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The Ulam-Hyers stability of functional equations is widely studied from various points of view by many authors.The present paper
is concerned with local stability of the four Cauchy equations restricted on a bounded domain. These results can be easily adapted
to the corresponding Pexiderized equations.

1. Introduction

After this introduction, in Section 2 the local stability of the
additive equation

𝜑 (𝑥 + 𝑦) = 𝜑 (𝑥) + 𝜑 (𝑦) (1)

and, as a consequence, of the logarithmic equation

𝜑 (𝑥𝑦) = 𝜑 (𝑥) + 𝜑 (𝑦) (2)

both restricted on a bounded domain in 𝑅
2 is studied.

It is well known that the problem of stability was posed,
for the additive equation, by S. Ulam and was solved by
Hyers [1] in 1941, with reference to the equation valid on the
whole space. Afterwards, stabilitywaswidely studied bymany
authors, from various points of view, considering further
equations on the whole space or putting them in very general
settings (see, for instance, [2, 3]).

As for the “local” stability of equations on a restricted
domain, first results can be found in [4, 5] (see also [6]) and
they concern substantially the set of functions 𝑓 : 𝐷

𝑓
⊂ 𝑅 →

(𝑆, ‖ ⋅ ‖), satisfying the condition of 𝛿-additivity

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 < 𝛿 (3)

restricted either on the triangular domain

𝐸
0
= 𝐸 (0, 0; 𝑟) = {(𝑥, 𝑦) ∈ 𝑅

2
: 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑥 + 𝑦 < 𝑟}

(4)

for some given 𝑟 > 0, or the unbounded domain

𝐾
𝑎

= {(𝑥, 𝑦) ∈ 𝑅
2
: |𝑥| +

𝑦
 > 𝑎} (5)

for some given 𝑎 > 0.
In the present paper (Section 2) the bounded restricted

domain of inequality (3) will be assumed to be the triangle

𝐸 = 𝐸 (𝑎, 𝑏; 𝑟)

= {(𝑥, 𝑦) ∈ 𝑅
2
: 𝑥 ≥ 𝑎, 𝑦 ≥ 𝑏, 𝑥 + 𝑦 < 𝑎 + 𝑏 + 𝑟}

(6)

for some given (𝑎, 𝑏) ∈ 𝑅
2 and 𝑟 > 0.

It has to be remarked that in the classical paper [1] by
Hyers as well as in case of restricted domains studied in [4, 5],
the solutions of the “equation” correlated to the inequality
(3) on the given domain are either additive functions on the
whole space (in cases of the general result by Hyers and of the
domain𝐾

𝑎
defined in (5)) or the restrictions to𝐷

𝑓
= [0, 𝑟) of

functions𝐹 additive on𝑅
2 (in case of a domain like𝐸

0
defined

in (4)).
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On the contrary, when a restricted domain like that in (6)
is assumed, the local solution of the corresponding additive
equation, restricted to the same set, is different from the
restriction on the domain of 𝑓 of some function, which is
additive in the whole space 𝑅

2 (see [7]).
Therefore, in order to adhere to the sense of Ulam’s

question in case of a restricted domain like 𝐸(𝑎, 𝑏; 𝑟) too, the
locally 𝛿-additive function 𝑓 has to be compared with the
local solution of the corresponding exact equation restricted
to the same set 𝐸(𝑎, 𝑏; 𝑟).

In this frame, in Section 2, first the local stability of
the additive Cauchy equation restricted to 𝐸(𝑎, 𝑏; 𝑟) will be
proved (Theorem 1); then, as a consequence of this result, the
local stability of the logarithmic Cauchy equation (2) will be
proved (Theorem 6).

These results can be easily extended to the Pexiderized
forms of the same equations.

Notice that the problem of the “local” stability for the
remaining two Cauchy equations,

𝜑 (𝑥 + 𝑦) = 𝜑 (𝑥) 𝜑 (𝑦) , (7)

𝜑 (𝑥𝑦) = 𝜑 (𝑥) 𝜑 (𝑦) , (8)

restricted to bounded domains, requires a suitable slightly
different approach because of the peculiar properties of the
local solutions of such equations when they are restricted on
bounded domains (see [8, 9]).

This problem will be the object of Section 3 of the present
paper, where results of local stability of (7) and (8) will be
proved (Theorems 15 and 16, resp.).

2. About the Additive and the Logarithmic
Cauchy’s Equations

2.1. A Result on Local Stability of the Additive Equation. In the
set of functions 𝑓 of a real variable with values in a normed
space 𝑆 = (𝑆, ‖ ⋅ ‖), let us consider the inequality

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 < 𝛿 (9)

for some 𝛿 > 0 and (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟), defined in (6), for given
(𝑎, 𝑏) ∈ 𝑅

2 and 𝑟 > 0.
As usual, the projections of 𝐸 will be denoted by

𝐸
𝑥

:= {𝑥 ∈ 𝑅 : ∃𝑦 ∈ 𝑅 such that (𝑥, 𝑦) ∈ 𝐸} ,

𝐸
𝑦

:= {𝑦 ∈ 𝑅 : ∃𝑥 ∈ 𝑅 such that (𝑥, 𝑦) ∈ 𝐸} ,

𝐸
𝑥+𝑦

:= {𝑥 + 𝑦 ∈ 𝑅 : (𝑥, 𝑦) ∈ 𝐸} .

(10)

For 𝐸(𝑎, 𝑏; 𝑟) as defined in (6), the projections are 𝐸
𝑥

=

[𝑎, 𝑎+𝑟),𝐸
𝑦

= [𝑏, 𝑏+𝑟), 𝐸
𝑥+𝑦

= [𝑎+𝑏, 𝑎+𝑏+𝑟), and the domain
𝐷
𝑓
of functions 𝑓 satisfying (9) is 𝐷

𝑓
= 𝐸
𝑥
∪ 𝐸
𝑦

∪ 𝐸
𝑥+𝑦

.
We purpose to check whether each 𝑓 : 𝐷

𝑓
→ (𝑆, ‖ ⋅ ‖)

satisfying (9) for (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟) is uniformly approached
on 𝐷

𝑓
by some 𝜑 : 𝐷

𝑓
→ 𝑆 satisfying the additive

equation restricted to 𝐸(𝑎, 𝑏; 𝑟), namely, by a function 𝜑 of
the following form (see [7]):

𝜑 (𝑡) =

{{

{{

{

ℎ
0
(𝑡) + 𝛼, 𝑡 ∈ 𝐸

𝑥
,

ℎ
0
(𝑡) + 𝛽, 𝑡 ∈ 𝐸

𝑦
,

ℎ
0
(𝑡) + 𝛼 + 𝛽, 𝑡 ∈ 𝐸

𝑥+𝑦
,

(11)

where ℎ
0

: 𝑅 → 𝑆 is additive on the whole space 𝑅
2 and

𝛼, 𝛽 ∈ 𝑆 are constant.
A positive answer is given by the following.

Theorem 1. Let 𝑓 : 𝐷
𝑓

→ (𝑆, ‖ ⋅ ‖), (𝑆, ‖ ⋅ ‖) being a Banach
space, satisfy (9) for some 𝛿 > 0 and every (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟),
defined in (6), for given (𝑎, 𝑏) ∈ 𝑅

2 and 𝑟 > 0; 𝐷
𝑓

= 𝐸
𝑥
∪ 𝐸
𝑦
∪

𝐸
𝑥+𝑦

.
Then there exists (at least) a function𝐻 : 𝑅 → 𝑆, additive

on 𝑅
2, such that the function 𝐹 : 𝐷

𝑓
→ 𝑆 defined by

𝐹 (𝑡) =

{{

{{

{

𝐻(𝑡) + 𝑓 (𝑎) − 𝐻 (𝑎) , 𝑡 ∈ 𝐸
𝑥
,

𝐻 (𝑡) + 𝑓 (𝑏) − 𝐻 (𝑏) , 𝑡 ∈ 𝐸
𝑦
,

𝐻 (𝑡) + 𝑓 (𝑎) + 𝑓 (𝑏) − 𝐻 (𝑎) − 𝐻 (𝑏) , 𝑡 ∈ 𝐸
𝑥+𝑦

(12)

has both the following properties:

(i) 𝐹 is a (local) solution of the additive equation restricted
on 𝐸(𝑎, 𝑏; 𝑟);

(ii) 𝐹 approaches uniformly 𝑓 on 𝐷
𝑓
, and

𝑓 (𝑡) − 𝐹 (𝑡)
 < 15𝛿 (13)

holds for every 𝑡 ∈ 𝐷
𝑓
.

In order to proveTheorem 1, let us premise two lemmas.

Lemma 2. Let 𝑓 : 𝐷
𝑓

= 𝐸
𝑥

∪ 𝐸
𝑦

∪ 𝐸
𝑥+𝑦

→ (𝑆, ‖ ⋅ ‖) satisfy
the condition (9) restricted to the set 𝐸 = 𝐸(𝑎, 𝑏; 𝑟) defined in
(6). Then the functions 𝛾

𝑖
: [0, 𝑟) → 𝑆, 𝑖 = 1, 2, 3, defined by

𝛾
1
(𝑡) := 𝑓 (𝑎 + 𝑡) − 𝑓 (𝑎) , 𝛾

2
(𝑡) := 𝑓 (𝑏 + 𝑡) − 𝑓 (𝑏) ,

𝛾
3
(𝑡) := 𝑓 (𝑎 + 𝑏 + 𝑡) − 𝑓 (𝑎 + 𝑏)

(14)

for 𝑡 ∈ [0, 𝑟) satisfy both the following inequalities:

𝛾
𝑖
(𝑡) − 𝛾

𝑗
(𝑡)


< 2𝛿 𝑓𝑜𝑟 𝑖, 𝑗 = 1, 2, 3, (15)

𝛾𝑖 (𝜉 + 𝜂) − 𝛾
𝑖
(𝜉) − 𝛾

𝑖
(𝜂)

 < 4𝛿 𝑓𝑜𝑟 𝑖 = 1, 2, 3,

(𝜉, 𝜂) ∈ 𝐸
0
= 𝐸 (0, 0; 𝑟) .

(16)

Proof of Lemma 2. Let us prove (15) firstly for 𝑖 = 1, 𝑗 = 2. For
𝑡 ∈ [0, 𝑟) the points (𝑎+ 𝑡, 𝑏) and (𝑎, 𝑏 + 𝑡) belong to 𝐸(𝑎, 𝑏; 𝑟);
hence, from (9) both the following inequalities hold

𝑓 (𝑎 + 𝑏 + 𝑡) − {𝑓 (𝑎 + 𝑡) + 𝑓 (𝑏)}
 < 𝛿,

𝑓 (𝑎 + 𝑏 + 𝑡) − {𝑓 (𝑏 + 𝑡) + 𝑓 (𝑎)}
 < 𝛿,

(17)
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whence,
𝑓 (𝑎 + 𝑡) + 𝑓 (𝑏) − 𝑓 (𝑏 + 𝑡) − 𝑓 (𝑎)

 < 2𝛿, (18)

namely, (15) for 𝑖 = 1, 𝑗 = 2.
Similarly we prove (15), for 𝑖 = 1, 𝑗 = 3, assuming the

pairs (𝑎, 𝑏) and (𝑎 + 𝑡, 𝑏) with 𝑡 ∈ [0, 𝑟), from the formulas
{𝑓 (𝑎 + 𝑏 + 𝑡) − 𝑓 (𝑎 + 𝑡)} − 𝑓 (𝑏)

 < 𝛿,

{𝑓 (𝑎 + 𝑏) − 𝑓 (𝑎)} − 𝑓 (𝑏)
 < 𝛿,

(19)

and for 𝑖 = 2, 𝑗 = 3, assuming the pairs (𝑎, 𝑏), (𝑎, 𝑏 + 𝑡), and
𝑡 ∈ [0, 𝑟).

In order to prove (16) let us assume (𝜉, 𝜂) ∈ 𝐸
0

=

𝐸(0, 0; 𝑟).
For 𝑖 = 1, from (15) and (9) we get

Φ
1
:= 𝛾
1
(𝜉 + 𝜂) − 𝛾

1
(𝜉) − 𝛾

1
(𝜂)

= {𝑓 (𝑎 + 𝜉 + 𝜂) − 𝑓 (𝑎)} − {𝑓 (𝑎 + 𝜉) − 𝑓 (𝑎)}

− {𝑓 (𝑎 + 𝜂) − 𝑓 (𝑎)}

= 𝑓 (𝑎 + 𝜉 + 𝜂) − 𝑓 (𝑎 + 𝜉) − {𝑓 (𝑏 + 𝜂) − 𝑓 (𝑏) + 𝜎}

= {𝑓 (𝑎 + 𝜉 + 𝜂) + 𝑓 (𝑏)} − {𝑓 (𝑎 + 𝜉) + 𝑓 (𝑏 + 𝜂)} − 𝜎

‖𝜎‖ < 2𝛿;

(20)

since (𝑎 + 𝜉 + 𝜂, 𝑏) ∈ 𝐸(𝑎, 𝑏; 𝑟) and (𝑎 + 𝜉, 𝑏 + 𝜂) ∈ 𝐸(𝑎, 𝑏; 𝑟),
it follows from (9) that

Φ
1
= {𝑓 (𝑎 + 𝑏 + 𝜉 + 𝜂) + 𝜌

1
} − {𝑓 (𝑎 + 𝑏 + 𝜉 + 𝜂) + 𝜌

2
} − 𝜎,

(21)

with ‖𝜎‖ < 2𝛿, ‖𝜌
𝑘
‖ < 𝛿 for 𝑘 = 1, 2, whence (16) for 𝑖 = 1.

Similarly, for 𝑖 = 2, 𝑎 and 𝑏 interchanged.
As for 𝛾

3
with (𝜉, 𝜂) ∈ 𝐸

0
= 𝐸(0, 0; 𝑟), from (9)

Φ
3
:= 𝛾
3
(𝜉 + 𝜂) − 𝛾

3
(𝜉) − 𝛾

3
(𝜂)

= {𝑓 (𝑎 + 𝑏 + 𝜉 + 𝜂) − 𝑓 (𝑎 + 𝑏)}

− {𝑓 (𝑎 + 𝑏 + 𝜉) − 𝑓 (𝑎 + 𝑏)}

− {𝑓 (𝑎 + 𝑏 + 𝜂) − 𝑓 (𝑎 + 𝑏)}

= {𝑓 (𝑎 + 𝜉) + 𝑓 (𝑏 + 𝜂) + 𝜏
1
} − {𝑓 (𝑎 + 𝜉) + 𝑓 (𝑏) + 𝜏

2
}

− {𝑓 (𝑎) + 𝑓 (𝑏 + 𝜂) + 𝜏
3
} + {𝑓 (𝑎) + 𝑓 (𝑏) + 𝜏

4
} ,

(22)

where ‖𝜏
𝑘
‖ < 𝛿, 𝑘 = 1, 2, 3, 4, whence ‖Φ

3
‖ < 4𝛿.

Lemma 2 is proved.

Lemma 3. If 𝑓 : 𝐷
𝑓

= 𝐸
𝑥

∪ 𝐸
𝑦

∪ 𝐸
𝑥+𝑦

→ (𝑆, ‖ ⋅ ‖), 𝑆 being
a Banach space, satisfies (9) on 𝐸 = 𝐸(𝑎, 𝑏; 𝑟), then each of
the functions 𝛾

𝑖
(𝑡), 𝑖 = 1, 2, 3, defined in (14) for 𝑡 ∈ [0, 𝑟), is

uniformly approached on [0, 𝑟) by the restriction of a function
𝐻
𝑖
: 𝑅 → 𝑆 additive on 𝑅

2.

The following inequalities hold:
𝛾𝑖 (𝑡) − 𝐻

𝑖
(𝑡)

 < 12𝛿, 𝑡 ∈ [0, 𝑟) , 𝑖 = 1, 2, 3, (23)

𝛾
𝑖
(𝑡) − 𝐻

𝑗
(𝑡)


< 14𝛿, 𝑡 ∈ [0, 𝑟) , 𝑖, 𝑗 = 1, 2, 3. (24)

Proof of Lemma 3. Since each function 𝛾
1
, 𝛾
2
, 𝛾
3
is 4𝛿-

additive on 𝐸(0, 0; 𝑟) (from Lemma 2), formula (23) follows
immediately from a known result [4, Lemma 2]:

Let 𝑓 : [0, 𝑑) → (𝑋, ‖ ⋅ ‖), 𝑋 a Banach space, be 𝛿-
additive on 𝐸

𝑑
= {(𝑥, 𝑦) ∈ 𝑅

2
: 0 ≤ 𝑥 < 𝑑, 0 ≤ 𝑦 <

𝑑, 𝑥 + 𝑦 < 𝑑}.
Then there exists at least one additive function 𝐿 : 𝑅 →

𝑋 such that
𝑓 (𝑥) − 𝐿 (𝑥)

 < 3𝛿 𝑓𝑜𝑟 𝑒V𝑒𝑟𝑦 𝑥 ∈ [0, 𝑑) . (25)

Moreover, for every 𝑖, 𝑗 = 1, 2, 3 and 𝑡 ∈ [0, 𝑟), formula (24)
follows from (15) and (23); in fact

𝛾
𝑖
(𝑡) − 𝐻

𝑗
(𝑡)


=


{𝛾
𝑖
(𝑡) − 𝛾

𝑗
(𝑡)} + {𝛾

𝑗
(𝑡) − 𝐻

𝑗
(𝑡)}


< 14𝛿.

(26)

This means that the restriction to [0, 𝑟) of each additive 𝐻
𝑗
,

𝑗 = 1, 2, 3, approaches uniformly on [0, 𝑟) each function 𝛾
1
,

𝛾
2
, 𝛾
3
.

Lemma 3 is proved.

Proof of Theorem 1. According to (24) in Lemma 3, each
function 𝛾

𝑖
(𝑡), 𝑖 = 1, 2, 3, defined in (14) for 𝑡 ∈ [0, 𝑟), namely,

𝛾
1
(𝑡) := 𝑓 (𝑎 + 𝑡) − 𝑓 (𝑎) , 𝛾

2
(𝑡) := 𝑓 (𝑏 + 𝑡) − 𝑓 (𝑏) ,

𝛾
3
(𝑡) := 𝑓 (𝑎 + 𝑏 + 𝑡) − 𝑓 (𝑎 + 𝑏) ,

(27)

is uniformly approached on [0, 𝑟) by each of the additive
functions 𝐻

𝑗
: 𝑅 → 𝑆, 𝑗 = 1, 2, 3.

Let us define 𝐹
𝑖
: 𝐷
𝑓

→ 𝑆, 𝑖 = 1, 2, 3, as follows:

𝐹
𝑖
(𝑡) =

{{

{{

{

𝐻
𝑖
(𝑡) − 𝐻

𝑖
(𝑎) + 𝑓 (𝑎) , 𝑡 ∈ 𝐸

𝑥
,

𝐻
𝑖
(𝑡) − 𝐻

𝑖
(𝑏) + 𝑓 (𝑏) , 𝑡 ∈ 𝐸

𝑦
,

𝐻
𝑖
(𝑡) − 𝐻

𝑖
(𝑎 + 𝑏) + 𝑓 (𝑎) + 𝑓 (𝑏) , 𝑡 ∈ 𝐸

𝑥+𝑦
.

(28)

Such functions 𝐹
𝑖
, 𝑖 = 1, 2, 3, satisfy obviously the additive

equation restricted to 𝐸(𝑎, 𝑏; 𝑟).
Moreover, thanks to Lemmas 2 and 3, each function 𝐹

𝑖

approaches uniformly 𝑓 on 𝐷
𝑓
as in formula (13); in fact, for

arbitrary (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟),

𝑥 = 𝑎 + 𝑡 ∈ 𝐸
𝑥
, 𝛾

1
(𝑡) = 𝛾

1
(𝑥 − 𝑎) = 𝑓 (𝑥) − 𝑓 (𝑎) ,

𝐹𝑖 (𝑥) − 𝑓 (𝑥)


=
(𝐻𝑖 (𝑥) − 𝐻

𝑖
(𝑎) + 𝑓 (𝑎)) − (𝛾

1
(𝑥 − 𝑎) + 𝑓 (𝑎))



=
𝐻𝑖 (𝑥 − 𝑎) − 𝛾

1
(𝑥 − 𝑎)

 < 14𝛿;

(29)

similarly for 𝑦 ∈ 𝐸
𝑦
, 𝛾
2
(𝑦 − 𝑏) = 𝑓(𝑦) − 𝑓(𝑏).
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On the projection 𝐸
𝑥+𝑦

, where 𝑥 + 𝑦 = 𝑎 + 𝑏 + 𝑡 and
𝛾
3
(𝑥 +𝑦− 𝑎− 𝑏) = 𝑓(𝑥+𝑦) −𝑓(𝑎 + 𝑏), we get from Lemma 3

and formula (9)
𝐹𝑖 (𝑥 + 𝑦) − 𝑓 (𝑥 + 𝑦)



=
𝐻𝑖 (𝑥 + 𝑦 − 𝑎 − 𝑏) + 𝑓 (𝑎) + 𝑓 (𝑏)

− (𝛾
3
(𝑥 + 𝑦 − 𝑎 − 𝑏) + 𝑓 (𝑎 + 𝑏))



≤
𝐻𝑖 (𝑥 + 𝑦 − 𝑎 − 𝑏) − 𝛾

3
(𝑥 + 𝑦 − 𝑎 − 𝑏)



+
𝑓 (𝑎 + 𝑏) − 𝑓 (𝑎) − 𝑓 (𝑏)

 < 15𝛿.

(30)

Therefore, each function 𝐹
𝑖

: 𝐷
𝑓

→ 𝑆, 𝑖 = 1, 2, 3, satisfies
(13), andTheorem 1 is proved.

Remark 4. The foregoing study was developed as though the
projections 𝐸

𝑥
, 𝐸
𝑦
, and 𝐸

𝑥+𝑦
were pairwise disjoint.

If two of them overlap, for instance 𝐸
𝑥
∩ 𝐸
𝑦
is nonempty,

in every common point the values given by the different parts
of formulas of approximating function 𝐹 have to be the same.

More in particular, if the set 𝐷
𝑓

= 𝐸
𝑥

∪ 𝐸
𝑦

∪ 𝐸
𝑥+𝑦

is
connected, in (28) the equations

𝑓 (𝑎) − 𝐻
𝑖
(𝑎) = 𝑓 (𝑏) − 𝐻

𝑖
(𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏) − 𝐻

𝑖
(𝑎 + 𝑏)

(31)

hold, whence𝑓(𝑎)−𝐻
𝑖
(𝑎) = 𝑓(𝑏)−𝐻

𝑖
(𝑏) = 0. In this case, the

locally 𝛿-additive𝑓 is uniformly approached on thewhole𝐷
𝑓

by the restriction to𝐷
𝑓
of a function𝐻 : 𝑅 → 𝑆, additive on

𝑅
2 (𝐻 = 𝐻

𝑖
, 𝑖 either =1, or =2, or =3).

2.2. A Result on Local Stability of the Logarithmic Equation.
On the ground of the results in Section 2.1 it is easy to prove
the local stability of the logarithmic Cauchy equation (2)
restricted to the bounded domain

𝐽 = 𝐽 (𝑎, 𝑏; 𝑟) := {(𝑥, 𝑦) ∈ 𝑅
2
: 𝑒
𝑎

≤ 𝑥 < 𝑒
𝑎+𝑟

,

𝑒
𝑏
≤ 𝑦 < 𝑒

𝑏+𝑟
, 𝑒
𝑎+𝑏

≤ 𝑥𝑦 < 𝑒
𝑎+𝑏+𝑟

}

(32)

for given (𝑎, 𝑏) ∈ 𝑅
2 and 𝑟 > 0.

The projections 𝐽
𝑥
, 𝐽
𝑦
, 𝐽
𝑥𝑦

of 𝐽 are given by

𝐽
𝑥

:= {𝑥 ∈ 𝑅
+

: ∃𝑦 ∈ 𝑅
+ such that (𝑥, 𝑦) ∈ 𝐽} = [𝑒

𝑎
, 𝑒
𝑎+𝑟

) ,

𝐽
𝑦

:= {𝑦 ∈ 𝑅
+

: ∃𝑥 ∈ 𝑅
+ such that (𝑥, 𝑦) ∈ 𝐽} = [𝑒

𝑏
, 𝑒
𝑏+𝑟

) ,

𝐽
𝑥𝑦

:= {𝑥𝑦 ∈ 𝑅
+

: (𝑥, 𝑦) ∈ 𝐽} = [𝑒
𝑎+𝑏

, 𝑒
𝑎+𝑏+𝑟

) .

(33)

Since the local stability of (2) depends on the comparison
of every 𝑓 satisfying

𝑓 (𝑥𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 < 𝛿 (34)

for (𝑥, 𝑦) ∈ 𝐽(𝑎, 𝑏; 𝑟) with some solution 𝜑 of the corre-
sponding equation (2) restricted to 𝐽(𝑎, 𝑏; 𝑟), let us premise
(Lemma 5) the local solution of (2).

Lemma 5. Let 𝑆 be a real linear space; if 𝜑 : 𝐷
𝑓

= 𝐽
𝑥

∪ 𝐽
𝑦

∪

𝐽
𝑥𝑦

→ 𝑆 satisfies (2) on the bounded domain 𝐽 = 𝐽(𝑎, 𝑏; 𝑟)

defined in (32), then there exists a function ℎ
0

: 𝑅 → 𝑆,
additive on 𝑅

2, such that

𝜑 (𝑡) =

{{

{{

{

ℎ
0
(ln 𝑡) − ℎ

0
(𝑎) + 𝜑 (𝑒

𝑎
) , 𝑡 ∈ 𝐽

𝑥
,

ℎ
0
(ln 𝑡) − ℎ

0
(𝑏) + 𝜑 (𝑒

𝑏
) , 𝑡 ∈ 𝐽

𝑦
,

ℎ
0
(ln 𝑡) − ℎ

0
(𝑎) − ℎ

0
(𝑏) + 𝜑 (𝑒

𝑎+𝑏
) , 𝑡 ∈ 𝐽

𝑥𝑦
.

(35)

Proof of Lemma 5. By the usual substitutions

𝑥 = 𝑒
𝑢
, 𝑢 = ln𝑥, 𝜑 (𝑥) = 𝜑 (𝑒

𝑢
) =: 𝑔 (𝑢) = 𝑔 (ln𝑥) ,

𝑦 = 𝑒
V
, V = ln𝑦, 𝜑 (𝑦) = 𝜑 (𝑒

V
) =: 𝑔 (V) = 𝑔 (ln𝑦) ,

𝑢 + V = ln (𝑥𝑦) ,

𝜑 (𝑥𝑦) = 𝜑 (𝑒
𝑢+V

) =: 𝑔 (𝑢 + V) = 𝑔 (ln (𝑥𝑦)) ,

(36)

the domain 𝐽(𝑎, 𝑏; 𝑟) is transformed into a set 𝐸(𝑎, 𝑏; 𝑟) like
the one defined in (6). Let us consider

𝐸 = 𝐸 (𝑎, 𝑏; 𝑟) = {(𝑢, V) ∈ 𝑅
2
: 𝑢 ≥ 𝑎, V ≥ 𝑏,

𝑢 + V < 𝑎 + 𝑏 + 𝑟} .

(37)

Equation (2) is transformed into

𝑔 (𝑢 + V) = 𝑔 (𝑢) + 𝑔 (V) , (𝑢, V) ∈ 𝐸 (𝑎, 𝑏; 𝑟) . (38)

Therefore, using Theorem 1, we obtain (35) with additive ℎ
0
.

The local stability of the logarithmic equation (2) is stated
by the following.

Theorem 6. Let (𝑆, ‖ ⋅ ‖) be a Banach space; if 𝑓 : 𝐷
𝑓

= 𝐽
𝑥

∪

𝐽
𝑦

∪ 𝐽
𝑥𝑦

→ (𝑆, ‖ ⋅ ‖) satisfies

𝑓 (𝑥𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 < 𝛿 (39)

for some 𝛿 > 0 and every (𝑥, 𝑦) ∈ 𝐽(𝑎, 𝑏; 𝑟), defined in (32),
for given (𝑎, 𝑏) ∈ 𝑅

2 and 𝑟 > 0, then there exists (at least) a
function 𝐻 : 𝑅 → 𝑆, additive on 𝑅

2, such that the function
𝐿 : 𝐷

𝑓
→ 𝑆 defined by

𝐿 (𝑡) =

{{{{

{{{{

{

𝐻(ln 𝑡) − 𝐻 (𝑎) + 𝑓 (𝑒
𝑎
) , 𝑡 ∈ 𝐽

𝑥
= [𝑒
𝑎
, 𝑒
𝑎+𝑟

) ,

𝐻 (ln 𝑡) − 𝐻 (𝑏) + 𝑓 (𝑒
𝑏
) , 𝑡 ∈ 𝐽

𝑦
= [𝑒
𝑏
, 𝑒
𝑏+𝑟

) ,

𝐻 (ln 𝑡) − 𝐻 (𝑎) − 𝐻 (𝑏)

+𝑓 (𝑒
𝑎
) + 𝑓 (𝑒

𝑏
) , 𝑡 ∈ 𝐽

𝑥𝑦
=[𝑒
𝑎+𝑏

, 𝑒
𝑎+𝑏+𝑟

) ,

(40)

satisfies both the following properties:

(i) 𝐿 is a local solution of the logarithmic equation on the
restricted domain 𝐽(𝑎, 𝑏; 𝑟);
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(ii) 𝐿 approaches uniformly 𝑓on 𝐷
𝑓
, and

𝑓 (𝑡) − 𝐿 (𝑡)
 < 15𝛿 (41)

holds for every 𝑡 ∈ 𝐷
𝑓
.

Proof of Theorem 6. The usual substitutions 𝑥 = 𝑒
𝑢, 𝑦 = 𝑒

V

(like in proof of Lemma 5) transform the inequality (39)
restricted to the set 𝐽(𝑎, 𝑏; 𝑟) into

𝑔 (𝑢 + V) − 𝑔 (𝑢) − 𝑔 (V) < 𝛿 (42)

restricted to the set 𝐸 = 𝐸(𝑎, 𝑏; 𝑟), defined in (6).
Now, we can follow the same line of proof as in Section 2.1

by defining the functions 𝛾
𝑖
: [0, 𝑟) → 𝑆, 𝑖 = 1, 2, 3, related

to 𝑔; namely,

𝛾
1
(𝑡) := 𝑔 (𝑎 + 𝑡) − 𝑔 (𝑎) , 𝛾

2
(𝑡) := 𝑔 (𝑏 + 𝑡) − 𝑔 (𝑏) ,

𝛾
3
(𝑡) := 𝑔 (𝑎 + 𝑏 + 𝑡) − 𝑔 (𝑎 + 𝑏) ;

(43)

then there exist functions 𝐻
𝑖
: 𝑅 → 𝑆, 𝑖 = 1, 2, 3, additive on

𝑅
2, such that each of the functions 𝐺

𝑖
, 𝑖 = 1, 2, 3,

𝐺
𝑖
(𝑡) =

{{{

{{{

{

𝐻
𝑖
(𝑡) − 𝐻

𝑖
(𝑎) + 𝑔 (𝑎) , 𝑡 ∈ 𝐸

𝑢
= [𝑎, 𝑎 + 𝑟) ,

𝐻
𝑖
(𝑡) − 𝐻

𝑖
(𝑏) + 𝑔 (𝑏) , 𝑡 ∈ 𝐸V = [𝑏, 𝑏 + 𝑟) ,

𝐻
𝑖
(𝑡) − 𝐻

𝑖
(𝑎) − 𝐻

𝑖
(𝑏)

+𝑔 (𝑎) + 𝑔 (𝑏) , 𝑡 ∈ 𝐸
𝑢+V=[𝑎+𝑏, 𝑎+𝑏+𝑟) ,

(44)

is a local solution of the equation 𝑔(𝑢 + V) = 𝑔(𝑢) + 𝑔(V)
restricted to 𝐸(𝑎, 𝑏; 𝑟), and

𝑔 (𝑡) − 𝐺
𝑖
(𝑡)

 < 15𝛿, 𝑡 ∈ 𝐷
𝑔

= 𝐸
𝑢
∪ 𝐸V ∪ 𝐸

𝑢+V (45)

holds for 𝑖 = 1, 2, 3.
Now let us come back to 𝑓, by the substitutions which

transformed (39) into (42), beginning by the transformation
of functions 𝐺

𝑖
defined in (44); on 𝐽

𝑥
(from 𝐸

𝑢
)

𝐺
𝑖
(ln𝑥) = 𝐻

𝑖
(ln𝑥) − 𝐻

𝑖
(𝑎) + 𝑓 (𝑒

𝑎
) , 𝑥 = 𝑒

𝑢
∈ [𝑒
𝑎
, 𝑒
𝑎+𝑟

) ,

(46)

similarly, for𝐺
𝑖
(ln𝑦) on 𝐽

𝑦
(from 𝐸V) and for𝐺

𝑖
(ln𝑥𝑦) on 𝐽

𝑥𝑦

(from 𝐸
𝑢+V).

By the definition

𝐿
𝑖
(𝜏) := 𝐺

𝑖
(ln 𝜏) , 𝑖 = 1, 2, 3, (47)

formula (44) changes into

𝐿
𝑖
(𝜏) =

{{{{

{{{{

{

𝐻
𝑖
(ln 𝜏) − 𝐻

𝑖
(𝑎) + 𝑓 (𝑒

𝑎
) , 𝜏 ∈ 𝐽

𝑥
= [𝑒
𝑎
, 𝑒
𝑎+𝑟

) ,

𝐻
𝑖
(ln 𝜏) − 𝐻

𝑖
(𝑏) + 𝑓 (𝑒

𝑏
) , 𝜏 ∈ 𝐽

𝑦
= [𝑒
𝑏
, 𝑒
𝑏+𝑟

) ,

𝐻
𝑖
(ln 𝜏) − 𝐻

𝑖
(𝑎) − 𝐻

𝑖
(𝑏)

+𝑓 (𝑒
𝑎
) + 𝑓 (𝑒

𝑏
) , 𝜏 ∈ 𝐽

𝑥𝑦
=[𝑒
𝑎+𝑏

, 𝑒
𝑎+𝑏+𝑟

) .

(48)

Obviously each 𝐿
𝑖
(𝜏), 𝑖 = 1, 2, 3, satisfies the logarithmic

equation restricted to 𝐽(𝑎, 𝑏; 𝑟).

In order to prove the approximation stated in (41), let us
begin by the projection 𝐽

𝑥
: for 𝑥 ∈ 𝐽

𝑥
; then 𝑢 = ln𝑥, 𝑔(𝑢) =

𝑓(𝑥), and 𝑢 ∈ [𝑎, 𝑎 + 𝑟); hence, from (44)

𝐺
𝑖
(𝑢) = 𝐺

𝑖
(ln𝑥) = 𝐿

𝑖
(𝑥) = 𝐻

𝑖
(ln𝑥) − 𝐻

𝑖
(𝑎) + 𝑓 (𝑒

𝑎
)

(49)

and from (45)
𝑓 (𝑥) − 𝐿

𝑖
(𝑥)

 < 15𝛿 for 𝑥 ∈ 𝐽
𝑥
. (50)

Similarly for 𝑓 on 𝐽
𝑦
and on 𝐽

𝑥𝑦
.

Therefore, (41) is true with 𝐿 = 𝐿
1
or 𝐿 = 𝐿

2
or 𝐿 = 𝐿

3
,

andTheorem 6 is proved.

Remark 7. Remarks about the consequence of a possible
overlapping of the projections of the given restricted domain,
like those in Remark 4, could be repeated here.

2.3. About the Pexiderized Forms of the Foregoing Equations.
Stability results for the Pexiderized forms of the additive and
the logarithmic equations, namely,

𝐴 (𝑥 + 𝑦) = 𝐵 (𝑥) + 𝐶 (𝑦) , (𝑥, 𝑦) ∈ 𝐸 (𝑎, 𝑏; 𝑟) ,

𝐴 (𝑥𝑦) = 𝐵 (𝑥) + 𝐶 (𝑦) , (𝑥, 𝑦) ∈ 𝐽 (𝑎, 𝑏; 𝑟) ,

(51)

can be easily stated on the ground of the foregoingTheorems
1 and 6.

In fact, when the inequality
𝜓 (𝑥 + 𝑦) − 𝜆 (𝑥) − 𝜇 (𝑦)

 < 𝛿 (52)

is satisfied for every (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟), the statement
of Theorem 1 can be easily adapted to the condition (52),
because the functions 𝜆(𝑥), 𝜇(𝑦) and 𝜓(𝑥 +𝑦) play a role like
that of the restrictions of 𝑓 to the projections 𝐸

𝑥
, 𝐸
𝑦
, 𝐸
𝑥+𝑦

in
case of a unique function 𝑓.

Similarly for
𝜌 (𝑥𝑦) − 𝜏 (𝑥) − 𝜎 (𝑦)

 < 𝛿 (53)

restricted to 𝐽(𝑎, 𝑏; 𝑟), by use of Theorem 6.

Remark 8. In case of a Pexiderized equation on restricted
domain, overlapping of the projections of the given bounded
domain obviously produces no changes in the result.

3. About the Remaining Two Cauchy
Equations (7) 𝜑(𝑥+𝑦) = 𝜑(𝑥)𝜑(𝑦) and
(8) 𝜑(𝑥𝑦) = 𝜑(𝑥)𝜑(𝑦) on a Bounded
Restricted Domain

3.1. Preliminaries. As for (7) 𝜑(𝑥 + 𝑦) = 𝜑(𝑥)𝜑(𝑦) the
restricted domain is assumed to be 𝐸(𝑎, 𝑏; 𝑟) defined in (6);
the domain of (8) 𝜑(𝑥𝑦) = 𝜑(𝑥)𝜑(𝑦) is 𝐽(𝑎, 𝑏; 𝑟) defined in
(32) for fixed real 𝑎, 𝑏 and 𝑟 > 0.

Let us premise the local solutions of the above equations
(see papers [8, 9] and [10], resp.).
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Lemma 9. Let 𝜑 : 𝐷
𝜑

= 𝐸
𝑥

∪ 𝐸
𝑦

∪ 𝐸
𝑥+𝑦

→ 𝑅 satisfy (7)
restricted to 𝐸(𝑎, 𝑏; 𝑟) defined in (6).

If and only if there exists some (𝑥

, 𝑦

) ∈ 𝐸(𝑎, 𝑏; 𝑟), (𝑥 ∈

𝐸
𝑥
, 𝑦


∈ 𝐸
𝑦
) such that 𝜑(𝑥


) ̸= 0 and 𝜑(𝑦


) ̸= 0, the following

properties (P
1
), (P
2
), (P
3
) hold:

(P
1
) 𝜑(𝑡) ̸= 0 for every 𝑡 ∈ 𝐸

𝑥+𝑦
(hence for every 𝑡 ∈ 𝐷

𝜑
);

(P
2
) sgn 𝜑(𝑡) is constant on each projection 𝐸

𝑥
, 𝐸
𝑦
, 𝐸
𝑥+𝑦

(not necessarily the same in different projections);
(P
3
) 𝜑(𝑡) is given on 𝐷

𝜑
by the following formulas:

(i) if 𝑡 ∈ 𝐸
𝑥
, 𝜑(𝑡) = 𝐴𝑒

𝐺(𝑡)−𝐺(𝑎),
(ii) if 𝑡 ∈ 𝐸

𝑦
, 𝜑(𝑡) = 𝐵𝑒

𝐺(𝑡)−𝐺(𝑏),
(iii) if 𝑡 ∈ 𝐸

𝑥+𝑦
, 𝜑(𝑡) = 𝐴𝐵𝑒

𝐺(𝑡)−𝐺(𝑎+𝑏),
where 𝐺 : 𝑅 → 𝑅 is additive on 𝑅

2; 𝐴 ̸= 0, 𝐵 ̸= 0

are constant.

Remark 10. Notice that 𝜑 restricted to each of the projections
𝐸
𝑥
, 𝐸
𝑦
, 𝐸
𝑥+𝑦

is the restriction of a solution Φ : 𝑅 → 𝑅 of the
equation

Φ(𝑥 + 𝑦) = 𝐾Φ (𝑥)Φ (𝑦) (54)

valid on the whole 𝑅
2, for suitable 𝐾 ̸= 0.

Since this equation can be written as

𝐾Φ(𝑥 + 𝑦) = 𝐾Φ (𝑥)𝐾Φ (𝑦) , (55)

we get 𝐾Φ(𝑡) = 𝑒
ℎ0(𝑡), for some additive 𝐺(𝑡), whence

formulas in (P
3
) of Lemma 9 for

𝐾 =
𝑒
𝐺(𝑎)

𝐴
, 𝐾 =

𝑒
𝐺(𝑏)

𝐵
, 𝐾 =

𝑒
𝐺(𝑎+𝑏)

𝐴𝐵
, (56)

respectively, in 𝐸
𝑥
, 𝐸
𝑦
, 𝐸
𝑥+𝑦

.

Lemma 11 (see [10]). The general nowhere vanishing solution
𝜑 : 𝐷
𝜑

= 𝐽
𝑥
∪𝐽
𝑦
∪𝐽
𝑥𝑦

→ 𝑅 of (8) restricted to the set 𝐽(𝑎, 𝑏; 𝑟)
defined in (32) is given by the following formulas:

𝜑 (𝑥) = 𝑒
ℎ(ln 𝑥)

⋅ 𝑒
−ℎ(𝑎)

⋅ 𝜑 (𝑒
𝑎
) , 𝑥 ∈ 𝐽

𝑥
= [𝑒
𝑎
, 𝑒
𝑎+𝑟

) ,

𝜑 (𝑦) = 𝑒
ℎ(ln𝑦)

⋅ 𝑒
−ℎ(𝑏)

⋅ 𝜑 (𝑒
𝑏
) , 𝑦 ∈ 𝐽

𝑦
= [𝑒
𝑏
, 𝑒
𝑏+𝑟

) ,

𝜑 (𝑥𝑦) = 𝑒
ℎ(ln 𝑥𝑦)

⋅ 𝑒
−ℎ(𝑎+𝑏)

⋅ 𝜑 (𝑒
𝑎+𝑏

) ,

𝑥𝑦 ∈ 𝐽
𝑥𝑦

= [𝑒
𝑎+𝑏

, 𝑒
𝑎+𝑏+𝑟

) ,

(57)

where ℎ : 𝑅 → 𝑅 is additive on 𝑅
2.

Remark 12. As in Remark 10, we can see that the local
solution 𝜑 of (8), restricted to each of the projections 𝐽

𝑥
, 𝐽
𝑦
,

𝐽
𝑥𝑦
, is the restriction of a solution Ψ : 𝑅

+
→ 𝑅 of a more

general equation

Ψ (𝑥𝑦) = 𝐾Ψ (𝑥)Ψ (𝑦) , (𝑥, 𝑦) ∈ 𝑅
+

× 𝑅
+ (58)

for suitable 𝐾 ̸= 0.

From 𝐾Ψ(𝑥𝑦) = 𝐾Ψ(𝑥)𝐾Ψ(𝑦), it follows that Ψ(𝑡) =

(1/𝐾)𝑒
ℎ(ln 𝑡), with

𝐾 =
𝑒
ℎ(𝑎)

𝜑 (𝑒𝑎)
on the projection 𝐽

𝑥
,

𝐾 =
𝑒
ℎ(𝑏)

𝜑 (𝑒𝑏)
on 𝐽
𝑦
,

𝐾 =
𝑒
ℎ(𝑎+𝑏)

𝜑 (𝑒𝑎+𝑏)
on 𝐽
𝑥𝑦

.

(59)

3.2. How the Question of Local Stability of (7) or (8) Has to
Be Properly Formulated? The foregoing Remarks 10 and 12,
which point out a connection of the restricted equation under
consideration with more general equations, namely,

Ψ (𝑥 + 𝑦) = 𝐾Ψ (𝑥)Ψ (𝑦) , Ψ (𝑥𝑦) = 𝐾Ψ (𝑥)Ψ (𝑦) ,

(60)
suggest the following forms of perturbation of such equa-
tions:

𝑓 (𝑥 + 𝑦) = 𝑒
𝛿⋅𝜃(𝑥,𝑦)

𝑓 (𝑥) 𝑓 (𝑦) , (7)
𝛿

𝑓 (𝑥𝑦) = 𝑒
𝛿⋅𝜃(𝑥,𝑦)

𝑓 (𝑥) 𝑓 (𝑦) , (8)
𝛿

for −1 < 𝜃(𝑥, 𝑦) < 1 and some fixed 𝛿 > 0.
Moreover, it is known (see [8, 9]) that the local solu-

tions of the restricted equations (7) or (8), which vanish
somewhere, are expressed by formulas containing arbitrary
functions; therefore, the problem of the local stability seems
to be significant in the set of nowhere vanishing functions 𝑓.

In this frame, the perturbed forms (7)
𝛿
and (8)

𝛿
can be

written equivalently as

𝑒
−𝛿

<
𝑓 (𝑥 + 𝑦)

𝑓 (𝑥) 𝑓 (𝑦)
< 𝑒
𝛿
, (7)



𝛿

𝑒
−𝛿

<
𝑓 (𝑥𝑦)

𝑓 (𝑥) 𝑓 (𝑦)
< 𝑒
𝛿
. (8)



𝛿

The stability results which follow are framed in this
context.

3.3. A Sign Property concerning the Perturbed Forms of the
Exponential Equation and the Power Equation. Here, we will
be concerned with the condition (7)



𝛿
, (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟)

defined in (6) for some fixed 𝛿 > 0, in the set of functions
𝑓 : 𝐷
𝑓

= 𝐸
𝑥

∪ 𝐸
𝑦

∪ 𝐸
𝑥+𝑦

→ 𝑅, such that 𝑓(𝑡) ̸= 0 for every
𝑡 ∈ 𝐷
𝑓
.

Let us premise a remark about signs of nowhere vanishing
functions 𝑓 satisfying (7)



𝛿
on 𝐸(𝑎, 𝑏; 𝑟). From Lemma 9,

Property (P
2
), it is known that every nowhere vanishing

solution of the exponential Cauchy equation restricted to
𝐸(𝑎, 𝑏; 𝑟) keeps a constant sign in each of the projections 𝐸

𝑥
,

𝐸
𝑦
, 𝐸
𝑥+𝑦

of 𝐸(𝑎, 𝑏; 𝑟).
We will see that a similar property is true also for every

solution of the restricted condition (7)


𝛿
, which is rewritten

here as follows:

𝑓 (𝑥 + 𝑦) = 𝑒
𝛿⋅𝜃(𝑥,𝑦)

𝑓 (𝑥) 𝑓 (𝑦) , −1 < 𝜃 (𝑥, 𝑦) < 1. (7)


𝛿𝜃
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From (7)


𝛿𝜃
, assuming (𝑥, 𝑦) = (𝑎, 𝑏+𝜉) and (𝑥, 𝑦) = (𝑎+𝜉, 𝑏)

with 0 ≤ 𝜉 < 𝑟, we get

𝑓 (𝑎 + 𝑏 + 𝜉) = 𝑒
𝜃

𝛿
𝑓 (𝑎) 𝑓 (𝑏 + 𝜉) , 𝜃


= 𝜃 (𝑎, 𝑏 + 𝜉) , (61)

𝑓 (𝑎 + 𝑏 + 𝜉) = 𝑒
𝜃

𝛿
𝑓 (𝑎 + 𝜉) 𝑓 (𝑏) , 𝜃


= 𝜃 (𝑎 + 𝜉, 𝑏) ,

(62)

whence

𝑓 (𝑎) 𝑓 (𝑏 + 𝜉) = 𝑒
(𝜃

−𝜃

)𝛿
𝑓 (𝑎 + 𝜉) 𝑓 (𝑏) , 𝜉 ∈ [0, 𝑟) , (63)

𝑓 (𝑏 + 𝜉) = 𝑒
(𝜃

−𝜃

)𝛿𝑓 (𝑏)

𝑓 (𝑎)
𝑓 (𝑎 + 𝜉) . (64)

Moreover, from (7)


𝛿𝜃
for (𝑥, 𝑦) = (𝑎+𝜉, 𝑏+𝜉), 0 ≤ 𝜉 < 𝑟/2,

𝜃


= 𝜃(𝑎 + 𝜉, 𝑏 + 𝜉), 𝑓(𝑎 + 𝑏 + 2𝜉) = 𝑒
𝜃

𝛿
𝑓(𝑎 + 𝜉)𝑓(𝑏 + 𝜉) =

𝑒
𝜃

𝛿
𝑓(𝑎+𝜉)

2
𝑒
(𝜃

−𝜃

)𝛿
𝑓(𝑏)/𝑓(𝑎); hence,𝑓(𝑡) has constant sign

in 𝐸
𝑥+𝑦

.
As a consequence, from (62), (64) it follows that 𝑓 has

constant signs also in 𝐸
𝑥
and in 𝐸

𝑦
(the signs of 𝑓(𝑎) and of

𝑓(𝑏), resp.).
This proves the following.

Lemma 13. Every nowhere vanishing function 𝑓 : 𝐷
𝑓

= 𝐸
𝑥
∪

𝐸
𝑦
∪𝐸
𝑥+𝑦

→ 𝑅 satisfying (7)
𝛿
in 𝐸(𝑎, 𝑏; 𝑟) keeps constant sign

in each of the projections 𝐸
𝑥
, 𝐸
𝑦
, 𝐸
𝑥+𝑦

of 𝐸(𝑎, 𝑏; 𝑟).

Similarly, we can prove a sign property concerning the
perturbed form of the power equation.

Let us consider now the condition (8)


𝛿
; namely,

𝑒
−𝛿

<
𝑓 (𝑥𝑦)

𝑓 (𝑥) 𝑓 (𝑦)
< 𝑒
𝛿
, (𝑥, 𝑦) ∈ 𝐽 (𝑎, 𝑏; 𝑟) (65)

for some fixed 𝛿 > 0, assuming 𝑓(𝑡) ̸= 0 for every 𝑡 ∈ 𝐷
𝑓

=

𝐽
𝑥
∪ 𝐽
𝑦

∪ 𝐽
𝑥𝑦
.

The usual substitutions of variables 𝑥, 𝑦 allow us to use
the foregoing results about the exponential equation. Put

𝑥 = 𝑒
𝑢
, 𝑢 = ln𝑥, 𝑓 (𝑥) = 𝑓 (𝑒

𝑢
) =: 𝑔 (𝑢) , 𝑎 ≤ 𝑢 < 𝑎 + 𝑟

𝑦 = 𝑒
V
, V = ln𝑦, 𝑓 (𝑦) = 𝑓 (𝑒

V
) =: 𝑔 (V) , 𝑏 ≤ V < 𝑏 + 𝑟,

(66)

whence 𝑓(𝑥𝑦) =: 𝑔(𝑢 + V), 𝑎 + 𝑏 ≤ 𝑢 + V < 𝑎 + 𝑏 + 𝑟.
Then (65) is transformed into

𝑒
−𝛿

<
𝑔 (𝑢 + V)

𝑔 (𝑢) 𝑔 (V)
< 𝑒
𝛿
, (𝑢, V) ∈ 𝐸 (𝑎, 𝑏; 𝑟) ; (67)

namely

𝑔 (𝑢 + V) = 𝑒
𝛿⋅𝜃(𝑢,V)

𝑔 (𝑢) 𝑔 (V) , −1 < 𝜃 (𝑢, V) < 1. (65)
𝜃

Therefore, from Lemma 13, it follows that 𝑔(𝑢) has con-
stant sign (=sgn𝑔(𝑎)) in [𝑎, 𝑎 + 𝑟), whence 𝑓(𝑥) has constant
sign (=sgn𝑓(𝑒

𝑎
)) in [𝑒

𝑎
, 𝑒
𝑎+𝑟

); similarly for 𝑔(V) in [𝑏, 𝑏 + 𝑟),
namely for𝑓(𝑦) in [𝑒

𝑏
, 𝑒
𝑏+𝑟

) and for 𝑔(𝑢+V) in [𝑎+𝑏, 𝑎+𝑏+𝑟),
namely 𝑓(𝑥𝑦) in [𝑒

𝑎+𝑏
, 𝑒
𝑎+𝑏+𝑟

).
Hence, the following result is proved.

Lemma 14. Every nowhere vanishing function 𝑓 : 𝐷
𝑓

= 𝐽
𝑥

∪

𝐽
𝑦
∪𝐽
𝑥𝑦

→ 𝑅 satisfying (65) restricted to 𝐽(𝑎, 𝑏; 𝑟) has constant
signs in each of the projections 𝐽

𝑥
, 𝐽
𝑦
, 𝐽
𝑥𝑦

of 𝐽(𝑎, 𝑏; 𝑟).

3.4. A Result of Local Stability for the Exponential Cauchy
Equation. In the set of functions 𝑓 : 𝐷

𝑓
= 𝐸
𝑥
∪𝐸
𝑦
∪𝐸
𝑥+𝑦

→

𝑅 such that 𝑓(𝑡) ̸= 0 for every 𝑡 ∈ 𝐷
𝑓
, let us consider the

inequality (7)


𝛿
, with (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟) for some fixed 𝛿 > 0.

From (7)


𝛿

−𝛿 < ln
𝑓 (𝑥 + 𝑦)

𝑓 (𝑥) 𝑓 (𝑦)
< 𝛿; (68)

since

0 <
𝑓 (𝑥 + 𝑦)

𝑓 (𝑥) 𝑓 (𝑦)
=

𝑓 (𝑥 + 𝑦)


𝑓 (𝑥) 𝑓 (𝑦)


, (69)

𝑓 satisfies
ln

𝑓 (𝑥 + 𝑦)
 − ln 𝑓 (𝑥)

 − ln 𝑓 (𝑦)

 < 𝛿; (70)

namely for 𝜆(𝑡) := ln |𝑓(𝑡)|,
𝜆 (𝑥 + 𝑦) − 𝜆 (𝑥) − 𝜆 (𝑦)

 < 𝛿, (𝑥, 𝑦) ∈ 𝐸 (𝑎, 𝑏; 𝑟) . (71)

On the ground of Theorem 1, there exists (at least) one
additive function 𝐻 : 𝑅 → 𝑅, such that the function 𝐿 :

𝐷
𝑓

→ 𝑆 defined by

𝐿 (𝑥) = 𝐻 (𝑥) + 𝜆 (𝑎) − 𝐻 (𝑎) , 𝑥 ∈ 𝐸
𝑥
,

𝐿 (𝑦) = 𝐻 (𝑦) + 𝜆 (𝑏) − 𝐻 (𝑏) , 𝑦 ∈ 𝐸
𝑦
,

𝐿 (𝑥 + 𝑦) = 𝐻 (𝑥 + 𝑦) + 𝜆 (𝑎) + 𝜆 (𝑏) − 𝐻 (𝑎) − 𝐻 (𝑏) ,

𝑥 + 𝑦 ∈ 𝐸
𝑥+𝑦

,

(72)

is a local solution of the additive Cauchy equation restricted
to 𝐸(𝑎, 𝑏; 𝑟), such that

|𝜆 (𝑡) − 𝐿 (𝑡)| < 15𝛿 for every 𝑡 ∈ 𝐷
𝑓
. (73)

Since |𝑓(𝑡)| = 𝑒
𝜆(𝑡), whence,

𝑓 (𝑡) = sgn𝑓 (𝑡) ⋅ 𝑒
𝜆(𝑡)

, 𝑡 ∈ 𝐷
𝑓
, (74)

we get

𝑓 (𝑡) = sgn𝑓 (𝑡) ⋅ 𝑒
𝐿(𝑡)+15𝛿⋅𝜃(𝑡)

, −1 < 𝜃 (𝑡) < 1, 𝑡 ∈ 𝐷
𝑓
,

(75)

substitution of𝐿(𝑡) by its explicit formulas gives the following:

for 𝑡 ∈ 𝐸
𝑥

: 𝑒
−15𝛿⋅𝜃(𝑡)

𝑓 (𝑡) = sgn𝑓 (𝑎) ⋅ 𝑒
𝐻(𝑡)+ln |𝑓(𝑎)|−𝐻(𝑎)

= sgn𝑓 (𝑎) ⋅
𝑓 (𝑎)

 ⋅ 𝑒
−𝐻(𝑎)

⋅ 𝑒
𝐻(𝑡)

= 𝑓 (𝑎) ⋅ 𝑒
−𝐻(𝑎)

⋅ 𝑒
𝐻(𝑡)

,

(76)
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and similarly

for 𝑡 ∈ 𝐸
𝑦
, 𝑒
−15𝛿⋅𝜃(𝑡)

𝑓 (𝑡) = 𝑓 (𝑏) ⋅ 𝑒
−𝐻(𝑏)

⋅ 𝑒
𝐻(𝑡)

,

for 𝑡 ∈ 𝐸
𝑥+𝑦

, 𝑒
−15𝛿⋅𝜃(𝑡)

𝑓 (𝑡)

= 𝑓 (𝑎) ⋅ 𝑓 (𝑏) ⋅ 𝑒
−𝐻(𝑎)−𝐻(𝑏)

⋅ 𝑒
𝐻(𝑡)

.

(77)

By defining

𝐹 (𝑡) := 𝑒
−15𝛿⋅𝜃(𝑡)

𝑓 (𝑡) , 𝑡 ∈ 𝐸
𝑥
∪ 𝐸
𝑦

∪ 𝐸
𝑥+𝑦

, −1 < 𝜃 (𝑡) < 1,

(78)

it is easily proved that

𝐹 (𝑥 + 𝑦) = 𝐹 (𝑥) 𝐹 (𝑦) for (𝑥, 𝑦) ∈ 𝐸 (𝑎, 𝑏; 𝑟) . (79)

Moreover, from (78),

𝑒
−15𝛿

⋅ 𝐹 (𝑡) < 𝑓 (𝑡) < 𝑒
15𝛿

⋅ 𝐹 (𝑡) , 𝑡 ∈ 𝐷
𝑓
. (80)

This means that the values of 𝑓(𝑡) in 𝐷
𝑓
are “near” (in

dependence on 𝛿) the values of a local solution 𝐹(𝑡) of
the corresponding equation restricted to the same domain
𝐸(𝑎, 𝑏; 𝑟) and give the following theorem of local stability.

Theorem 15. If the function 𝑓 : 𝐷
𝑓

= 𝐸
𝑥
∪𝐸
𝑦
∪𝐸
𝑥+𝑦

→ 𝑅, is
nowhere vanishing in its domain𝐷

𝑓
and satisfies (7)



𝛿
, for some

given 𝛿 > 0 and every (𝑥, 𝑦) ∈ 𝐸(𝑎, 𝑏; 𝑟) defined in (6) for given
(𝑎, 𝑏) ∈ 𝑅

2 and 𝑟 > 0, then there exists (at least) an additive
function 𝐻 : 𝑅 → 𝑅 such that the function 𝐹 : 𝐷

𝑓
→ 𝑅

F (t) =

{{

{{

{

𝑓 (𝑎) 𝑒
−𝐻(𝑎)

⋅ 𝑒
𝐻(𝑡)

, 𝑡 ∈ 𝐸
𝑥
,

𝑓 (𝑏) 𝑒
−𝐻(𝑏)

⋅ 𝑒
𝐻(𝑡)

, 𝑡 ∈ 𝐸
𝑦
,

𝑓 (𝑎) 𝑓 (𝑏) 𝑒
−𝐻(𝑎)−𝐻(𝑏)

⋅ 𝑒
𝐻(𝑡)

, 𝑡 ∈ 𝐸
𝑥+𝑦

(81)

has both the properties:

(i) 𝐹 is a nowhere vanishing local solution of the exponen-
tial Cauchy equation 𝐹(𝑥 + 𝑦) = 𝐹(𝑥)𝐹(𝑦) restricted
to 𝐸(𝑎, 𝑏; 𝑟);

(ii) the values 𝐹(𝑡) are near the values 𝑓(𝑡) on 𝐷
𝑓
; more

exactly

e−15𝛿 ⋅ F (t) < f (t) < e15𝛿 ⋅ F (t) , 𝑡 ∈ 𝐷
𝑓
. (82)

3.5. A Result on Local Stability of the Power Cauchy Equation.
In the set of nowhere vanishing functions 𝑓 : 𝐷

𝑓
= 𝐽
𝑥

∪

𝐽
𝑦

∪ 𝐽
𝑥𝑦

→ 𝑅, let us consider the inequality (65), (𝑥, 𝑦) ∈

𝐽(𝑎, 𝑏; 𝑟) ⊂ 𝑅
2 defined in (32), for some given 𝛿 > 0.

The usual substitutions
𝑥 = 𝑒
𝑢
, 𝑢 = ln𝑥, 𝑓 (𝑥) = 𝑓 (𝑒

𝑢
) =: 𝑔 (𝑢) ,

𝑦 = 𝑒
V
, V = ln𝑦, 𝑓 (𝑦) = 𝑓 (𝑒

V
) =: 𝑔 (V) ,

𝑥𝑦 = 𝑒
𝑢+V

, 𝑓 (𝑥𝑦) =: 𝑔 (𝑢 + V) ,

(83)

transform the condition (65) into

𝑒
−𝛿

<
𝑔 (𝑢 + V)

𝑔 (𝑢) 𝑔 (V)
< 𝑒
𝛿
, (𝑢, V) ∈ 𝐸 (𝑎, 𝑏; 𝑟) . (65)

𝑔

Hence, thanks to Theorem 15 (referred to 𝑔(𝑡) instead of
𝑓(𝑡)), there exists (at least) one additive function𝐻 : 𝑅 → 𝑅

such that the function 𝐺 : 𝐷
𝑔

→ 𝑅 defined by

𝐺 (𝑢) = 𝑔 (𝑎) ⋅ 𝑒
−𝐻(𝑎)

⋅ 𝑒
𝐻(𝑢)

, 𝑢 ∈ 𝐸
𝑢
,

𝐺 (V) = 𝑔 (𝑏) ⋅ 𝑒
−𝐻(𝑏)

⋅ 𝑒
𝐻(V)

, V ∈ 𝐸V,

𝐺 (𝑢 + V) = 𝑔 (𝑎) 𝑔 (𝑏) ⋅ 𝑒
−𝐻(𝑎)−𝐻(𝑏)

⋅ 𝑒
𝐻(𝑢+V)

, 𝑢 + V ∈ 𝐸
𝑢+V,

(84)

satisfies the exponential equation 𝐺(𝑢 + V) = 𝐺(𝑢)𝐺(V)
restricted to 𝐸(𝑎, 𝑏; 𝑟) and approaches 𝑔 on 𝐷

𝑔
= 𝐸
𝑢

∪ 𝐸V ∪

𝐸
𝑢+V as follows:

𝑒
−15𝛿

𝐺 (𝑡) < 𝑔 (𝑡) < 𝑒
15𝛿

𝐺 (𝑡) , 𝑡 ∈ 𝐷
𝑔
. (82)

𝑔

Formula (82)
𝑔
can be rewritten as

𝑒
15𝛿⋅𝜃(𝑡)

𝑔 (𝑡) = 𝐺 (𝑡) , −1 < 𝜃 (𝑡) < 1, (82)


𝑔

for 𝑡 ∈ 𝐸
𝑢
∪ 𝐸V ∪ 𝐸

𝑢+V.
From the definition of 𝐺,

for 𝑢 ∈ 𝐸
𝑢

= [𝑎, 𝑎 + 𝑟) then 𝑔(𝑢) = 𝑓(𝑥), 𝐺(𝑢) =

𝐺(ln𝑥) = 𝑓(𝑒
𝑎
) ⋅ 𝑒
−𝐻(𝑎)

⋅ 𝑒
𝐻(ln 𝑥),

similarly for V ∈ 𝐸V = [𝑏, 𝑏 + 𝑟) then 𝑔(V) = 𝑓(𝑦),
𝐺(ln𝑦) = 𝑓(𝑒

𝑏
) ⋅ 𝑒
−𝐻(𝑏)

⋅ 𝑒
𝐻(ln𝑦),

and for 𝑢 + V ∈ 𝐸
𝑢+V = [𝑎 + 𝑏, 𝑎 + 𝑏 + 𝑟): 𝐺(ln(𝑥𝑦)) =

𝑓(𝑒
𝑎
)𝑓(𝑒
𝑏
) ⋅ 𝑒
−𝐻(𝑎)−𝐻(𝑏)

⋅ 𝑒
𝐻(ln 𝑥𝑦).

Hence, by defining Φ : 𝐷
𝑓

→ 𝑅 as follows:

Φ (𝑥) := 𝑒
15𝛿⋅𝜃(𝑢)

𝑓 (𝑥) = 𝐺 (ln𝑥) = 𝑓 (𝑒
𝑎
) 𝑒
−𝐻(𝑎)

𝑒
𝐻(ln 𝑥)

,

Φ (𝑦) := 𝑒
15𝛿⋅𝜃(V)

𝑓 (𝑦) = 𝐺 (ln𝑦) = 𝑓 (𝑒
𝑏
) 𝑒
−𝐻(𝑏)

𝑒
𝐻(ln𝑦)

,

Φ (𝑥𝑦) := 𝑒
15𝛿⋅𝜃(𝑢+V)

𝑓 (𝑥𝑦) = 𝐺 (ln (𝑥𝑦))

= 𝑓 (𝑒
𝑎
) 𝑓 (𝑒
𝑏
) 𝑒
−𝐻(𝑎)−𝐻(𝑏)

𝑒
𝐻(ln(𝑥𝑦))

,

(85)

we get

𝑒
15𝛿⋅ 𝜃(𝑡)

𝑓 (𝑡) = Φ (𝑡) , −1 < 𝜃 (𝑡) < 1, 𝑡 ∈ 𝐽
𝑥
∪ 𝐽
𝑦

∪ 𝐽
𝑥𝑦

;

(86)

namely,

𝑒
−15𝛿

Φ (𝑡) < 𝑓 (𝑡) < 𝑒
15𝛿

Φ (𝑡) , 𝑡 ∈ 𝐷
𝑓

= 𝐽
𝑥
∪ 𝐽
𝑦

∪ 𝐽
𝑥𝑦

.

(87)

This proves the following property of local stability of the
“power” Cauchy equation.

Theorem 16. Let the nowhere vanishing function 𝑓 : 𝐷
𝑓

⊂

𝑅
+

→ 𝑅 satisfy the condition (65) for some given 𝛿 > 0 and
every (𝑥, 𝑦) ∈ 𝐽(𝑎, 𝑏; 𝑟) defined in (32), for given (𝑎, 𝑏) ∈ 𝑅

2

and 𝑟 > 0; 𝐷
𝑓

= 𝐽
𝑥

∪ 𝐽
𝑦

∪ 𝐽
𝑥𝑦
; then there exists (at least)



Abstract and Applied Analysis 9

an additive function 𝐻 : 𝑅 → 𝑅 such that the function Φ :

𝐷
𝑓

→ 𝑅 defined by

Φ (t) =

{{

{{

{

𝑓 (𝑒
𝑎
) 𝑒
−𝐻(𝑎)

⋅ 𝑒
𝐻(ln 𝑡)

, 𝑡 ∈ 𝐽
𝑥
,

𝑓 (𝑒
𝑏
) 𝑒
−𝐻(𝑏)

⋅ 𝑒
𝐻(ln 𝑡)

, 𝑡 ∈ 𝐽
𝑦
,

𝑓 (𝑒
𝑎
) 𝑓 (𝑒
𝑏
) 𝑒
−𝐻(𝑎)−𝐻(𝑏)

⋅ 𝑒
𝐻(ln 𝑡)

, 𝑡 ∈ 𝐽
𝑥𝑦

(88)

has both the following properties:

(i) Φ is a local solution of the Cauchy equation Φ(𝑥𝑦) =

Φ(𝑥)Φ(𝑦) restricted to 𝐽(𝑎, 𝑏; 𝑟);
(ii) the values of Φ(𝑡) are near the values 𝑓(𝑡) in 𝐷

𝑓
; more

exactly

𝑒
−15𝛿

⋅ Φ (𝑡) < 𝑓 (𝑡) < 𝑒
15𝛿

⋅ Φ (𝑡) , 𝑡 ∈ 𝐷
𝑓

= 𝐽
𝑥
∪ 𝐽
𝑦

∪ 𝐽
𝑥𝑦

.

(89)

3.6. Remark about the Pexiderized Forms of the Foregoing
Equations. According to the remarks at the end of Section 2,
the stability results given by Theorems 15 and 16 can be
easily adapted to the Pexiderized forms of the corresponding
equations, namely, to

𝛼 (𝑥 + 𝑦) = 𝛽 (𝑥) 𝛾 (𝑦) restricted to 𝐸 (𝑎, 𝑏; 𝑟) ,

𝜌 (𝑥𝑦) = 𝜎 (𝑥) 𝜏 (𝑦) restricted to 𝐽 (𝑎, 𝑏; 𝑟) ,

(90)

for nowhere vanishing functions

𝛽 : 𝐸
𝑥

→ 𝑅, 𝛾 : 𝐸
𝑦

→ 𝑅, 𝛼 : 𝐸
𝑥+𝑦

→ 𝑅,

𝜎 : 𝐽
𝑥

→ 𝑅, 𝜏 : 𝐽
𝑦

→ 𝑅, 𝜌 : 𝐽
𝑥𝑦

→ 𝑅.

(91)
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