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We investigate the impact of human dynamics on the information propagation in online social networks. First, statistical properties
of the human behavior are studied using the data from “SinaMicroblog,” which is one of themost popular online social networks in
China. We find that human activity patterns are heterogeneous and bursty and are often described by a power-law interevent time
distribution 𝑃(𝜏) ∼ 𝜏

−𝛼. Second, we proposed an extended Susceptible-Infected (SI) propagation model to incorporate bursty and
limited attention. We unveil how bursty human behavior and limited attention affect the information propagation in online social
networks. The result in this paper can be useful for optimizing or controlling information propagation in online social networks.

1. Introduction

Rapid development of information and communication tech-
nology has increased the wide adoption of online social
network in our life. Indeed, online social network such
as Sina Microblog, Twitter, and Facebook had become an
indispensable part of our life. Every day we sign into our
homepages more than once to view and share information.
These online social networks have common characteris-
tics: instantaneity, simplicity, and universality. Taking Sina
Microblog, for example, unlike the traditional blog, it allows
the use of mobile devices to disseminate information by
a length of 140 characters text at anytime and anywhere.
Investigating the online social network is crucial in a broad
range of settings from information propagation and viral
marketing to political purposes.

Recent years, online social network as a platform for
the empirical study of information has been widespread
concern [1–4]. Despite the progresses that have been made,
the empirical study of information propagation is still in its
infancy. Studies in this direction have been mostly hindered
by the shortcoming of available large-scale data. However, the
availability of large-scale data from online social network has

recently created unprecedented opportunities to explore the
impact of human behaviors on the information propagation.

Firstly, information propagation in online social network
is determined by rhythms and activity patterns of human
[5, 6]. An increasing number of recentmeasurements indicate
that human activity patterns are heterogeneous and bursty
[7–11]. If only considering the time interval between events,
these human activity patterns are often described by a power-
law interevent time distribution 𝑃(𝜏) ∼ 𝜏

−𝛼, where 𝜏 is
the time interval between two consecutive activities [12].
Recently, the researchers began to realize that the bursty
human behavior has an important impact on the dissemina-
tion of information [13, 14].

Secondly, the wide adoption of online social network
has increased the competition among information for our
limited attention. Every day we receive a lot of information
from various online social networks. However, we do not
have enough time and attention to disseminate each message
which we received. It is an interesting question that whether
such a competition may affect the velocity of information
propagation. The issue of limited attention has been studied
through messages posted and forwarded in online social



2 Abstract and Applied Analysis

networks [15, 16]. However, how limited attention affects
velocity of information propagation is still unclear.

In this paper, we propose an extended Susceptible-
Infected (SI) propagation model, incorporating bursty
human activity patterns and limited attention for the first
time. Then, we obtain a large number of real data to test the
model. Adopting the methods of theoretical research and
empirical analysis, we study the information spreading pro-
cess in social networking qualitatively and quantitatively.The
key contributions of this study are summarized as follows.

(1) From the empirical statistical results we find that at
the group level, the interactive time (time interval
between two consecutive login microblog homepage)
follows power-law distribution with the slope ≈ 2.5.
And the distribution of newly infected individual
(calculate as the number of new forwarding per day)
follows power-law with the slope ≈ 1.5. Two slope
values satisfy the relationship 2.5 − 1.5 ≈ 1.0.

(2) Through both the theoretical research and simulation,
we prove that (a) if the generation time distribution
follows power-law with exponent 𝛽, then the decay of
propagation velocitywill be characterized by the same
power-law distribution; (b) if bursty human behavior
follows a power-law distribution with exponent 𝛼, the
decay of propagation velocity also follows a power-
law with exponent 𝛽 ≈ 𝛼 − 1.

In summary, although tremendous efforts have been
made regarding the research about information propagation,
further study based on human dynamics is still needed to
unveil the role of humanbehaviors for the information propa-
gation in online social network. In future studies, on the other
hand, we can use other more mature theories to research the
spreading dynamics, such as in the references [17, 18].

The rest of this paper is organized as follows. Section 2
gives the data description. In Section 3, we propose the
extended SI model. In Section 4, we present simulation
results and observations. Section 5 introduces theoretical
analysis. Finally, in Section 6, we conclude the work.

2. Data Description

The dataset of this paper was collected from Sina Microblog
(http://www.weibo.com/), one of themost popularmicroblog
platforms in China at present. The dataset includes 345,095
messages from 41667 individuals during 2009/8/16 to
2011/6/4, collected by snowball sampling. These messages
have been forwarded 203,997,094 times and triggered
58,617,139 comments. For each message, message ID, releas-
ing time, times of forwarding, and number of comments
were recorded. For each individual, the individual ID and
the timing of individual sign in his/her microblog homepage
were recorded.

The basic statistical results show that at the group level,
the interactive time (time interval between two consecutive
login microblog homepage) follows power-law distribution
with the slope ≈ 2.5 (Figure 1(a)). And the distribution of
newly infected individual (calculate as the number of new

forwarding per day) follows power-law with the slope ≈ 1.5

(Figure 1(b)). If set the slope of interactive time distribution
is 𝛼 and the slope of newly infected individual distribution is
𝛽, we find that there is the relationship 𝛽 ≈ 𝛼−1 between two
slopes.

3. Model

3.1. Model Description. In this paper, we use the branching
processes [19, 20] in conjunction with power-law human
behaviors to describe the process of information propagation.
We adopt the Susceptible-Infected (SI) propagationmodel for
the simulation of information propagation in online social
networks. Similar to the classical SI model, the population
is divided into two states, either susceptible (S) or infected
(I). In the information propagation model, however, the
susceptible individual is defined as the one who has not
yet known a piece of message, and the infected individual
is defined as the one who knows the message and shares
the message with his/her friends. After being infected, an
individual will never return to susceptible state. At time
𝑡, there are 𝑆(𝑡) susceptible individuals and 𝐼(𝑡) infected
individuals, and the population𝑁 = 𝑆(𝑡) + 𝐼(𝑡).

Initially all individuals are susceptible except for a single
infected individual. Different with the traditional model, at
a given time step, an infected individual can be inactive;
that is to say, infected individual will not infect connected
susceptible individuals at that time step. The time interval
between two consequent active steps of an infected individual
is defined as the interactive time, which is often characterized
by a power-law distribution 𝑃(𝜏) ∼ 𝜏

−𝛼 at the group
level. Meanwhile, different individuals have different active
time interval and each individual 𝑖 acts with an unchanged
interactive time 𝜏

𝑖

.
On the other hand, the advent of online social network

has greatly lowered the cost of information generation and
propagation, boosting the potential reach of each message.
However, the abundance of information to which we are
exposed through online social networks is exceeding our
capacity to consume it. Due to the limited time and attention,
the individual cannot continuously check the update of infor-
mation on his/her homepage. We assume that individuals
interact on a directed online social network. Each individual
is equipped with two lists. One is the screen where received
messages are recorded and maintained a time-ordered list of
messages. The other is memory where individual interested
messages are recorded. Each individual can share some of the
messages from the list with his/her friends. The friends in
turn pay attention to a newly received message by placing it
at the top of their lists. Because of the limited attention, we
allowmessages to survive in an individual’s screen for a finite
amount of time𝑇.Meanwhile, we assume that each individual
only forwards each message once, and then the individual
loses interest in the message. In addition, if the individual
no forwarding the message within 𝑇, the individual will no
longer be concerned about the message and delete it from the
screen. Each message may attract the individual’s attention
with probability 𝜆; that is to say, the individual will forward
the message with probability 𝜆.
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Figure 1: Empirical data. (a) The distribution of interactive time at the group level. (b) The distribution of newly infected individuals, inset:
the cumulative distribution of newly infected individuals, namely, the distribution of all infected individuals. The results are the average of
all messages.
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𝜏: Active time
Δ: Forwarding time

Figure 2: Schematic of individual interaction.

3.2. SIModel Based on Bursty and Limited Attention. Accord-
ing to the previous description, the SI model incorporating
bursty and limited attention is illustrated in Figure 2. We
characterize the timing of information propagation by the
generation time Δ, which is defined as the time interval
between the forwarding of an individual and the forwarding
of his/her followers.

To sum up, the extended SI model is defined as follows.

Step 1. At time step 𝑡 = 𝑡
𝑖

, an individual 𝑖 posts a message.
Meanwhile, individual 𝑗 receives the message, where 𝑗 ∈ 𝛿

𝑖

and 𝛿
𝑖

is the set of individual 𝑖’s neighbors.

Step 2. For each individual 𝑗, the first active time step is 𝑡
𝑗0

,
𝑡
𝑗0

∈ (𝑡
𝑖

, 𝑡
𝑖

+ 𝜏
𝑗

), and individual 𝑗 will be active at the time
steps 𝑡 = 𝑡

𝑗0

+ 𝑘𝜏
𝑗

, 𝑘 = 1, 2, 3, . . ., where 𝜏
𝑗

is the active time
interval of individual 𝑗.

Step 3. At each active time step, individual 𝑗 will forward the
message with the probability 𝜆. If individual 𝑗 forwards the
message at the time step 𝑡

𝑗

, we obtain the generation timeΔ =

𝑡
𝑗

− 𝑡
𝑖

and generation time must satisfy the condition Δ < 𝑇.

Step 4. Update the time step 𝑡 = 𝑡
𝑗

and repeat Step 1 to Step 3
until the preset time steps.

In addition, we also introduce two indicators to charac-
terize the velocity of information propagation:

(1) the first time step when the number of infected
individuals exceeds half of the population, defined as
half time 𝑇∗;

(2) the mean infection time of an individual after the
outbreak, defined as mean time 𝑇

𝑚

= ∑
𝑡max
𝑡 = 0

(𝑡𝑛(𝑡)/𝑁),
where 𝑡max is the maximum simulation step, such as
in our simulation 𝑡max = 10

4.

4. Simulation Results and Observations

In our simulations, initially all individuals are susceptible
except for a single infected individual. Each individual 𝑖 has
an unchanged interactive time 𝜏

𝑖

, which follows power-law
distribution𝑃(𝜏) ∼ 𝜏

−𝛼 with 2 < 𝛼 < 3. We set𝑇 = 1440 time
steps. This is because messages will survive in an individual’s
list one day, namely, 1440 minutes [15]. Simulations were
performed on a BA network with size𝑁 = 10

4 and ⟨𝑘⟩ = 10.
We set the degree of attention 𝜆 = 0.5 and randomly select
an initial infected node. For detailed comparison, we also
performed the same SI dynamics with exponential interactive
time distribution𝑃(𝜏) ∼ 𝑒

−𝛼𝜏. From the numerical simulation
results (Figures 3 and 4), we have the following observations
of the propagation process.

Observation 1. In power-law case, the average number of
newly infected individuals 𝑛(𝑡) and the generation time 𝑔(Δ)
follow power-law distributions with the exponent 𝛽 ≈ 𝛼 − 1

(Figure 3).
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Figure 3: (a) The average number of newly infected individuals 𝑛(𝑡). Power-law distributions 𝑝(𝜏) with exponent 𝛼 = 2.8 (Squares), 𝛼 = 2.5

(circles), 𝛼 = 2.2 (up triangles), and the exponential 𝑝(𝜏) (down triangles). All 𝑝(𝜏) have the same mean interactive time ⟨𝜏⟩ = 1.96. (b) The
generation time distribution 𝑔(Δ) for all 𝑝(𝜏). In both panels, the black lines have slopes −1.8, −1.5, and −1.2. The results show that 𝑛(𝑡) and
𝑔(Δ) decay as a power law with the exponent 𝛽 ≈ 𝛼 − 1. In the exponential case, 𝑛(𝑡) decays fast, in stark contrast to the power-law case. The
results are the average over 2 × 10

3 independent runs.

100 101 102 103 104

Time step 𝑡

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

𝐼(
𝑡)

Exp
𝛼 = 2.8

𝛼 = 2.5

𝛼 = 2.2

(a)

0

50

100

150

200

250

300

350

Ti
m

e s
te

ps

2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Exp
Exponent 𝛼

Half time 𝑇∗

Mean time 𝑇𝑚
(b)

Figure 4: (a) The fraction of infected nodes 𝐼 with different exponent 𝛼. (b) The half time 𝑇
∗ and the mean time 𝑇

𝑚

as the functions of
exponent 𝛼.

Observation 2. The smaller the exponent𝛼 of interactive time
distributions, namely, the larger heterogeneity of interactive
time, resulting in the slower velocity. The half time 𝑇

∗ and
mean time 𝑇

𝑚

monotonic decrease with the increase of
exponent 𝛼 (Figure 4).

In order to investigate the impact of attention on the prop-
agation process, we fixed interactive time following power-
law distribution with the exponent 𝛼 = 2.5 and randomly
select an initial infected node. From other parameters 𝑇 =

1440, simulations were also performed on a BA network with
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Figure 5: (a) The fraction of infected nodes 𝐼 with different attention 𝜆. (b) The half time 𝑇∗ and mean time 𝑇
𝑚

as the functions of attention
𝜆.

size 𝑁 = 10
4 and ⟨𝑘⟩ = 10. The results are averaged over

2 × 10
3 independent runs. From the numerical simulation

results (Figure 5), we have the following observation of the
propagation process.

Observation 3. The higher the degree of attention, the faster
the velocity. The half time 𝑇∗ and mean time 𝑇

𝑚

monotonic
decrease with the increase of attention 𝜆 (Figure 5).

5. Theoretical Analysis

In this section, the properties of propagation dynamics are
analyzed. We prove that the decay exponent of propagation
velocity equals that in the generation time distribution. Fur-
thermore, we also proved that the exponent 𝛼 characterizing
the bursty is related to that in the decay of propagation
velocity 𝛽 by the relation 𝛽 = 𝛼 − 1.

Proposition 1. If the distribution of generation time follows
power-law 𝑔(Δ) ∼ Δ

−𝛽 with 1 < 𝛽 < 2, the decay of
propagation velocity also follows power-law 𝑛(𝑡) ∼ 𝑡

−𝛽 and
with the same exponent 𝛽.

Proof. We consider a general theory of propagation process
in online social networks. We assume that the propagation
process outbreaks starting from a single infected individual
at time 𝑡 = 0. In this case, the average number of new infected
individuals at time 𝑡 is [19]

𝑛 (𝑡) =

𝐷

∑

𝑑= 1

𝑧
𝑑

(𝑔
(0)

∗ 𝑔
(1)

∗ ⋅ ⋅ ⋅ ∗ 𝑔
(𝑑)

(𝑡)) , (1)

where 𝑧
𝑑

is the average number of individuals at generation 𝑑

away from the first infected individual, where ∗ denotes the
convolution operation; for example,

𝑔
(0)

∗ 𝑔
(1)

(𝑡) = ∫

𝑡

0

𝑑𝜏𝑔
(0)

(𝜏) ∗ 𝑔
(1)

(1 − 𝜏) . (2)

For the limited 1 ≪ 𝑑, we can obtain

𝑔
∗𝑑

(𝑡) = 𝑔
(0)

∗ 𝑔
(1)

∗ ⋅ ⋅ ⋅ ∗ 𝑔
(𝑑)

(𝑡) ∼ 𝐿
𝛽−1

(
𝑡

𝑡
𝑑

) 𝑡
𝑑

, (3)

where 𝑡
𝑑

= Δ
0

𝑑
1/(𝛽−1), Δ

0

is some characteristic time scale,
and 𝐿

𝜇

(𝑥) represents the Levy distribution with exponent 𝜇.
For 1 ≪ 𝑥, the Levy distribution 𝐿

𝜇

(𝑥) can expressed as
[21]

𝐿
𝜇

(𝑥) ∼ 𝑥
−(1+𝜇)

. (4)

To sum up, when 𝑡 → ∞, we obtain 𝑔
∗𝑑

(𝑡) ∼ 𝑡
−𝛽; namely,

𝑛(𝑡) ∼ 𝑡
−𝛽. Thus, the proposition has been proved.

This preposition means that if the generation time dis-
tribution follows a power-law with the exponent 𝛽, then the
decay of propagation velocity will be characterized by the
same power-law distribution.

Proposition 2. If the distribution of interactive time follows a
power-law𝑝(𝜏) ∼ 𝜏

−𝛼 with 2 < 𝛼 < 3, the decay of propagation
velocity also follows a power-law distribution 𝑛(𝑡) ∼ 𝑡

−𝛽 with
1 < 𝛽 < 2 and 𝛽 = 𝛼 − 1.

Proof. When the distribution of interactive time follows a
power-law 𝑝(𝜏) ∼ 𝜏

−𝛼 with 2 < 𝛼 < 3, the active time interval
𝜏
𝑖

has a finite mean ⟨𝜏⟩.
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Since the generation time probability density function is
related to the interactive time probability density function
[21], therefore we have

𝑔 (Δ) =
1

⟨𝜏⟩
∫

∞

Δ

𝑃 (𝜏) 𝑑𝜏 =
1

⟨𝜏⟩
∫

∞

Δ

𝜏
−𝛼

𝑑𝜏

=
1

⟨𝜏⟩

1

− (𝛼 − 1)
Δ
−(𝛼−1)

∼ Δ
−(𝛼−1)

.

(5)

According to Proposition 1, we obtain

𝑛 (𝑡) ∼ 𝑡
−(𝛼−1)

. (6)

Namely,

𝑛 (𝑡) ∼ 𝑡
−𝛽

, 𝛽 = 𝛼 − 1. (7)

Thus, the proposition is proved.

6. Conclusion

An extended SI model is proposed in this paper. Different
from the analysis of the network topology, we study the
information propagation in online social networks from
the perspective of human dynamics. We found that human
behavior affects the range and velocity of information propa-
gation greatly.

In the future, with the development of online social
systems, there may be other factors influencing information
propagation in online social network. Therefore, we must
improve the propagation model in order to better explain the
propagation process.
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