝑋
∗

: 𝑓 (𝑥) + ⟨𝑥
∗

, 𝑦 − 𝑥⟩ ≤ 𝑓 (𝑦)

for each 𝑦 ∈ 𝑋}
(4)

if 𝑥 ∈ dom𝑓, and 𝜕𝑓(𝑥) := 0 otherwise. Clearly, the following
equivalence holds:

𝑥
0
is a minimizer of 𝑓 iff 0 ∈ 𝜕𝑓 (𝑥

0
) . (5)

By definition, the Young-Fenchel inequality below holds:

𝑓 (𝑥) + 𝑓
∗

(𝑥
∗

)

≥ ⟨𝑥, 𝑥
∗

⟩ for each pair (𝑥, 𝑥
∗

) ∈ 𝑋 × 𝑋
∗

.
(6)

Moreover, by [1, Theorem 2.4.2(iii)],

𝑓 (𝑥) + 𝑓
∗

(𝑥
∗

) = ⟨𝑥
∗

, 𝑥⟩ iff 𝑥
∗

∈ 𝜕𝑓 (𝑥) (7)

(the equality in (7) is usually referred to as Young’s equality).
If 𝑔, ℎ are proper, then

epi𝑔∗ + epi ℎ∗ ⊆ epi (𝑔 + ℎ)
∗

,

𝑔 ≤ ℎ 󳨐⇒ 𝑔
∗

≥ ℎ
∗

⇐⇒ epi𝑔∗ ⊆ epi ℎ∗,

𝜕𝑔 (𝑎) + 𝜕ℎ (𝑎) ⊆ 𝜕 (𝑔 + ℎ) (𝑎)

for each 𝑎 ∈ dom𝑔 ∩ dom ℎ.

(8)

Furthermore, for each 𝑝 ∈ 𝑋∗ and 𝑎 ∈ R,

epi (ℎ + 𝑝 + 𝑎)
∗

= epi ℎ∗ + (𝑝, −𝑎) . (9)

Moreover, if 𝑔 is convex and lsc on dom ℎ, then, by [17,
Lemma 2.3],

epi (ℎ − 𝑔)
∗

= ⋂
𝑥
∗
∈dom𝑔∗

(epi ℎ∗ − (𝑥
∗

, 𝑔
∗

(𝑥
∗

))) . (10)

The following lemma is known in [1, 6] (cf. [6, Lemma 2.1]
for (11) and (12) and [1, Theorem 2.8.7] for (13)).

Lemma 1. Let 𝑔, ℎ : 𝑋 → R be proper convex functions satis-
fying dom𝑔 ∩ dom ℎ ̸= 0.

(i) If 𝑔, ℎ are lsc, then

epi (𝑔 + ℎ)
∗

= cl (epi𝑔∗ + epi ℎ∗) . (11)

(ii) If either 𝑔 or ℎ is continuous at some point of dom𝑔 ∩

dom ℎ, then

epi (𝑔 + ℎ)
∗

= epi𝑔∗ + epi ℎ∗, (12)

𝜕 (𝑔 + ℎ) (𝑥)

= 𝜕𝑔 (𝑥) + 𝜕ℎ (𝑥) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ dom𝑔 ∩ dom ℎ.

(13)

3. Duality and Optimality Conditions for
DC Optimization Problem

Let 𝑝 ∈ 𝑋∗. Consider the following DC optimization prob-
lem:

(𝑃
𝑝
) inf
𝑦∈𝐶

{𝐹 (𝑦) + 𝐺 (𝑦) − 𝐻 (𝑦) − ⟨𝑝, 𝑦⟩} , (14)

where 𝐶 is a convex subset of 𝑋 (not necessarily closed) and
𝐹, 𝐺,𝐻 : 𝑋 → R are proper convex functions (not necessaily
lsc). Following [5], we define the dual problem of (𝑃

𝑝
) by

(𝐷
𝑝
) inf
𝑥
∗
∈dom𝐻∗

sup
𝑢
∗
∈dom𝐹∗ ,V∗∈dom𝐺∗

𝐿
𝑝
(𝑥
∗

, 𝑢
∗

, V∗) , (15)

where 𝐿
𝑝
: dom𝐻∗ × dom𝐹∗ × dom𝐺∗ → R is defined by

𝐿
𝑝
(𝑥
∗

, 𝑢
∗

, V∗) := 𝐻
∗

(𝑥
∗

) − 𝐹
∗

(𝑝 + 𝑢
∗

)

− 𝐺
∗

(V∗) − 𝛿
∗

𝐶
(𝑥
∗

− 𝑢
∗

− V∗) .
(16)
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Let V(𝑃
𝑝
) and V(𝐷

𝑝
) denote the optimal values of problems

(𝑃
𝑝
) and (𝐷

𝑝
), respectively. Especially, in the case when 𝑝 =

0, we write (𝑃), (𝐷) and 𝐿(⋅, ⋅, ⋅) for (𝑃
0
), (𝐷
0
), and 𝐿

0
(⋅, ⋅, ⋅),

respectively. One of themain aims in this section is devoted to
the study of the weak duality and the strong duality between
(𝑃) and (𝐷), which are defined as follows.

Definition 2. We say that

(a) the weak duality holds (between (𝑃) and (𝐷)) if
V(𝐷) ≤ V(𝑃);

(b) the strong duality holds (between (𝑃) and (𝐷)) if
V(𝑃) = V(𝐷) and for each 𝑥

∗ ∈ dom𝐹∗, there exists
(𝑢∗, V∗) ∈ dom𝐹∗ ×dom𝐺∗ such that 𝐿(𝑥∗, 𝑢∗, V∗) ≥
V(𝐷);

(c) the stable weak duality (resp., the stable strong dual-
ity) holds if the weak duality (resp., the strong duality)
holds between (𝑃

𝑝
) and (𝐷

𝑝
) for each 𝑝 ∈ 𝑋

∗.

If 𝐻 is lsc, then by [5, Theorem 3.2(i)], the weak duality
holds. However, the weak duality does not necessarily hold in
general as will be shown in the following example.

Example 3. Let𝑋 := R and 𝐶 := [0, +∞). Let 𝐹, 𝐺,𝐻 : R →

R be defined by 𝐹 := 0, 𝐺 := 𝛿
[0,+∞)

, and

𝐻(𝑦) :=

{{

{{

{

0 𝑦 < 0,

1 𝑦 = 0,

+∞ 𝑦 > 0.

(17)

Then,𝐹,𝐺, and𝐻 are proper convex functions and V(𝑃) = −1.
Clearly, 𝐹∗ = 𝛿

{0}
, 𝐺∗ = 𝛿∗

𝐶
= 𝛿
(−∞,0]

, and 𝐻∗ = 𝛿
[0,+∞)

.
Hence, V(𝐷) = 0. This implies that V(𝐷) > V(𝑃). Conse-
quently, the weak duality does not hold.

To consider the weak duality, the strong duality, and opti-
mality conditions for problem (𝑃), we introduced the follow-
ing conditions. For simplicity, we denote

𝐾 := ⋂
𝑥
∗
∈dom𝐻∗

( epi𝐹∗ + epi𝐺∗

+ epi 𝛿∗
𝐶
− (𝑥
∗

, 𝐻
∗

(𝑥
∗

))) ,

(18)

where we adapt the convention ∩
𝑡∈0

𝑆
𝑡
= 𝑋.

Definition 4. The family {𝐹, 𝐺,𝐻, 𝛿
𝐶
} is said to satisfy

(i) the weak closure condition at 0 ((WCC)
0
) if

𝐾 ∩ ({0} ×R) ⊆ epi (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

∩ ({0} ×R) ; (19)

(ii) the closure condition at 0 ((CC)
0
) if

𝐾 ∩ ({0} ×R) = epi (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

∩ ({0} ×R) ; (20)

(iii) the weak closure condition ((WCC)) if

𝐾 ⊆ epi (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

; (21)

(iv) the closure condition ((CC)) if

𝐾 = epi (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

; (22)

(v) the Moreau-Rockafellar formula (MRF) at 𝑥 ∈

dom(𝐹 + 𝐺 − 𝐻) ∩ 𝐶 if

𝜕 (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
) (𝑥)

⊆ ⋂
𝑥
∗
∈𝜕𝐻(𝑥)

(𝜕𝐹 (𝑥) + 𝜕𝐺 (𝑥) + 𝑁
𝐶
(𝑥) − 𝑥

∗

) ;
(23)

(vi) (MRF) if it satisfies (MRF) at each point in dom(𝐹 +

𝐺 − 𝐻) ∩ 𝐶.

Remark 5. If𝐻 is lsc, then by (10), we have that

𝐾 = epi (𝐹 − 𝐻)
∗

+ epi𝐺∗ + epi 𝛿∗
𝐶

(24)

and, by (8), (21) holds; that is, the (WCC) holds.

The following proposition describes the relationship
between the (CC) (resp., the (WCC)) and the (CC)

0
(resp.,

the (WCC)
0
).

Proposition 6. The family {𝐹, 𝐺,𝐻, 𝛿
𝐶
} satisfies the (𝐶𝐶)

(resp., the (𝑊𝐶𝐶)) if and only if for each 𝑝 ∈ 𝑋∗, {𝐹−𝑝, 𝐺,𝐻,

𝛿
𝐶
} satisfies the (𝐶𝐶)

0
(resp., the (𝑊𝐶𝐶)

0
).

Proof. Let 𝑝 ∈ 𝑋∗, and let 𝐾(𝑝) be the set defined by

𝐾(𝑝) := ⋂
𝑥
∗
∈dom𝐻∗

( epi (𝐹 − 𝑝)
∗

+ epi𝐺∗

+ epi 𝛿∗
𝐶
− (𝑥
∗

, 𝐻
∗

(𝑥
∗

))) .

(25)

Then, by (9), the following equality is clear:

𝐾(𝑝) = 𝐾 + (−𝑝, 0) . (26)

Hence, we have that

𝐾(𝑝) ∩ ({0} ×R) = 𝐾 ∩ ({𝑝} ×R) + (−𝑝, 0) . (27)

Moreover, using (9), we conclude that

epi (𝐹 − 𝑝 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

∩ ({0} ×R)

= epi (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

∩ ({𝑝} ×R) + (−𝑝, 0) .
(28)

Thus, the conclusion holds by definitions and the proof is
complete.

Under the assumption that

𝐹, 𝐺,𝐻 are lsc and 𝐶 is closed, (29)

the authors in [5] introduced the following closure condition

epi𝐹∗ + epi𝐺∗ + epi 𝛿∗
𝐶

is weak∗-closed (30)

to consider the strong duality and optimality conditions for
DC optimization problem (14). The following proposition
describes the relationships among the (CC), the (MRF), and
(30).
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Proposition 7. The following implication holds:

(𝐶𝐶) 󳨐⇒ (𝑀𝑅𝐹) . (31)

Furthermore, if (29) holds, then the following implications
hold:

(30) 󳨐⇒ (𝐶𝐶) 󳨐⇒ (𝑀𝑅𝐹) . (32)

Proof. Suppose that the (CC) holds. Let 𝑥
0
∈ 𝐴, and let 𝑝 ∈

𝜕(𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)(𝑥
0
). Then, by (7),

(𝑝, ⟨𝑝, 𝑥
0
⟩ − (𝐹 + 𝐺 − 𝐻 + 𝛿

𝐶
) (𝑥
0
))

∈ epi (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

= 𝐾,
(33)

thanks to the (CC). Hence, for each 𝑥
∗

∈ 𝜕𝐻(𝑥
0
),

(𝑝, ⟨𝑝, 𝑥
0
⟩ − (𝐹 + 𝐺 − 𝐻 + 𝛿

𝐶
) (𝑥
0
))

∈ epi𝐹∗ + epi𝐺∗ + epi 𝛿∗
𝐶
− (𝑥
∗

, 𝐻
∗

(𝑥
∗

)) .
(34)

Let 𝑥∗ ∈ 𝜕𝐻(𝑥
0
).Then, there exist (𝑢∗, 𝑟

1
) ∈ epi𝐹∗, (V∗, 𝑟

2
) ∈

epi𝐺∗, and (𝑤∗, 𝑟
3
) ∈ epi 𝛿∗

𝐶
such that

𝑢
∗

+ V∗ + 𝑤
∗

− 𝑥
∗

= 𝑝,

𝑟
1
+ 𝑟
2
+ 𝑟
3
− 𝐻
∗

(𝑥
∗

) = ⟨𝑝, 𝑥
0
⟩ − (𝐹 + 𝐺 − 𝐻 + 𝛿

𝐶
) (𝑥
0
) .

(35)

Below we show that 𝑢∗ ∈ 𝜕𝐹(𝑥
0
), V∗ ∈ 𝜕𝐺(𝑥

0
), and 𝑤∗ ∈

𝑁
𝐶
(𝑥
0
). To do this, note by the definition that

𝐹
∗

(𝑢
∗

) ≤ 𝑟
1
, 𝐺

∗

(V∗) ≤ 𝑟
2
, 𝛿

∗

𝐶
(𝑤
∗

) ≤ 𝑟
3
. (36)

Moreover, since 𝑥∗ ∈ 𝜕𝐻(𝑥
0
), it follows from (7) that

𝐻(𝑥
0
) + 𝐻

∗

(𝑥
∗

) = ⟨𝑥
∗

, 𝑥
0
⟩ . (37)

Hence, by (35)–(37) and the Young-Fenchel inequality (6), we
have that
0 ≤ 𝐹
∗

(𝑢
∗

) + 𝐹 (𝑥
0
) − ⟨𝑢

∗

, 𝑥
0
⟩

≤ 𝐹
∗

(𝑢
∗

) + 𝐹 (𝑥
0
) − ⟨𝑥

∗

+ 𝑝 − V∗ − 𝑤
∗

, 𝑥
0
⟩

≤ 𝐹
∗

(𝑢
∗

) − 𝑟
1
+ (⟨V∗, 𝑥

0
⟩ − 𝐺 (𝑥

0
) − 𝑟
2
)

+ (⟨𝑤
∗

, 𝑥
0
⟩ − 𝛿
𝐶
(𝑥
0
) − 𝑟
3
)

+ (𝐻 (𝑥
0
) + 𝐻

∗

(𝑥
∗

) − ⟨𝑥
∗

, 𝑥
0
⟩)

≤ (𝐹
∗

(𝑢
∗

) − 𝑟
1
) + (𝐺

∗

(V∗) − 𝑟
2
) + (𝛿

∗

𝐶
(𝑤
∗

) − 𝑟
3
)

≤ 0.

(38)

Thus,

𝐹
∗

(𝑢
∗

) + 𝐹 (𝑥
0
) − ⟨𝑢

∗

, 𝑥
0
⟩ = 0. (39)

This implies that 𝑢∗ ∈ 𝜕𝐹(𝑥
0
) by (7). Using the same argu-

ment, we have that V∗ ∈ 𝜕𝐺(𝑥
0
) and 𝑤∗ ∈ 𝑁

𝐶
(𝑥
0
). Hence,

𝑝 ∈ 𝜕𝐹(𝑥
0
) + 𝜕𝐺(𝑥

0
) + 𝑁
𝐶
(𝑥
0
) − 𝑥∗, and

𝑝 ∈ ⋂

𝑥
∗
∈𝜕𝐻(𝑥0)

(𝜕𝐹 (𝑥
0
) + 𝜕𝐺 (𝑥

0
) + 𝑁
𝐶
(𝑥
0
) − 𝑥
∗

) (40)

since 𝑥∗ ∈ 𝜕𝐻(𝑥
0
) is arbitrary. Therefore, the (MRF) holds.

Furthermore, suppose that (29) holds. To show that (32),
we only need to show the implication (30)⇒ (CC) holds. To
do this, we assume that (30) holds. Since 𝐻 is lsc, it follows
from (10) that

epi (𝐹 + 𝐺 + 𝛿
𝐶
− 𝐻)
∗

= ⋂
𝑥
∗
∈dom𝐻∗

(epi (𝐹 + 𝐺 + 𝛿
𝐶
)
∗

− (𝑥
∗

, 𝐻
∗

(𝑥
∗

))) .
(41)

Note that 𝐹, 𝐺 are lsc and 𝐶 is closed; by Lemma 1(i), one has
that

epi (𝐹 + 𝐺 + 𝛿
𝐶
)
∗

= cl (epi𝐹∗ + epi𝐺∗ + epi 𝛿∗
𝐶
) . (42)

This together with (30) and (41) implies that the (CC) holds.
The proof is complete.

To study the weak duality and the strong duality, we need
the following lemma.

Lemma 8. Let 𝑟 ∈ R. Then, the following assertions hold:

(i) (0, 𝑟) ∈ epi(𝐹 + 𝐺 −𝐻 + 𝛿
𝐶
)
∗ if and only if V(𝑃) ≥ −𝑟.

(ii) (0, 𝑟) ∈ 𝐾 if and only if V(𝐷) ≥ −𝑟 and for each 𝑥∗ ∈

dom𝐻∗, there exist 𝑢∗ ∈ dom𝐹∗ and V∗ ∈ dom𝐺∗

such that

𝐿 (𝑥
∗

, 𝑢
∗

, V∗) ≥ −𝑟. (43)

Proof. (i) By the definition of the conjugate function, one has

V (𝑃) = −(𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

(0) . (44)

Hence, the result is clear.
(ii) Let (0, 𝑟) ∈ 𝐾 and let 𝑥∗ ∈ dom𝐻∗. Then

(0, 𝑟) ∈ epi𝐹∗ + epi𝐺∗ + epi 𝛿∗
𝐶
− (𝑥
∗

, 𝐻
∗

(𝑥
∗

)) . (45)

Thus, there exist (𝑢∗, 𝑟
1
) ∈ epi𝐹∗, (V∗, 𝑟

2
) ∈ epi𝐺∗, and

(𝑤∗, 𝑟
3
) ∈ epi 𝛿∗

𝐶
such that

𝑢
∗

+ V∗ + 𝑤
∗

− 𝑥
∗

= 0,

𝑟
1
+ 𝑟
2
+ 𝑟
3
− 𝐻
∗

(𝑥
∗

) = 𝑟.
(46)

Since

𝐹
∗

(𝑢
∗

) ≤ 𝑟
1
, 𝐺

∗

(V∗) ≤ 𝑟
2
, 𝛿

∗

𝐶
(𝑤
∗

) ≤ 𝑟
3
, (47)

it follows from (46) that

𝐿 (𝑥
∗

, 𝑢
∗

, V∗) = 𝐻
∗

(𝑥
∗

) − 𝐹
∗

(𝑢
∗

) − 𝐺
∗

(V∗)

− 𝛿
∗

𝐶
(𝑥
∗

− 𝑢
∗

− V∗)

≥ 𝐻
∗

(𝑥
∗

) − 𝑟
1
− 𝑟
2
− 𝑟
3

= −𝑟.

(48)

This together with the definition of V(𝐷) implies that V(𝐷) ≥

−𝑟 and 𝑢∗, V∗ satisfy (43).
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Conversely, suppose that V(𝐷) ≥ −𝑟 and for each 𝑥∗ ∈

dom𝐻∗, there exist 𝑢∗ ∈ dom𝐹∗ and V∗ ∈ dom𝐺∗ satisfying
(43). Let 𝑥∗ ∈ dom𝐻∗. Then, there exist 𝑢∗ ∈ dom𝐹∗ and
V∗ ∈ dom𝐺∗ such that (43) holds. Then

𝛿
∗

𝐶
(𝑥
∗

− 𝑢
∗

− V∗) ≤ 𝑟 + 𝐻
∗

(𝑥
∗

) − 𝐹
∗

(𝑢
∗

) − 𝐺
∗

(V∗) .
(49)

This means that

(𝑥
∗

− 𝑢
∗

− V∗, 𝑟 + 𝐻
∗

(𝑥
∗

) − 𝐹
∗

(𝑢
∗

) − 𝐺
∗

(V∗)) ∈ epi 𝛿∗
𝐶
.

(50)

Therefore,

(0, 𝑟) = (𝑢
∗

, 𝐹
∗

(𝑢
∗

)) + (V∗, 𝐺∗ (V∗))

− (𝑥
∗

, 𝐻
∗

(𝑥
∗

))

+ (𝑥
∗

− 𝑢
∗

− V∗, 𝑟 + 𝐻
∗

(𝑥
∗

) − 𝐹
∗

(𝑢
∗

) − 𝐺
∗

(V∗))

∈ epi𝐹∗ + epi𝐺 + epi 𝛿∗
𝐶
− (𝑥
∗

, 𝐻
∗

(𝑥
∗

)) .

(51)

Noting that 𝑥∗ ∈ dom𝐻∗ is arbitrary, we have that

(0, 𝑟) ∈ ⋂
𝑥
∗
∈dom𝐻∗

( epi𝐹∗ + epi𝐺

+ epi 𝛿∗
𝐶
− (𝑥
∗

, 𝐻
∗

(𝑥
∗

))) = 𝐾.

(52)

Thus, we complete the proof.

Our first theorem of this section shows that the (WCC)
is a sufficient and necessary condition for the weak duality to
hold.

Theorem 9. (i)The weak duality holds if and only if the family
{𝐹, 𝐺,𝐻, 𝛿

𝐶
} satisfies the (𝑊𝐶𝐶)

0
.

(ii) The stable weak duality holds if and only if the family
{𝐹, 𝐺,𝐻, 𝛿

𝐶
} satisfies the (𝑊𝐶𝐶).

Proof. As assertion (ii) is a global version of assertion (i).
Hence, by Proposition 6, it suffices to prove assertion (i).
Suppose that the weak duality holds. Let (0, 𝑟) ∈ 𝐾. Then, by
Lemma 8(ii), we have V(𝐷) ≥ −𝑟 and hence V(𝑃) ≥ −𝑟, which
implies that (0, 𝑟) ∈ (𝐹+𝐺−𝐻+𝛿

𝐶
)
∗, thanks to Lemma 8(i).

Hence, (19) holds; that is, the (WCC)
0
holds.

Conversely, suppose that the family {𝐹, 𝐺,𝐻, 𝛿
𝐶
} satisfies

the (WCC)
0
. To show that V(𝐷) ≤ V(𝑃), suppose on the

contrary that V(𝑃) < V(𝐷). Then, there exists 𝑟 ∈ R such
that V(𝑃) < −𝑟 ≤ V(𝐷). Thus, by the definition of V(𝐷), we
have that for each 𝑥

∗ ∈ dom𝐻∗, there exist 𝑢∗ ∈ dom𝐹∗

and V∗ ∈ dom𝐺∗ such that (43) holds. Hence, (0, 𝑟) ∈ 𝐾 by
Lemma 8(ii), and (0, 𝑟) ∈ epi(𝐹+𝐺−𝐻+𝛿

𝐶
)
∗ by the (WCC)

0
.

This together with Lemma 8(i) implies that V(𝑃) ≥ −𝑟, which
contradicts to V(𝑃) < −𝑟. Consequently, we have V(𝐷) ≤ V(𝑃)
and complete the proof.

Theorem 10. (i) The strong duality holds if and only if the
family {𝐹, 𝐺,𝐻, 𝛿

𝐶
} satisfies the (𝐶𝐶)

0
.

(ii) The stable strong duality holds if and only if the family
{𝐹, 𝐺,𝐻, 𝛿

𝐶
} satisfies the (𝐶𝐶).

Proof. As before, it is sufficient to prove assertion (i). Suppose
that the strong duality holds. Let 𝑥∗ ∈ dom𝐻∗. Then, V(𝑃) =
V(𝐷) and there exist 𝑢∗ ∈ dom𝐹∗ and V∗ ∈ dom𝐺∗ such that
𝐿(𝑥∗, 𝑢∗, V∗) ≥ V(𝐷). By Theorem 9(i), (WCC)

0
holds, and

so, we only need to verify the following inclusion:

epi (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗

∩ ({0} ×R) ⊆ 𝐾 ∩ ({0} ×R) . (53)

To do this, let (0, 𝑟) ∈ epi(𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
)
∗. Then, by

Lemma 8(i), we have V(𝑃) ≥ −𝑟. Hence, V(𝐷) = V(𝑃) ≥ −𝑟

and 𝑥
∗ ∈ dom𝐻∗, 𝑢∗ ∈ dom𝐹∗, V∗ ∈ dom𝐺∗ satisfying

(43).This together with Lemma 8(ii) implies that (0, 𝑟) ∈ 𝐾 as
𝑥∗ ∈ dom𝐻∗ is arbitrary. Hence, (53) holds and so does the
(CC)
0
.

Conversely, suppose that the (CC)
0
holds.Then, the fam-

ily {𝑓, 𝑔, 𝛿
𝐶
; 𝑓
𝑡
, 𝑔
𝑡
: 𝑡 ∈ 𝑇} satisfies (WCC)

0
, and so V(𝐷) ≤

V(𝑃) by Theorem 9(i). Thus, to prove the strong duality, it
suffices to show that V(𝐷) ≥ V(𝑃) and that for each 𝑥

∗ ∈

dom𝐻∗ there exist 𝑢∗ ∈ dom𝐹∗ and V∗ ∈ dom𝐺∗ satisfying
𝐿(𝑥∗, 𝑢∗, V∗) ≥ V(𝐷). Note that the conclusion holds trivially
if V(𝑃) = −∞. Below we only consider the case when −𝑟 :=

V(𝑃) ∈ R. By Lemma 8(i), (0, 𝑟) ∈ epi(𝐹+𝐺−𝐻+𝛿
𝐶
)
∗, and so

(0, 𝑟) ∈ 𝐾, thanks to the (CC)
0
.Then, by Lemma 8(ii) and the

definition of V(𝐷), we have that V(𝐷) ≥ −𝑟 and for each 𝑥∗ ∈

dom𝐻∗ there exist 𝑢∗ ∈ dom𝐹∗ and V∗ ∈ dom𝐺∗ satisfying
𝐿(𝑥∗, 𝑢∗, V∗) ≥ −𝑟. Hence, the strong duality holds.The proof
is complete.

Theorem 11. Let 𝑥
0
be a solution of (𝑃). Suppose that the fam-

ily {𝐹, 𝐺,𝐻, 𝛿
𝐶
} satisfies the (𝑀𝑅𝐹) at 𝑥

0
. Then

𝜕𝐻 (𝑥
0
) ⊆ 𝜕𝐹 (𝑥

0
) + 𝜕𝐺 (𝑥

0
) + 𝑁
𝐶
(𝑥
0
) . (54)

Furthermore, if 𝜕𝐻(𝑥
0
) ̸= 0, then for each 𝑥∗ ∈ 𝜕𝐻(𝑥

0
), there

exist 𝑢∗ ∈ dom𝐹∗ and V∗ ∈ dom𝐺∗ such that

V (𝑃) = 𝐿 (𝑥
∗

, 𝑢
∗

, V∗) . (55)

Proof. Since 𝑥
0
is a solution of (𝑃), it follows that

0 ∈ 𝜕 (𝐹 + 𝐺 − 𝐻 + 𝛿
𝐶
) (𝑥
0
) . (56)

Then, by the (MRF) at 𝑥
0
, one has that

0 ∈ ⋂

𝑥
∗
∈𝜕𝐻(𝑥0)

(𝜕𝐹 (𝑥
0
) + 𝜕𝐺 (𝑥

0
) + 𝑁
𝐶
(𝑥
0
) − 𝑥
∗

) , (57)

which is equivalent to (54) holds.
Furthermore, assume that 𝑥∗ ∈ 𝜕𝐻(𝑥

0
). Then by (54),

there exist 𝑢∗ ∈ 𝜕𝐹(𝑥
0
), V∗ ∈ 𝜕𝐺(𝑥

0
), and 𝑤∗ ∈ 𝑁

𝐶
(𝑥
0
) such

that

𝑥
∗

= 𝑢
∗

+ V∗ + 𝑤
∗

. (58)

Since 𝑥∗ ∈ 𝜕𝐻(𝑥
0
), 𝑢∗ ∈ 𝜕𝐹(𝑥

0
), V∗ ∈ 𝜕𝐺(𝑥

0
), and 𝑤∗ ∈

𝑁
𝐶
(𝑥
0
), it follows from (7) that

⟨𝑥
∗

, 𝑥
0
⟩ = 𝐻

∗

(𝑥
∗

) + 𝐻 (𝑥
0
) ,

⟨𝑢
∗

, 𝑥
0
⟩ = 𝐹
∗

(𝑢
∗

) + 𝐹 (𝑥
0
) ,

⟨V∗, 𝑥
0
⟩ = 𝐺

∗

(V∗) + 𝐺 (𝑥
0
) ,

⟨𝑤
∗

, 𝑥
0
⟩ = 𝛿
∗

𝐶
(𝑢
∗

) .

(59)
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Hence,
𝐿 (𝑥
∗

, 𝑢
∗

, V∗) = 𝐹 (𝑥
0
) + 𝐺 (𝑥

0
) − 𝐻 (𝑥

0
) = V (𝑃) , (60)

which completes the proof.

Remark 12. In the case when (29) holds, Dinh et al. estab-
lished the weak duality and strong duality in [5, Theorem
3.2] and the optimality condition in [5, Theorem 3.1] under
the assumption that (30) holds. Clearly, by Proposition 7,
Theorems 9 and 10 extend and improve [5, Theorem 3.2] and
Theorem 11 extends and improves [5, Theorem 3.1].

4. Optimality Conditions and Dualities for
Equilibrium Problem

Recall the optimization problem (GEP) is defined as in
Section 1. Let 𝑥 ∈ 𝐶 and consider the DC optimization prob-
lem

(P
𝑥
) 𝑝 (𝑥) := inf

𝑦∈𝐶

{𝑓 (𝑥, 𝑦) + 𝜓 (𝑦)} . (61)

Then, by the definitions of (GEP) and (P
𝑥
), a point 𝑥

0
∈ 𝐶 is

a solution of (GEP) if and only if 𝑥
0
is a solution of (P

𝑥
0

) (cf.
[5, Lemma 3.1]). Moreover, by the definition, we can find that
𝑝(𝑥) ≤ 𝜓(𝑥) for each 𝑥 ∈ 𝐶, and, 𝑥

0
is a solution of (GEP) if

and only if 𝑝(𝑥
0
) = 𝜓(𝑥

0
). Hence, the problem of finding

solutions of (GEP) can be reduced to the one of finding solu-
tions of the following optimization problem:

(P) max
𝑥∈𝐶

inf
𝑦∈𝐶

{𝑓
𝑥
(𝑦) + 𝜓 (𝑦) − 𝜓 (𝑥)} . (62)

Following [5], we defined the dual problem of (P) by

(D) max
𝑥∈𝐶

inf
𝑥
∗
∈dom ℎ∗

max
𝑢
∗
∈dom𝑓∗

𝑥
,V∗∈dom𝑔∗

{𝐿 (𝑥, 𝑥
∗

, 𝑢
∗

, V∗)

−𝜓 (𝑥)} ,

(63)

where 𝐿 : 𝐶 × 𝑋∗ × 𝑋∗ × 𝑋∗ → R is defined by
𝐿 (𝑥, 𝑥

∗

, 𝑢
∗

, V∗)

:= ℎ
∗

(𝑥
∗

) − 𝑓
∗

𝑥
(𝑢
∗

) − 𝑔
∗

(V∗) − 𝛿
∗

𝐶
(𝑥
∗

− 𝑢
∗

− V∗) .
(64)

Let V(P) and V(D) denote the optimal values of problems
(P) and (D), respectively. Unlike [5], the weak duality (i.e.,
V(D) ≤ V(P)) does not necessarily holds in general. Recall
fromDefinition 4 that for each 𝑥 ∈ 𝐶, the family {𝑓

𝑥
, 𝑔, ℎ, 𝛿

𝐶
}

satisfies the (WCC)
0
if

⋂
𝑥
∗
∈dom ℎ∗

(epi𝑓∗
𝑥
+ epi𝑔∗ + epi 𝛿∗

𝐶
− (𝑥
∗

, ℎ
∗

(𝑥
∗

)))

∩ ({0} ×R) ⊆ epi (𝑓
𝑥
+ 𝑔 − ℎ + 𝛿

𝐶
)
∗

∩ ({0} ×R)

(65)

and it satisfies the (CC)
0
if

⋂
𝑥
∗
∈dom ℎ∗

(epi𝑓∗
𝑥
+ epi𝑔∗ + epi 𝛿∗

𝐶
− (𝑥
∗

, ℎ
∗

(𝑥
∗

)))

∩ ({0} ×R) = epi (𝑓
𝑥
+ 𝑔 − ℎ + 𝛿

𝐶
)
∗

∩ ({0} ×R) .

(66)
Then, we have the following theorem.

Theorem 13. (i) Suppose that for each 𝑥 ∈ 𝐶, the family
{𝑓
𝑥
, 𝑔, ℎ, 𝛿

𝐶
} satisfies the (𝑊𝐶𝐶)

0
. Then, V(D) ≤ V(P).

(ii) Suppose that for each 𝑥 ∈ 𝐶, the family {𝑓
𝑥
, 𝑔, ℎ, 𝛿

𝐶
}

satisfies the (𝐶𝐶)
0
. Then, V(D) = V(P).

Proof. (i) Since for each 𝑥 ∈ 𝐶, the family {𝑓
𝑥
, 𝑔, ℎ, 𝛿

𝐶
} satis-

fies the (WCC)
0
, it follows fromTheorem 9(i) that

𝑝 (𝑥) ≥ inf
𝑥
∗
∈dom ℎ∗

max
𝑢
∗
∈dom𝑓∗

𝑥
,V∗∈dom𝑔∗

𝐿 (𝑥, 𝑥
∗

, 𝑢
∗

, V∗) . (67)

Hence, by the definitions of V(P) and V(D), we see that
V(D) ≤ V(P).

(ii) Since for each 𝑥 ∈ 𝐶, the family {𝑓
𝑥
, 𝑔, ℎ, 𝛿

𝐶
} satisfies

the (CC)
0
, it follows fromTheorem 10(i) that

𝑝 (𝑥) = inf
𝑥
∗
∈dom ℎ∗

max
𝑢
∗
∈dom𝑓∗

𝑥
,V∗∈dom𝑔∗

𝐿 (𝑥, 𝑥
∗

, 𝑢
∗

, V∗) . (68)

Thus, the result is seen to hold.

The following theorems establish the relationships
between the solutions of (GEP) and those of (D). First, we
recall that a point 𝑥

0
∈ 𝐶 is said to be a solution of (GEP) if

𝑓 (𝑥
0
, 𝑦) + 𝜓 (𝑦) ≥ 𝜓 (𝑥

0
) for each 𝑦 ∈ 𝐶, (69)

and it is said to be a solution of the dual problem (D) if for
each 𝑥∗ ∈ dom ℎ∗, there exist 𝑢∗, V∗ ∈ 𝑋∗ such that

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) = 𝜓 (𝑥
0
) = 𝑔 (𝑥

0
) − ℎ (𝑥

0
) . (70)

partially, if for each 𝑥∗ ∈ 𝜕ℎ(𝑥
0
), there exist 𝑢∗, V∗ ∈ 𝑋∗ such

that (70) holds, then 𝑥
0
is said to be a weak solution of prob-

lem (D).

Remark 14. (a) Obviously, 𝑥
0
∈ 𝐶 is a solution of (GEP) if and

only if 𝑥
0
is a solution of (P

𝑥
0

).
(b) Let 𝑥

0
∈ 𝐶. If ℎ is lsc at 𝑥

0
, then for each 𝑥∗ ∈ dom ℎ

∗,
there exist 𝑢∗ ∈ dom𝑓

∗

𝑥
0

and V∗ ∈ dom𝑔
∗ such that

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) ≤ 𝑔 (𝑥
0
) − ℎ (𝑥

0
) . (71)

Consequently, 𝑥
0
is a solution of the dual problem (D) if and

only if for each 𝑥∗ ∈ dom ℎ∗, there exist 𝑢∗, V∗ ∈ 𝑋∗ such
that

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) ≥ 𝑔 (𝑥
0
) − ℎ (𝑥

0
) . (72)

In fact, let 𝑥∗ ∈ dom ℎ∗, 𝑢∗ ∈ dom𝑓∗
𝑥
0

, and V∗ ∈ dom𝑔∗.
Then by the Young-Fenchel inequality (6), it is easy to see that

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗)

≤ ℎ
∗

(𝑥
∗

) − ⟨𝑥
∗

, 𝑥
0
⟩ + 𝑔 (𝑥

0
) + 𝑓
𝑥
0

(𝑥
0
)

≤ inf
𝑥
∗
∈dom ℎ∗

{ℎ
∗

(𝑥
∗

) − ⟨𝑥
∗

, 𝑥
0
⟩} + 𝑔 (𝑥

0
) + 𝑓
𝑥
0

(𝑥
0
)

= − (cl ℎ) (𝑥
0
) + 𝑔 (𝑥

0
)

= 𝑔 (𝑥
0
) − ℎ (𝑥

0
) .

(73)

Hence, (71) holds. However, (71) does not necessarily hold in
general as will be showen in the following example.



Abstract and Applied Analysis 7

Example 15. Let 𝑋 := R and 𝐶 := (−∞, 0]. Let 𝑓 : R × R →

R and 𝑔, ℎ : R → R be defined by 𝑓 := 0, 𝑔 := 𝛿
[0,+∞)

, and

ℎ (𝑥) :=

{{

{{

{

0 𝑥 < 0,

1 𝑥 = 0,

+∞ 𝑥 > 0.

(74)

Let 𝑥
0
= 0. Then, 𝑔(𝑥

0
) − ℎ(𝑥

0
) = −1, and ℎ is not lsc at 𝑥

0
.

Clearly,𝑓∗
𝑥
0

= 𝛿
{0}
, 𝑔∗ = 𝛿

(−∞,0]
, and ℎ∗ = 𝛿∗

𝐶
= 𝛿
[0,+∞)

.Then,
dom𝑓∗

𝑥
0

= {0}, dom𝑔∗ = (−∞, 0], and dom ℎ∗ = dom 𝛿∗
𝐶
=

[0, +∞). Let 𝑥∗ = 0. Then, for each 𝑢∗ ∈ dom𝑓∗
𝑥
0

and V∗ ∈

dom𝑔∗, one has that

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) = −𝑔
∗

(V∗) − 𝛿
∗

𝐶
(−V∗) = 0; (75)

this implies that (71) does not hold.

By Theorem 11, we obtain the the following theorem
straightforwardly, which was established in [5, Theorem 4.2]
under the assumptions that (29) holds and

epi𝑓∗
𝑥
+ epi𝑔∗ + epi 𝛿∗

𝐶
is weak∗-closed. (76)

Thus, by Proposition 7, our Theorem 16 improves the corre-
sponding result in [5, Theorem 4.2].

Theorem 16. Let 𝑥
0
∈ 𝐶 such that 𝜕𝐻(𝑥

0
) ̸= 0. Suppose that

the family {𝑓
𝑥
0

, 𝑔, ℎ, 𝛿
𝐶
} satisfies the (𝑀𝑅𝐹) at 𝑥

0
. If 𝑥
0
is a

solution of (𝐺𝐸𝑃), then 𝑥
0
is a weak solution of (D).

Theorem 17. Let 𝑥
0
∈ 𝐶. Suppose that ℎ is lsc and that the

family {𝑓
𝑥
0

, 𝑔, ℎ, 𝛿
𝐶
} satisfies the (CC)

0
.Then,𝑥

0
is a solution of

(𝐺𝐸𝑃) if and only if 𝑥
0
is a solution of the dual problem (D).

Proof. Suppose that 𝑥
0
is a solution of (GEP). Then, 𝑥

0
is a

solution of (P
𝑥
0

). Hence,

V (P
𝑥
0

) = 𝑓
𝑥
0

(𝑥
0
) + 𝑔 (𝑥

0
) − ℎ (𝑥

0
) = 𝑔 (𝑥

0
) − ℎ (𝑥

0
) .

(77)

Since the family {𝑓
𝑥
0

, 𝑔, ℎ, 𝛿
𝐶
} satisfies the (CC)

0
, it follows

fromTheorem 10 that

V (P
𝑥
0

) = inf
𝑥
∗
∈dom ℎ∗

max
𝑢
∗
∈dom𝑓∗

𝑥
0

,V∗∈dom𝑔∗
𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) ,

(78)

which implies that for each 𝑥∗ ∈ dom ℎ∗, there exist 𝑢∗ ∈

dom𝑓∗
𝑥
0

and V∗ ∈ dom𝑔∗ such that

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) ≥ V (𝑃
𝑥
0

) . (79)

Moreover, since ℎ is lsc at 𝑥
0
, it follows from Remark 14(b)

that

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) ≤ 𝑔 (𝑥
0
) − ℎ (𝑥

0
) = V (𝑃

𝑥
0

) . (80)

Hence, (70) holds.This means that 𝑥
0
is a solution of the dual

problem (D).

Conversely, suppose that 𝑥
0
is a solution of the dual prob-

lem (D). Let 𝑥∗ ∈ dom ℎ∗. Then, there exist 𝑢∗ ∈ dom𝑓∗
𝑥
0

and V∗ ∈ dom𝑔∗ such that (70) holds. Note by the Young-
Fenchel inequality (6) that for each 𝑥 ∈ 𝐶,

𝐿 (𝑥
0
, 𝑥
∗

, 𝑢
∗

, V∗) ≤ ℎ
∗

(𝑥
∗

) − ⟨𝑥
∗

, 𝑥⟩ + 𝑔 (𝑥) + 𝑓
𝑥
0

(𝑥) .

(81)

Then by (70), one has that for each 𝑥 ∈ 𝐶,

𝑔 (𝑥
0
) − ℎ (𝑥

0
) ≤ ℎ
∗

(𝑥
∗

) − ⟨𝑥
∗

, 𝑥⟩ + 𝑔 (𝑥) + 𝑓
𝑥
0

(𝑥) . (82)

Since the above inequality holds for each 𝑥∗ ∈ dom ℎ∗, it fol-
lows that

𝑔 (𝑥
0
) − ℎ (𝑥

0
)

≤ inf
𝑥
∗
∈dom ℎ∗

{ℎ
∗

(𝑥
∗

) − ⟨𝑥
∗

, 𝑦⟩}

+ 𝑔 (𝑥) + 𝑓
𝑥
0

(𝑥)

= − (cl ℎ) (𝑥) + 𝑔 (𝑥) + 𝑓
𝑥
0

(𝑥) .

(83)

Consequently, by the lower semicontinuity of ℎ, one has that
for each 𝑥 ∈ 𝐶,

𝑔 (𝑥
0
) − ℎ (𝑥

0
) ≤ 𝑓
𝑥
0

(𝑥) + 𝑔 (𝑥) − ℎ (𝑥) , (84)

and hence 𝑔(𝑥
0
) − ℎ(𝑥

0
) ≤ 𝑝(𝑥

0
). This implies that 𝑔(𝑥

0
) −

ℎ(𝑥
0
) = 𝑝(𝑥

0
) since 𝑔(𝑥

0
) − ℎ(𝑥

0
) ≥ 𝑝(𝑥

0
) holds automat-

ically. Thus, 𝑥
0
is a solution of (GEP).

Remark 18. Theorem 17 was established in [5, Theorems 4.3
and 4.4] under the assumptions that (29) and (76) hold.Thus,
ourTheorem 16 extends the corresponding result in [5,Theo-
rems 4.3 and 4.4] to suit the case when 𝑔, ℎ are not lsc and𝐶 is
not closed.

Belowwewill give a upper estimate for the Fréchet subdif-
ferential of the function 𝑝 defined in (61). We first recall from
[18] or [19, page 90] that the Fréchet subdifferential of 𝜙 at a
point 𝑥

0
∈ dom𝜙 with |𝜙(𝑥

0
)| < ∞ is defined by

𝜕̂𝜙 (𝑥
0
)

:= {𝑥
∗

∈ 𝑋
∗

: lim inf
𝑥→𝑥

0

𝜙 (𝑥) − 𝜙 (𝑥
0
) − ⟨𝑥∗, 𝑥 − 𝑥

0
⟩

󵄩󵄩󵄩󵄩𝑥 − 𝑥
0

󵄩󵄩󵄩󵄩
≥ 0} ,

(85)

where 𝜙 : 𝑋 → R ∪ {±∞} is an extended real-valued
function.

Theorem 19. Let 𝑥
0
∈ 𝐶 be a solution of (𝐺𝐸𝑃). Suppose that

the family {𝑔, 𝛿
𝐶
} satisfies the (𝑀𝑅𝐹) at 𝑥

0
; that is,

𝜕 (𝑔 + 𝛿
𝐶
) (𝑥
0
) = 𝜕𝑔 (𝑥

0
) + 𝑁
𝐶
(𝑥
0
) . (86)

Then for each 𝛾 > 0, one has that

𝑝 (𝑥
0
) ⊆ ⋂

𝑥
∗
∈𝜕ℎ(𝑥0)

(𝜕𝑔 (𝑥
0
) + 𝑁
𝐶
(𝑥
0
) − 𝑥
∗

) + 𝛾B
∗

, (87)

where B∗ denotes the unit ball in 𝑋∗.
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Proof. Let 𝑥
0
∈ 𝐶. If 𝜕𝐻(𝑥

0
) = 0, then (87) holds trivially.

Below let 𝑢∗ ∈ 𝜕̂𝑝(𝑥
0
) and 𝑥∗ ∈ 𝜕ℎ(𝑥

0
). Let 𝛾 > 0. Then,

by the definition of of Fréchet subdifferential of 𝑝 at 𝑥
0
, there

exists 𝜂 > 0 such that

𝑝 (𝑥) − 𝑝 (𝑥
0
) − ⟨𝑢

∗

, 𝑥 − 𝑥
0
⟩ + 𝛾

󵄩󵄩󵄩󵄩𝑥 − 𝑥
0

󵄩󵄩󵄩󵄩

≥ 0 for each 𝑥 ∈ 𝑥
0
+ 𝜂B,

(88)

where B denotes the unit ball in 𝑋. Since 𝑥
0
is a solution of

(GEP), it follows that 𝑝(𝑥
0
) = 𝑔(𝑥

0
)−ℎ(𝑥

0
). Note that 𝑝(𝑥) ≤

𝑔(𝑥) − ℎ(𝑥) holds for each 𝑥 ∈ 𝐶. Then

0 ≤ 𝑔 (𝑥) − ℎ (𝑥) − 𝑔 (𝑥
0
) + ℎ (𝑥

0
)

− ⟨𝑢
∗

, 𝑥 − 𝑥
0
⟩ + 𝛾

󵄩󵄩󵄩󵄩𝑥 − 𝑥
0

󵄩󵄩󵄩󵄩

≤ 𝑔 (𝑥) − 𝑔 (𝑥
0
) − ⟨𝑢

∗

+ 𝑥
∗

, 𝑥 − 𝑥
0
⟩

+ 𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩 ,

(89)

where the last inequality holds because 𝑥∗ ∈ 𝜕ℎ(𝑥
0
). Define

𝜙 : 𝑋 → R by

𝜙 (𝑥) := 𝑔 (𝑥) − 𝑔 (𝑥
0
) − ⟨𝑢

∗

+ 𝑥
∗

, 𝑥 − 𝑥
0
⟩ + 𝛾

󵄩󵄩󵄩󵄩𝑥 − 𝑥
0

󵄩󵄩󵄩󵄩 .

(90)

Then, 𝜙 is a proper convex function on𝑋, and 𝑥
0
is a solution

to the following convex programming:

Min 𝜙 (𝑥) ,

s.t. 𝑥 ∈ 𝐶 ∩ (𝑥
0
+ 𝜂B) .

(91)

Hence, 0 ∈ 𝜕(𝜙 + 𝛿
𝐶∩(𝑥
0
+𝜂B))(𝑥0), and

0 ∈ 𝜕 (𝑔 + 𝛿
𝐶∩(𝑥
0
+𝜂B)) (𝑥0) − (𝑢

∗

+ 𝑥
∗

) + 𝛾B
∗

. (92)

Note that 𝑥
0
is an interior point of the set 𝑥

0
+ 𝜂B; then the

function 𝛿
𝑥
0
+𝜂B is continuous at 𝑥

0
. Hence,

𝜕 (𝑔 + 𝛿
𝐶∩(𝑥
0
+𝜂B)) (𝑥0) = 𝜕 (𝑔 + 𝛿

𝐶
) (𝑥
0
) . (93)

This together with (86) and (92) implies that

0 ∈ 𝜕𝑔 (𝑥
0
) + 𝑁
𝐶
(𝑥
0
) − (𝑢

∗

+ 𝑥
∗

) + 𝛾B
∗

; (94)

that is,

𝑢
∗

∈ 𝜕𝑔 (𝑥
0
) + 𝑁
𝐶
(𝑥
0
) − 𝑥
∗

+ 𝛾B
∗

, (95)

Which implies that (87) holds by the arbitrariness of 𝑥∗. The
proof is complete.
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