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This paper deals with the existence and stability of periodic solutions for the following nonlinear neutral functional differential
equation (𝑑/𝑑𝑡)𝐷𝑢

𝑡
= 𝑝(𝑡) − 𝑎𝑢(𝑡) − 𝑎𝑞𝑢(𝑡 − 𝑟) − ℎ(𝑢(𝑡), 𝑢(𝑡 − 𝑟)). By using Schauder-fixed-point theorem and Krasnoselskii-fixed-

point theorem, some sufficient conditions are obtained for the existence of asymptotic periodic solutions. Main results in this paper
extend the related results due to Ding (2010) and Lopes (1976).

1. Introduction

In recent years, the existence and stability of periodic solu-
tions for differential equation has been extensively studied.
Many researchers used the Lyapunov functional method,
Hopf bifurcation techniques, and Mawhin continuation the-
orems to obtain the existence and stability of periodic
solutions for neutral functional differential equation (NFDE);
see papers [1–14] and their references therein. However,
researches on the existence and stability of periodic solutions
for NFDE by using fixed-point theorem are relatively rare
[15, 16]. The reason lies in the fact that it is difficult to
construct an appropriate completely continuous operator and
an appropriate bounded closed convex set.

In this paper, wewill investigate the existence and stability
of periodic solutions for the following nonlinear NFDE

𝑑

𝑑𝑡
𝐷𝑢
𝑡
= 𝑝 (𝑡) − 𝑎𝑢 (𝑡) − 𝑎𝑞𝑢 (𝑡 − 𝑟) − ℎ (𝑢 (𝑡) , 𝑢 (𝑡 − 𝑟)) ,

(1)

where 𝐷𝑢
𝑡
= 𝑢(𝑡) − 𝑞𝑢(𝑡 − 𝑟), |𝑞|⟨1, 𝑎⟩ 0, ℎ ∈ 𝐶(R × R,R),

and 𝑝 ∈ 𝐶(R,R). Such a kind of NFDE has been used for
the study of distributed networks containing a transmission
line [17, 18]. For example, suppose a system consists of a long

electrical cable of length 𝑙, and one end of which isconnected
to a power source 𝐸(𝑡)with resistance𝑅

0
, while the other end

is connected to an oscillating circuit formed of a condenser
𝐶
0
and a nonlinear element, the volt-ampere characteristic

of which is 𝑖 = 𝑓(𝑢). Let 𝐿, 𝐶, 𝑅, and 𝐺 be the parameters
of the transmission line, respectively, 𝑍

0
the characteristic

impedance of the line, V = 1/√𝐿𝐶 the propagation velocity
and assume the losses can not be disregarded. The process of
the final end volt 𝑢(𝑡) in such a system can be described by
the following NFDES:

𝑢
󸀠
(𝑡) − 𝑞𝑢

󸀠
(𝑡 − 𝑟) = 𝑝 (𝑡) − 𝑎𝑢 (𝑡) − 𝑎𝑞𝑢 (𝑡 − 𝑟)

− 𝑏𝑓 (𝑢 (𝑡)) + 𝑏𝑞𝑓 (𝑢 (𝑡 − 𝑟))
(2)

or

𝐶
0
(𝑢
󸀠
(𝑡) − 𝑘𝑢

󸀠
(𝑡 − 𝑟)) = 𝑝 (𝑡) − 𝑍𝑢 (𝑡) − 𝑍𝑘𝑢 (𝑡 − 𝑟)

− 𝑓 (𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝑟)) ,

(3)

where 𝑎 = 1/𝑍
0
𝐶
0
, 𝑏 = 1/𝐶

0
, 𝑞 = (𝑍

0
− 𝑅
0
)/𝐴2 (𝑍

0
+ 𝑅
0
),

𝑘 = (1 − 𝑍𝑅
0
)/(1 + 𝑍𝑅

0
), 𝑝(𝑡) = 2𝐸(𝑡 − (𝑟/2))/𝐴(𝑍

0
+ 𝑅
0
)𝐶
0
,

𝑟 = 2𝑙/V,𝐴 = 𝑒𝑅𝑙/𝑍0 ,𝑍 = √𝐶/𝐿, and𝑓(𝑢) is a given nonlinear
function. If 𝑅

0
> 0, then |𝑞| < 1, |𝑘| < 1. Obviously, we see

that (2) (or (3)) is a special case of (1). The aim of this paper
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is to establish some criteria to guarantee the existence and
stability of periodic solution for (1) by using Schauder’s fixed-
point theorem and Krasnoselskii’s fixed-point theorem. The
interesting is that main results obtained in this paper extend
the related existing results. Furthermore, our results can also
be applied to solve the problem of the existence and stability
of periodic solutions for (2) and (3).

2. Main Results and Proofs

In this section, let 𝐶1(R𝑁) (𝐶(R𝑁)) denote the set of all con-
tinuously differentiable functions (all continuous functions)
𝜙 : R𝑁 → R, where 𝑁 = 1, 2. 𝐶

𝜔
= {𝜙 | 𝜙 ∈ 𝐶(R), 𝜙(𝑡 +

𝜔) = 𝜙(𝑡)} is a Banach space with the supremum norm ‖ ⋅ ‖
0
,

𝐶1
𝜔
= 𝐶1(R) ∩ 𝐶

𝜔
with the norm ‖𝜙‖

1
= ‖𝜙‖

0
+ ‖𝜙󸀠‖

0
in a

period interval, and 𝜔 is a positive constant. The next lemma
will be used in the sequel.

Lemma 1. If 𝑎 ̸= 0, 𝑓 ∈ 𝐶
𝜔
, then the scalar equation 𝑥󸀠(𝑡) =

𝑎𝑥(𝑡) + 𝑓(𝑡) has a unique 𝜔-periodic solution:

𝑥 (𝑡) = (1 − 𝑒
𝑎𝜔
)
−1

∫
𝑡+𝜔

𝑡

𝑒
𝑎(𝑡+𝜔−𝑠)

𝑓 (𝑠) 𝑑𝑠. (4)

Proof. It is easy to prove. We can find it in many ODE
textbooks (e.g., see Example 2 on page 35 of [19]).

Theorem 2. Suppose that ℎ ∈ 𝐶(R2) and 𝑝 ∈ 𝐶
𝑇
. If there

exists a constant𝐻 > 0 such that
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩0 < (1 − 3

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨) 𝑎𝐻 − sup

|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 , (5)

then (1) has a 𝑇-periodic solution.

Proof. According to the condition (5), we can find a suffi-
ciently small 𝐿 > 0 such that

(2𝐿 +
1

𝑎
)[

[

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩0+2𝑎

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨𝐻+ sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
]

]

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨𝐻 ≤ 𝐻.

(6)

Let V(𝑡) = 𝑢(𝐿𝑡), 𝜏 = 𝑟/𝐿, 𝑝
1
(𝑡) = 𝑝(𝐿𝑡), and 𝜔 = 𝑇/𝐿; then

(1) can be rewritten as

V
󸀠
(𝑡) − 𝑞V

󸀠
(𝑡 − 𝜏) = 𝐿𝑝

1
(𝑡) − 𝑎𝐿V (𝑡) − 𝑎𝑞𝐿V (𝑡 − 𝜏)

− 𝐿ℎ (V (𝑡) , V (𝑡 − 𝜏)) ,
(7)

where 𝑝
1
(𝑡) ∈ 𝐶

𝜔
with ‖𝑝‖

0
= ‖𝑝
1
‖
0
. It suffices to prove that

(7) has a 𝜔-periodic solution. Let

𝑀 = {𝜙 | 𝜙 ∈ 𝐶
1

𝜔
,
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩1 ≤ 𝐻} . (8)

Then𝑀 is a bounded closed convex set of the Banach space
𝐶
1(R). For any given 𝜙 ∈ 𝑀, consider the nonhomogeneous

equation:

V
󸀠
(𝑡) = −𝑎𝐿V (𝑡) + 𝐿𝑝

1
(𝑡) − 𝑎𝑞𝐿𝜙 (𝑡 − 𝜏)

− 𝐿ℎ (𝜙 (𝑡) , 𝜙 (𝑡 − 𝜏)) + 𝑞𝜙
󸀠
(𝑡 − 𝜏) .

(9)

According to Lemma 1, (9) has a unique 𝜔-periodic
solution:

V (𝑡) = (1 − 𝑒
−𝑎𝐿𝜔
)
−1

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 𝑎𝑞𝐿𝜙 (𝑠 − 𝜏)

−𝐿ℎ (𝜙 (𝑠) , 𝜙 (𝑠 − 𝜏)) + 𝑞𝜙
󸀠
(𝑠 − 𝜏)] 𝑑𝑠.

(10)

Define an operator 𝐴 by

(𝐴𝜙) (𝑡)

= (1 − 𝑒
−𝑎𝐿𝜔
)
−1

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 𝑎𝑞𝐿𝜙 (𝑠 − 𝜏)

−𝐿ℎ (𝜙 (𝑠) , 𝜙 (𝑠 − 𝜏)) + 𝑞𝜙
󸀠
(𝑠 − 𝜏)] 𝑑𝑠

= (1 − 𝑒
−𝑎𝐿𝜔
)
−1

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝜙 (𝑠 − 𝜏)

−𝐿ℎ (𝜙 (𝑠) , 𝜙 (𝑠 − 𝜏))] 𝑑𝑠 + 𝑞𝜙 (𝑡 − 𝜏) .

(11)

In order to prove that (7) has a periodic solution, we shall
make sure that 𝐴 satisfies the conditions of Schauder’s fixed-
point theorem (see Lemma 2.2.4 on page 40 of [20]).

Note that for any 𝑥 ∈ 𝑀, we have 𝑥(𝑡 + 𝜔) = 𝑥(𝑡) and
‖𝑥‖
1
≤ 𝐻

(𝐴𝑥) (𝑡 + 𝜔)

= (1 − 𝑒
−𝑎𝐿𝜔
)
−1

× ∫
𝑡+2𝜔

𝑡+𝜔

𝑒
−𝑎𝐿(𝑡+2𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠 + 𝑞𝑥 (𝑡 + 𝜔 − 𝜏)

= (1 − 𝑒
−𝑎𝐿𝜔
)
−1

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠 + 𝑞𝑥 (𝑡 − 𝜏)

= (𝐴𝑥) (𝑡) ;

(12)
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Therefore, (𝐴𝑥)(𝑡 + 𝜔) = (𝐴𝑥)(𝑡). Meanwhile, we get

(𝐴𝑥)
󸀠
(𝑡)

= (1 − 𝑒
−𝑎𝐿𝜔
)
−1

× {∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

(−𝑎𝐿)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠

+ (1 − 𝑒
−𝑎𝐿𝜔
) [𝐿𝑝
1
(𝑡) − 2𝑎𝑞𝐿𝑥 (𝑡 − 𝜏)

−𝐿ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ] }

+ 𝑞𝑥
󸀠
(𝑡 − 𝜏)

= (1 − 𝑒
−𝑎𝐿𝜔
)
−1

(−𝑎𝐿)

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠

+ [𝐿𝑝
1
(𝑡) − 2𝑎𝑞𝐿𝑥 (𝑡 − 𝜏) − 𝐿ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))]

+ 𝑞𝑥
󸀠
(𝑡 − 𝜏) .

(13)

By (6), we have

‖𝐴𝑥‖
1

= ‖𝐴𝑥‖
0
+
󵄩󵄩󵄩󵄩󵄩
(𝐴𝑥)
󸀠󵄩󵄩󵄩󵄩󵄩0

≤ sup
𝑡∈R

󵄨󵄨󵄨󵄨󵄨󵄨
(1 − 𝑒

−𝑎𝐿𝜔
)
−1

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

−𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)) ] 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
𝑡∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(1 − 𝑒

−𝑎𝐿𝜔
)
−1

(−𝑎𝐿)

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [𝐿𝑝
1
(𝑠) − 2𝑎𝑞𝐿𝑥 (𝑠 − 𝜏)

− 𝐿ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏))] 𝑑𝑠

+ [𝐿𝑝
1
(𝑡) − 2𝑎𝑞𝐿𝑥 (𝑡 − 𝜏) − 𝐿ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 ‖𝑥‖1 ≤ (2 +

1

𝑎𝐿
)

× [

[

𝐿
󵄩󵄩󵄩󵄩𝑝1
󵄩󵄩󵄩󵄩0 + 2𝑎

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝐿𝐻 + 𝐿 sup

|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
]

]

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝐻 = (2𝐿 +

1

𝑎
)

× [

[

󵄩󵄩󵄩󵄩𝑝1
󵄩󵄩󵄩󵄩0+2𝑎

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨𝐻+ sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨
]

]

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝐻 ≤ 𝐻.

(14)

Thus, 𝐴𝑥 ∈ 𝑀.
For any 𝑥 ∈ 𝑀, ‖𝐴𝑥‖

0
≤ 𝐻, ‖(𝐴𝑥)󸀠‖

0
≤ 𝐻. According

to Arzela-Ascoli Theorem (see Theorem 4.9.6 on page 84 of
[21]), the subset 𝐴𝑀 of 𝐶

𝜔
is a precompact set; therefore, 𝐴 :

𝑀 ⊂ 𝐶1(R) → 𝐶
𝜔
is a compact operator.

Suppose that {𝑥
𝑛
} ∈ 𝑀, 𝑥

𝑛
→ 𝑥, then ‖𝑥

𝑛
− 𝑥‖
0
→ 0

and ‖𝑥󸀠
𝑛
− 𝑥󸀠‖
0
→ 0 as 𝑛 → ∞. Also, we have

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑥
󵄩󵄩󵄩󵄩0

= sup
𝑡∈R

󵄨󵄨󵄨󵄨󵄨󵄨
(1 − 𝑒

−𝑎𝐿𝜔
)
−1

× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [ − 2𝑎𝑞𝐿 (𝑥
𝑛
(𝑠 − 𝜏) − 𝑥 (𝑠 − 𝜏))

− 𝐿 (ℎ (𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠 − 𝜏))

−ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)))] 𝑑𝑠

+𝑞 (𝑥
𝑛
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝑎𝐿
[2𝑎
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩0

+ 𝐿 sup
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨ℎ (𝑥𝑛 (𝑡) , 𝑥𝑛 (𝑡 − 𝜏))

− ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) )
󵄨󵄨󵄨󵄨 ]

+
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩0

= 3
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩0 +
1

𝑎
sup
𝑡∈[0,𝜔]

×
󵄨󵄨󵄨󵄨ℎ (𝑥𝑛 (𝑡) , 𝑥𝑛 (𝑡 − 𝜏)) − ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))

󵄨󵄨󵄨󵄨 ,

󵄩󵄩󵄩󵄩󵄩
(𝐴𝑥
𝑛
)
󸀠

− (𝐴𝑥)
󸀠󵄩󵄩󵄩󵄩󵄩0

= sup
𝑡∈R

󵄨󵄨󵄨󵄨󵄨󵄨
(1 − 𝑒

−𝑎𝐿𝜔
)
−1

(−𝑎𝐿)
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× ∫
𝑡+𝜔

𝑡

𝑒
−𝑎𝐿(𝑡+𝜔−𝑠)

× [ − 2𝑎𝑞𝐿

× (𝑥
𝑛
(𝑠 − 𝜏) − 𝑥 (𝑠 − 𝜏))

− 𝐿 (ℎ (𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠 − 𝜏))

−ℎ (𝑥 (𝑠) , 𝑥 (𝑠 − 𝜏)))] 𝑑𝑠

− 2𝑎𝑞𝐿 (𝑥
𝑛
(𝑡 − 𝜏) − 𝑥 (𝑡 − 𝜏)) − 𝐿 (ℎ (𝑥

𝑛
(𝑡) , 𝑥
𝑛
(𝑡 − 𝜏))

−ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ) + 𝑞 (𝑥
󸀠

𝑛
(𝑡 − 𝜏) − 𝑥

󸀠
(𝑡 − 𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝐿 [2𝑎
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩0

+ sup
𝑡∈[0,𝜔]

󵄨󵄨󵄨󵄨ℎ (𝑥𝑛 (𝑡) , 𝑥𝑛 (𝑡 − 𝜏))

−ℎ (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏))
󵄨󵄨󵄨󵄨 ] +

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠

𝑛
− 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩0
.

(15)

When ‖𝑥
𝑛
− 𝑥‖
1
→ 0 as 𝑛 → ∞, |𝑥

𝑛
(𝑡) − 𝑥(𝑡)| → 0

for 𝑡 ∈ [0, 𝜔] uniformly. And since ℎ is continuous, ‖𝐴𝑥
𝑛
−

𝐴𝑥‖
0
→ 0, ‖(𝐴𝑥

𝑛
)
󸀠
− (𝐴𝑥)

󸀠
‖
0
→ 0. Consequently, 𝐴 is

continuous.
Thus, by Schauder-fixed-point theorem (see Lemma 2.2.4

on page 40 of [20]), there is a 𝜙 ∈ 𝑀 such that 𝜙 = 𝐴𝜙.
Therefore, (7) has at least one 𝜔-periodic solution. Since
V(𝑡) = 𝑢(𝐿𝑡) and 𝑝(𝐿𝑡) = 𝑝

1
(𝑡), (1) has at least one 𝑇-periodic

solution. The proof is completed.

Next, we explore the stability of this 𝑇-periodic solution
𝑢∗(𝑡) for (1). We assume that theconditions of Theorem 2 are
satisfied. Therefore, (1) has at least one 𝑇-periodic solution
𝑢
∗(𝑡). Let V(𝑡) = 𝑢(𝑡) − 𝑢∗(𝑡) then (1) is transformed as

𝑑

𝑑𝑡
𝐷V
𝑡
= −𝑎V (𝑡) − 𝑎𝑞V (𝑡 − 𝑟) − 𝑔 (V (𝑡) , V (𝑡 − 𝑟)) , (16)

where𝐷V
𝑡
= V(𝑡) − 𝑞V(𝑡 − 𝑟) and 𝑔(V(𝑡), V(𝑡 − 𝑟)) = ℎ(𝑢∗(𝑡) +

V(𝑡), 𝑢∗(𝑡 − 𝑟) + V(𝑡 − 𝑟)) − ℎ(𝑢∗(𝑡), 𝑢∗(𝑡 − 𝑟)). Clearly, (16) has
trivial solution V(𝑡) ≡ 0. Now we use Krasnoselskiis-fixed-
point theorem (see [22] or [15, Lemma 2.2]) to prove that
trivial solution V(𝑡) ≡ 0 to (16) is asymptotically stable.

Set 𝑆 as the Banach space of bounded continuous function
𝜙 : [−𝑟,∞) → 𝑅 with the supremum norm ‖ ⋅ ‖. Also,
Given the initial function 𝜓, denote the norm of 𝜓 by ‖𝜓‖ =
sup
𝑡∈[−𝑟,0]

|𝜓(𝑡)|, which should not cause confusion with the
same symbol for the norm in 𝑆.

Theorem 3. Let 𝐻 be as in Theorem 2. Assume that all
conditions of Theorem 2 are satisfied. Suppose that ℎ satisfies
the Lipschitz condition and

sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑎𝐻 (1 +

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨) . (17)

If there exists 𝑄 > 0 such that

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 ≤
𝑄 − 3

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄

1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
− 𝐻 −

1

𝑎 (1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨)

sup
|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ,

(18)

then the solution V(𝜓)(𝑡) to (16) through 𝜓 satisfies
lim
𝑡→∞

V(𝜓)(𝑡) = 0.

Proof. By (18), we have

(1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 + 3

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄 +

1

𝑎
sup

|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

+ 𝐻 (1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨) ≤ 𝑄.

(19)

Given the initial function 𝜓, by [20, Theorem 12.2.3],
there exists a unique solution V(𝜓)(𝑡) for (16). Let

𝑀
𝜓

= {𝜙 | 𝜙 ∈ 𝑆,
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩 ≤ 𝑄, 𝜙0 = 𝜓, 𝜙 (𝑡) 󳨀→ 0 as 𝑡 󳨀→ ∞} ;

(20)

then𝑀
𝜓
is a bounded convex closed set of 𝑆. We write (16) as

[V (𝑡) − 𝑞V (𝑡 − 𝑟)]
󸀠

= − 𝑎 [V (𝑡) − 𝑞V (𝑡 − 𝑟)] − 2𝑎𝑞V (𝑡 − 𝑟)

− 𝑔 (V (𝑡) , V (𝑡 − 𝑟)) ;

(21)

then we have

V (𝑡) = [𝜓 (0) − 𝑞𝜓 (−𝑟)] 𝑒
−𝑎𝑡
+ 𝑞V (𝑡 − 𝑟)

+ ∫
𝑡

0

[−2𝑎𝑞V (𝑠 − 𝑟) − 𝑔 (V (𝑠) , V (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠.

(22)

For all 𝜙 ∈ 𝑀
𝜓
, define the operators 𝐴 and 𝐵 by

(𝐴𝜙) (𝑡)

=

{{{

{{{

{

0, 𝑡 ∈ [−𝑟, 0] ,

∫
𝑡

0

[−2𝑎𝑞𝜙 (𝑠 − 𝑟) − 𝑔 (𝜙 (𝑠) , 𝜙 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠,

𝑡 ≥ 0,

(𝐵𝜙) (𝑡)

= {
𝜓 (𝑡) , 𝑡 ∈ [−𝑟, 0] ,

(𝜓 (0) − 𝑞𝜓 (−𝑟)) 𝑒
−𝑎𝑡 + 𝑞𝜙 (𝑡 − 𝑟) , 𝑡 ≥ 0.

(23)
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For any 𝑥, 𝑦 ∈ 𝑀
𝜓
, 𝑥(𝑡) → 0, 𝑦(𝑡) → 0 as 𝑡 → ∞, and

‖𝑥‖ ≤ 𝑄, ‖𝑦‖ ≤ 𝑄. Therefore, we have

lim
𝑡→∞

(𝐴𝑥) (𝑡)

= lim
𝑡→∞

∫
𝑡

0
[−2𝑎𝑞𝑥 (𝑠 − 𝑟) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))] 𝑒

𝑎𝑠𝑑𝑠

𝑒𝑎𝑡

= lim
𝑡→∞

1

𝑎
[−2𝑎𝑞𝑥 (𝑡 − 𝑟) − 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟))] = 0,

lim
𝑡→∞

(𝐵𝑦) (𝑡)= lim
𝑡→∞

[(𝜓 (0)−𝑞𝜓 (−𝑟)) 𝑒
−𝑎𝑡
+ 𝑞𝑦 (𝑡 − 𝑟)]= 0.

(24)

Thus, lim
𝑡→∞

(𝐴𝑥 + 𝐵𝑦)(𝑡) = 0. Again by (17) and (19), we
have

󵄩󵄩󵄩󵄩𝐴𝑥 + 𝐵𝑦
󵄩󵄩󵄩󵄩

≤ ‖𝐴𝑥‖ +
󵄩󵄩󵄩󵄩𝐵𝑦
󵄩󵄩󵄩󵄩

= sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

[−2𝑎𝑞𝑥 (𝑠 − 𝑟) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ sup
𝑡≥−𝑟

󵄨󵄨󵄨󵄨(𝐵𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤ [2𝑎
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 + sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨]

× sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+max{󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 , sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨
(𝜓 (0) − 𝑞𝜓 (−𝑟)) 𝑒

−𝑎𝑡
+ 𝑞𝑦 (𝑡 − 𝑟)

󵄨󵄨󵄨󵄨󵄨
}

≤ (1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 + 3

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄 +

1

𝑎
sup

|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

+
1

𝑎
sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

≤ (1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 + 3

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄 +

1

𝑎
sup

|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

+ 𝐻 (1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨) ≤ 𝑄.

(25)

Thus, 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀
𝜓
.

Since |(𝐴𝑥)󸀠(𝑡)| = 0, 𝑡 ∈ [−𝑟, 0], and

󵄨󵄨󵄨󵄨󵄨
(𝐴𝑥)
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−𝑎∫
𝑡

0

[−2𝑎𝑞𝑥 (𝑠 − 𝑟) − 𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠

−2𝑎𝑞𝑥 (𝑡 − 𝑟) − 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝑟))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑎 [2𝑎
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 + sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨]

× sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 2𝑎
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 + sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

= 2 [2𝑎
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄 + sup
|𝑥|,|𝑦|≤𝐻+𝑄

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 + sup
|𝑥|,|𝑦|≤𝐻

󵄨󵄨󵄨󵄨ℎ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨] ,

𝑡 ≥ 0;

(26)

here, the derivative of (𝐴𝑥)󸀠(𝑡) at zero means the left-hand
side derivative when 𝑡 ≤ 0 and the right-hand side derivative
when 𝑡 ≥ 0, one can see (𝐴𝑥)󸀠(𝑡) is bounded for all 𝑥 ∈ 𝑀

𝜓
.

Therefore,𝐴𝑀
𝜓
is a precompact set of 𝑆. Thus,𝐴 is compact.

Suppose that {𝑥
𝑛
} ⊂ 𝑀

𝜓
, 𝑥 ∈ 𝑆, 𝑥

𝑛
→ 𝑥 as 𝑛 → ∞; then

|𝑥
𝑛
(𝑡) − 𝑥(𝑡)| → 0 uniformly for 𝑡 ≥ −𝑟 as 𝑛 → ∞. Since

󵄩󵄩󵄩󵄩𝐴𝑥𝑛 − 𝐴𝑥
󵄩󵄩󵄩󵄩

= sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

{−2𝑎𝑞 [𝑥
𝑛
(𝑠 − 𝑟) − 𝑥 (𝑠 − 𝑟)]

− 𝑔 (𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠 − 𝑟))

+𝑔 (𝑥 (𝑠) , 𝑥 (𝑠 − 𝑟)) } 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ [2𝑎
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

+ sup
𝑡≥0

󵄨󵄨󵄨󵄨ℎ (𝑢
∗
(𝑡) + 𝑥

𝑛
(𝑡) , 𝑢
∗
(𝑡 − 𝑟) + 𝑥

𝑛
(𝑡 − 𝑟))

− ℎ (𝑢
∗
(𝑡) + 𝑥 (𝑡) , 𝑢

∗
(𝑡 − 𝑟) + 𝑥 (𝑡 − 𝑟))

󵄨󵄨󵄨󵄨 ]

× sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑡

0

𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 2
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

󵄩󵄩󵄩󵄩

+
1

𝑎
sup
𝑡≥0

󵄨󵄨󵄨󵄨ℎ (𝑢
∗
(𝑡) + 𝑥

𝑛
(𝑡) , 𝑢
∗
(𝑡 − 𝑟) + 𝑥

𝑛
(𝑡 − 𝑟))

− ℎ (𝑢
∗
(𝑡) + 𝑥 (𝑡) , 𝑢

∗
(𝑡 − 𝑟) + 𝑥 (𝑡 − 𝑟))

󵄨󵄨󵄨󵄨 ,

(27)
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and ℎ is continuous, we have ‖𝐴𝑥
𝑛
− 𝐴𝑥‖ → 0 as 𝑛 → ∞.

Thus, 𝐴 is continuous. Due to the fact that
󵄩󵄩󵄩󵄩𝐵𝑥 − 𝐵𝑦

󵄩󵄩󵄩󵄩 = sup
𝑡≥0

󵄨󵄨󵄨󵄨𝑞𝑥 (𝑡 − 𝑟) − 𝑞𝑦 (𝑡 − 𝑟)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ,

∀𝑥, 𝑦 ∈ 𝑀
𝜓
,

(28)

and |𝑞| < 1, we know that 𝐵 is a contractive operator.
According to Krasnoselskii’s fixed-point theorem (see

[22] or [15, Lemma 2.2]), there is a 𝜙 ∈ 𝑀
𝜓
such that (𝐴 +

𝐵)𝜙 = 𝜙. Therefore, 𝜙(𝑡) is a solution for (16). Because the
solution through 𝜓 for the equation is unique, the solution
V(𝜓)(𝑡) = 𝜙(𝑡) → 0 as 𝑡 → ∞.

When ℎ satisfies the Lipschitz condition, then there is a
constant 𝐿 > 0 such that
󵄨󵄨󵄨󵄨ℎ (𝑢 (𝑡)+𝑢

∗
(𝑡) , 𝑢 (𝑡 − 𝑟)+𝑢

∗
(𝑡 − 𝑟))−ℎ (𝑢

∗
(𝑡) , 𝑢
∗
(𝑡−𝑟))

󵄨󵄨󵄨󵄨

≤ 𝐿√|𝑢 (𝑡)|
2
+ |𝑢 (𝑡 − 𝑟)|

2
, ∀𝑢 ∈ 𝑆.

(29)

Since 𝜙 satisfies

𝜙 (𝑡) = [𝜓 (0) − 𝑞𝜓 (−𝑟)] 𝑒
−𝑎𝑡
+ 𝑞𝜙 (𝑡 − 𝑟)

+ ∫
𝑡

0

[−2𝑎𝑞𝜙 (𝑠 − 𝑟) − 𝑔 (𝜙 (𝑠) , 𝜙 (𝑠 − 𝑟))] 𝑒
−𝑎(𝑡−𝑠)

𝑑𝑠,

(30)

then

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩 ≤ (1 +

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 + 3

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩 +
√2𝐿

𝑎

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩 ,

(31)

that is

(1 − 3
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 −
√2𝐿

𝑎
)
󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩 ≤ (1 +

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨)
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩 . (32)

Therefore, if 1 − 3|𝑞| − (√2𝐿/𝑎) > 0, then there clearly exists
a 𝛿 > 0 for any 𝜀 > 0 such that |𝜙(𝑡)| < 𝜀 for all 𝑡 ≥ −𝑟 if
‖𝜓‖ < 𝛿. Thus, we have the following.

Theorem 4. If the Lipschitz constant 𝐿 for ℎ corresponding to
R2 satisfies

1 − 3
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 −
√2𝐿

𝑎
> 0, (33)

then the zero solution for (16) is stable.

When 𝑝 is constant and the equation 𝑝 − 𝑎(1 + 𝑞)𝑢 =
ℎ(𝑢, 𝑢) has only one solution 𝑢∗, then 𝑢∗ is an equilibrium of
(1) and (1) can be transformed to the following equation:

𝑑

𝑑𝑡
𝐷𝑢
𝑡
= −𝑎𝑢 (𝑡) − 𝑎𝑞𝑢 (𝑡 − 𝑟) − 𝑔 (𝑢 (𝑡) , 𝑢 (𝑡 − 𝑟)) , (34)

where 𝐷𝑢
𝑡
= 𝑢(𝑡) − 𝑞𝑢(𝑡 − 𝑟) and 𝑔(𝑢(𝑡), 𝑢(𝑡 − 𝑟)) = ℎ(𝑢∗ +

𝑢(𝑡), 𝑢∗ + 𝑢(𝑡 − 𝑟)) − ℎ(𝑢∗, 𝑢∗). Now, we consider the stability
of the zero solution for (34).

Theorem 5. Suppose that is ℎ ∈ 𝐶1(R2) and (ℎ
𝑥
(𝑢∗, 𝑢∗),

ℎ
𝑦
(𝑢∗, 𝑢∗)) = (0, 0); then the zero solution of (34) is expo-

nentially asymptotically stable.

Proof. For all 𝜙 in 𝐶 = 𝐶([−𝑟, 0],R), let

𝐷𝜙 = 𝜙 (0) − 𝑞𝜙 (−𝑟) ,

𝐿𝜙 = −𝑎𝜙 (0) − 𝑎𝑞𝜙 (−𝑟) ,

𝐹𝜙 = −𝑔 (𝜙 (0) , 𝜙 (−𝑟)) .

(35)

Then 𝐷 is stable, and 𝐷 and 𝐿 are linear and continuous.
Consider the equation (𝑑/𝑑𝑡)𝐷𝑢

𝑡
= 𝐿𝑢
𝑡
. Let

𝑉 (𝜙) = (𝐷𝜙)
2

+ 2𝑎𝑞
2
∫
0

−𝑟

𝜙
2
(𝜃) 𝑑𝜃. (36)

Then
𝑉̇ (𝜙)

= 2 (𝐷𝜙) (−𝑎𝜙 (0) − 𝑎𝑞𝜙 (−𝑟)) + 2𝑎𝑞
2
(𝜙
2
(0) − 𝜙

2
(−𝑟))

= −2𝑎 (1 − 𝑞
2
) 𝜙
2
(0) .

(37)

Thus, according to the last conclusion of Theorem 12.7.1 in
[20, Page 297], the zero solution of 𝑢󸀠(𝑡) − 𝑞𝑢󸀠(𝑡 − 𝑟) =
−𝑎𝑢(𝑡)−𝑎𝑞𝑢(𝑡− 𝑟) is uniformly asymptotically stable. On the
other hand, one can see that

𝐹
𝜙
𝑢 = (−𝑔

𝑥
(𝑢 (0) , 𝑢 (−𝑟)) , −𝑔

𝑦
(𝑢 (0) , 𝑢 (−𝑟))) . (38)

Thus, 𝐹(0) = 𝐹
𝜙
(0) = 0. According to [20, Theorem 12.9.1],

the zero solution of (34) is exponentially asymptotically
stable.

3. Examples

In this section, we present two examples to illustrate the
applicability of our main results.

Example 6 (Lopes et al. [8, 9, 13, 15, 23]). Consider the NFDE
(2) which arises from a transmission line model, where 𝑎 >
0, 𝑏 > 0, 𝑟 > 0, |𝑞| < 1, 𝑝 ∈ 𝐶(R), and𝑓 is a given nonlinear
function. Now, let ℎ(𝑢(𝑡), 𝑢(𝑡−𝑟)) = 𝑏𝑓(𝑢(𝑡))−𝑏𝑞𝑓(𝑢(𝑡−𝑟)). It
is not difficult to see that (2) is a special case of (1).Therefore,
by Theorems 2–5, we have the following.

Theorem7. Suppose that𝑓 ∈ 𝐶(R) and𝑝 ∈ 𝐶
𝑇
. If there exists

a constant𝐻 > 0 such that
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩0 < (1 − 3

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨) 𝑎𝐻 − 𝑏 (1 +

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨) sup
|𝑥|≤𝐻

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 , (39)

then (2) has a 𝑇-periodic solution.

Remark 8. Theorem 7 implies that the conditions in [15]

𝑙 < 1,
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 <
1 − 𝑙

3 + 𝑙
, (40)

where 𝑙 = (𝑏/𝑎𝐻)sup
|𝑥|≤𝐻
|𝑓(𝑥)|, are unnecessary for the

existence of periodic solutions for (2).
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Theorem 9. Let 𝐻 be as in Theorem 7. Assume that all
conditions ofTheorem 7 are satisfied. If 𝑓 satisfies the Lipschitz
condition, (𝑏/𝑎𝐻)sup

|𝑥|≤𝐻
|𝑓(𝑥)| ≤ 1 and there exists 𝑄 > 0

such that

󵄩󵄩󵄩󵄩𝜓−𝑢
∗󵄩󵄩󵄩󵄩 ≤

𝑄 − 3
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄

1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
− 𝐻 −

𝑏

𝑎
sup
|𝑥|≤𝐻+𝑄

󵄨󵄨󵄨󵄨𝑓(𝑥)
󵄨󵄨󵄨󵄨 , (41)

then the solution 𝑢(𝜓)(𝑡) through𝜓 to (2) satisfying 𝑢(𝜓)(𝑡) →
𝑢∗(𝑡) as 𝑡 → ∞, where 𝑢∗(𝑡) is a 𝑇-periodic solution of (2).

Remark 10. The sufficient conditions for the existence of
periodic solutions in [15] are very complicated. For example,
they need extra condition 𝑄 > 𝐻,𝑚 < 𝑄 −𝐻 and

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 <
𝑄 − 𝐻 − 𝑚

3𝑄 + 𝐻 + 𝑚
,

󵄩󵄩󵄩󵄩𝜓 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤

𝑄 − 3
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 𝑄

1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
− 𝐻 −

𝑚

1 +
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨
,

(42)

where𝑚 = (𝑏/𝑎)sup
|𝑥|≤𝐻+𝑄

|𝑓(𝑥)|.

Theorem 11. If all conditions of Theorem 7 are satisfied, and
the Lipschitz constant 𝐿 for 𝑓 corresponding to (−∞, +∞)
satisfies 1 − 3|𝑞| − (𝑏/𝑎)(1 + |𝑞|)𝐿 > 0, then the 𝑇-periodic
solution 𝑢∗(𝑡) of (2) is stable.

Theorem 12. Suppose that𝑝 is constant, the equation𝑝−𝑎(1+
𝑞)𝑢 = 𝑏(1 − 𝑞)𝑓(𝑢) has only one solution 𝑢∗, 𝑓 ∈ 𝐶1(R), and
𝑓󸀠(𝑢∗) = 0; then the equilibrium 𝑢∗ of (2) is exponentially
asymptotically stable.

Example 13 (Lopes [9]). Consider the NFDE (3) which arises
from a transmission line model, where 𝐶

0
> 0, 𝑍 > 0, 𝑟 >

0, |𝑘| < 1, 𝑝 ∈ 𝐶(R) and 𝑓 is a given nonlinear function. Let
𝑝̃(𝑡) = (1/𝐶

0
)𝑝(𝑡), 𝑎̃ = 𝑍/𝐶

0
, and 𝑓̃(𝑢) = (1/𝐶

0
)𝑓(𝑢); then

(3) can be rewritten as

𝑢
󸀠
(𝑡) − 𝑘𝑢

󸀠
(𝑡 − 𝑟) = 𝑝̃ (𝑡) − 𝑎̃𝑢 (𝑡) − 𝑎̃𝑘𝑢 (𝑡 − 𝑟)

− 𝑓̃ (𝑢 (𝑡) − 𝑘𝑢 (𝑡 − 𝑟)) .

(43)

Now, let ℎ(𝑢(𝑡), 𝑢(𝑡−𝑟)) = 𝑓̃(𝑢(𝑡)−𝑘𝑢(𝑡−𝑟)). It is not difficult
to see that (43) is a special case of (1).Therefore, byTheorems
2–5, we have the following.

Theorem 14. Suppose that 𝑓 ∈ 𝐶(R) and 𝑝 ∈ 𝐶
𝑇
. If there

exists a constant𝐻 > 0 such that

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩0 < (1 − 3 |𝑘|) 𝑍𝐻 − sup

|𝑥|≤(1+|𝑘|)𝐻

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 , (44)

then (3) has a 𝑇-periodic solution.

Theorem 15. Let 𝐻 be as in Theorem 14. Assume that all
conditions ofTheorem 14 are satisfied. If𝑓 satisfies the Lipschitz

condition, sup
|𝑥|≤(1+|𝑘|)𝐻

|𝑓(𝑥)| ≤ 𝑍𝐻(1 + |𝑘|), and there exists
𝑄 > 0 such that
󵄩󵄩󵄩󵄩𝜓 − 𝑢

∗󵄩󵄩󵄩󵄩

≤
𝑄 − 3 |𝑘| 𝑄

1 + |𝑘|
− 𝐻 −

1

𝑍 (1 + |𝑘|)
sup

|𝑥|≤(1+|𝑘|)(𝐻+𝑄)

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ,

(45)

then the solution through 𝜓 of (3) 𝑢(𝜓)(𝑡) → 𝑢∗(𝑡) as 𝑡 →
∞, where 𝑢∗(𝑡) is a 𝑇-periodic solution of (3).

Theorem 16. If all conditions of Theorem 14 are satisfied, and
the Lipschitz constant 𝐿 for 𝑓 corresponding to (−∞, +∞)
satisfies 1 − 3|𝑘| − (𝐿/𝑍)(1 + |𝑘|) > 0, then 𝑇-periodic solution
𝑢
∗(𝑡) of (3) is stable.

Theorem 17. Suppose that𝑝 is constant, the equation𝑝−𝑍(1+
𝑘)𝑢 = 𝑓(𝑢 − 𝑘𝑢) has only one solution 𝑢∗, 𝑓 ∈ 𝐶1(R),
and 𝑓󸀠(𝑢∗ − 𝑘𝑢∗) = 0, then the equilibrium 𝑢∗ of (3) is
exponentially asymptotically stable.
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