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A new model of switched complex bipartite neural network (SCBNN) with infinite distributed delays and derivative coupling
is established. Using linear matrix inequality (LMI) approach, some synchronization criteria are proposed to ensure the
synchronization between two SCBNNs by constructing effective controllers. Some numerical simulations are provided to illustrate
the effectiveness of the theoretical results obtained in this paper.

1. Introduction

In recent years, neural networks have been intensively studied
due to their potential applications in many different areas
such as signal and image processing, content-addressable
memory, optimization, and parallel computation [1-3]. Bidi-
rectional associative memory (BAM) neural networks were
first proposed by Kosko in [4, 5]. This class of networks has
good applications in pattern recognition, solving optimiza-
tion problems, and automatic control engineering. A large
number of results on the dynamical behavior of BAM neural
networks have been reported [6-9].

Switched systems, as an important kind of hybrid systems,
have drawn considerable attention of researchers because of
their theoretical significance and practical applications [10-
12]. Switched systems are composed of a family of continu-
ous-time or discrete-time subsystems and a rule that specifies
the switching among them [13, 14]. Recently, the switched
neural networks, whose individual subsystems are a set of
neural networks, have found applications in the field of high
speed signal processing, artificial intelligence, and biology, so

there are many theoretical results about the switched neural
networks [15-17].

Complex networks, which are a set of interconnected
nodes with specific dynamics, have sparked the interest of
many researchers from various fields of science and engi-
neering such as the World Wide Web, electrical power grids,
global economic markets, sensor networks; for example, see
[18-20] and references therein. Bipartite networks are an
important kind of complex networks, whose nodes can be
divided into two disjoint nonempty sets such that every edge
only connects a pair of nodes, which belong to different sets.
Many real-world networks are naturally bipartite networks,
such as the papers-scientists networks [21] and producer-
consumer networks [22]. Recently, authors [23] have intro-
duced a bipartite-graph complex dynamical network model
that is only linearly coupled and has no delays. It is well
known that time delays exist commonly in real-world sys-
tems. Therefore, many models of coupled networks with cou-
pling delays are proposed, for example, constant single time
delay [24], time-varying delays [25], and mix-time delays
[26]. On the other hand, the coupled network often occurs



in other forms, for example, nonlinearly coupled networks
[27] and linearly derivative coupled networks [28]. In [29],
a general model of bipartite dynamical network (BDN) with
distributed delays and nonlinear derivative coupling was
introduced. Synchronization of complex networks has been
intensively investigated since they can be applied in power
system control, secure communication, automatic control,
chemical reaction, and so on [30-32]. The study of synchro-
nization of coupled neural networks is an important step
for both understanding brain science and designing coupled
neural networks for practical use. Yu et al. [33] consider the
synchronization of switched linearly coupled neural networks
with constant delays, but the controllers are complex and
changed with the switched rule. Synchronization of two
coupled BDNs was investigated by adaptive method [29],
but the controllers are complicated and the model does not
include infinite distributed delays coupling and switching.
Extending BAM neural networks to complex networks, we
get complex bipartite dynamical networks (CBDNs). The
dynamics of individual node in CBDNSs is switched system
and the switched coupling is considered; switched complex
bipartite neural network (SCBNN) can be obtained. To the
best of our knowledge, up to now, there is not any work that
discusses the synchronization problem in SCBNN.

Motivated by the previous discussion, we first proposed a
model of SCBNN, and then investigated the synchronization
between two SCBNNs with infinite distributed delays and
derivative coupling. Using adaptive controllers and linear
matrix inequality (LMI) approach, some synchronization
criteria are proposed to ensure the synchronization between
two coupled SCBNNs. In our paper, the proposed controllers
are simpler and do not change with the switched rule, which
can be realize more easily.

The paper is organized as follows. In Section 2, a model
of SCBNN with infinite distributed delays and derivative
coupling is presented, and some hypotheses and lemmas are
given too. In Section 3, several synchronization criteria on
the SCBNNSs are deduced. In Section 4, numerical examples
are given to demonstrate the effectiveness of the proposed
controller design methods in Section 3. Finally, conclusions
are given in Section 5.

Notations. Throughout this paper, p,.«(-) and p,;,(-) denote
the maximum eigenvalue and minimum eigenvalue of a real
symmetric matrix, respectively. The notation * denotes the
symmetric block.

2. Model Description,
Assumptions, and Lemmas

Consider a complex bipartite dynamical network (CBDN)
consisting of two disjoint nonempty node sets V; and V.
Suppose that V| = {y;, py,..., gt and V, = {v,v5,...,7,,}
I, m are integer. The coupled network is described as follows:

X% (t)= —=Dx; + R f; (x; () + Ry f, (x; (=7 (1)) + I

+Zaz,y](t T, (1) + Z ;9 (7, (t -1, (1))
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+ Zc,»j J_ h(t —s)k(yj (s)) ds,
i=12,...,1
—Byj + R f, (7 0) + R f, (y; (=0 (1)) + T

1
+ Zaﬂ Xi ;bﬂg (‘xl (t -0, (t)))

yi(t) =

-0, () +

+;Eji [OOE(t—s)E(xi (s))ds, j=1,2,...,m
(1

where x;(t) = (x;,(t), x;,(t), ...
Vi (D), ...
#; and v, respectively. D = diag(d,,d,,...
diag(al, d,,...
R,,R; € R™ are weight matrices, R,, R, €
weight matrices, fi(x;) = (f(x), sz(xlz)

,xm(t))T’ )’j(t) = ()’j1(t)>
, yjn(t))T € R" denotes the state variables of nodes
,d,) and D =
,d,) are diagonal matrices with d,d, > 0.
R™" are delayed
o Sen(xi)

7109 = i Foi)s - fkn(yjm € R” k=12,
95 = @) GG g7 G = (%)
G, G, ) k() = U (1) Ky (7)o Ky (7))
k(x) = (kj(x;), ky(xp0)-..5k(x;,))" € R" corre-

sponds to the boundedness activation functions of neurons.
h(t) = diag(hy (1), hy(0),.... b, (8)), h(t) = diag(h, (1), by (8),
. h,(t)) € R are the delay kernel functions. 7(t), 7, (t),
T,(t),0(t),0,(t), and o,(t) > 0 are time delays. j_too h(t -
$)k(y;(s))ds and '[foo h(t - S)E(x,-(s))ds express infinite dis-
tributed delays. I = (I',I%...,I"  and J = (J.J%,...,
J ”)T € R” are the constant external input vectors. The matrix
A = (a;j)1m is the delayed weight coupling matrix denoting
coupling strength between nodes. If there is a connection
from node y; to v;, then a;; #0; otherwise, a;; = 0 and
the matrix A satisfies the sum of every row being zero. The
definitions of the other coupling matrixes B = (b)) C =
( )lxm’ A - (a]z)mxb B - (b]z)mxl’ and C - (C]z)mxl
are similar to that of matrix A; hence, they are omitted here.
In this paper, we consider a class of switched complex
bipartite neural network with infinite distributed delays and
derivative coupling, which is described as follows:

X, () = = Dyx; + Ry fi (x; () + Rio f (x; (£ = 7 (1))

+1) + Zawyj (t—1, (1)

j=1

+ Zb)u'jg ())j (t-1, (t)))

=
+ ZCMJ'J h(t—s)k(yj (s)) ds,
1 e

i=12,...,1
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y; ()= —Dyy; + Ruf, ()’j (t)) +R), f, (J’j (t-o (f)))

!
i=1

1
* Zb)tjig (%; (t =0, (1))

i=1

1 t

+sz\jij h(t-s)k(x;(s))ds, j=1,2,...,m
i=1 -0

()

where switching signal A is piecewise constant functions,
which is a value in the finite set X = {1,2,..., N}. This
means that the matrices {D), Ry}, Ry, Ay = (ay), By =

(b/\ij)’ Cy= (C)Lij)> Iy, BA)E/\D E/\z, ZA = (a)tji)’ E/\ = (E)Lji)’

and C, = (Cpji)>» Ja} are allowed to take values at par-
ticular time, in a finite set {(D,, R,;, R,,, A,, B,, C,, 1,

D, R, R, A,B,C,J)|r=12,..,N}L We define the
function as follows:

& (M)

1, when the switched system is described (3
= by the rth mode, that is, A =1,
0, others.

It follows that under any switching rules Zi\il EtA) =1
Model (2) can be written as

N
% () = Y& (t,4)

r=1
- D,x; + R, f; (x; (1)

+ Ry fy (x; (t = 7(1)))

m
+ 1+ Yy (t -7 (1)
=i

Z rij9 (yJ T (t)))

m

t
+Zc,ij Jloo h(t-s)k (yj (s)) ds:| ,

j=1

i=12,...,1,

N
AGED YA
r=1

x| - Bryj +R, f, ()’j (f))
+ E,Jz (yjt-o @)
+ ] + Zar]z 1 0-1 (t))

+ zgrjiy (%; (t = 0, (1))
i-1

1 t
+;E,j,- J_OO h(t-s)k(x;(s))ds|,

j=12,...

The response network of the drive network (4) is
. N
X (1)=& M)
r=1

- Drk\i (t) + erfl (551 (t))
+ Ry f5 (X (t =7 (1))

+1+ Zarijj;j (t-7. (1)
=1

+ Zbrijg (57] (t-7 (f)))
j=1

+ZIC”7 Lo ht-s)k(7;(s))ds+u; (1)
=

. N
OEDX AR
r=1

X |: _Brj;j (t) + ﬁrl?l ()7] (t))
+Rof, (7 (-0 (1))

+ ] + Zarjz Xi -0 (t))

¥ ;Ef,-,@ (i (t -0, (1))

s .

(4)

!
+;Erji J_; h(t-s)k (%, (s))ds+ vi(® |,

where u;(t) and vj(t) € R” are the control inputs.

(5)



4

Lete;(t) = X;(t) —x;(1), &;(t) = y;()-y;(1), i = 1,2,...,1,
and j = 1,2,...,m. The error dynamical system of (4) and
(5) is given by

N
&(t) =Y (t,1)

r=1
x | = D,e; (t) + R, F, (e; (1))
+R,F, (e; (t — 7 (1))

+ D (t -7 (1)
=1

m

+Yb,G(¢ (-1, 1))
j=1
m t

+ZC,,1] J h(t—S)K(SJ (5)) ds+ul (t) 4
j=ro o

i=12,...,1

N
& (t) = Zlf (t:A)

x [ ~D,&; (t) + Ry F, (& (1))
+R,F, (¢ (t -0 (1))

I
+ Zarjiei (t-o,(®)
=1

1
+le,ﬁ J_tooﬁ(t - ) K (e;(s))ds +v; (t)] :
j=12,...,m,
(6)

where

Fe(e; (1) = fi (% ) = fi (x: (1))
Fi(e0) = fi(5;0) - fi (7). k=12,
G(¢;®)=g(3;0)-9(3;®),

G ®)=7(x®)-73(x0),
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K(;(9) =k (7)) -k (1)
= (K1 (£ 9) K (£ 9))
K (e;(5)) = k(%)) =k (x; (5))
= (K, (60 (9)-- - Ky (00 (9)))
?)

In this paper, the following assumptions and lemmas are
needed.

(S;) There exist diagonal matrices L; = diag(l;,L,,...,[,)
and L} = diag(l]},1},..., ), such that

i1> i
fkj (x)_fkj (») kj (x)_kj ()

I < <[l I, < <,
kj x—y kj 3j x—y 3j
l;j < M < l:j’
x=y

(8)

Vx,y € Randx#y,i=1,2,3,4,j=12,...,nand
k=1,2.

(S,) There exist diagonal matrices fi_ = diag(iiz,fi;, .

Zi;) and f; = diag(zg,i;, .. ,f;), such that

) = S - — k;(x)—k; -
lk,gfkf()—f’v(y)gz;, < J(y)sl;,
j x—y j j x—y j
_ g x)-7; _
l4j£g]—g](y)sl4+j,
xX-y
)
Vx,y € Randx#y,i=1,2,3,4,j=1,2,...,n,and

k=12

(S3) (1), 7,(1), 7,(t), o(2), 0,(t), and 0,(¢t) are differential
functionswith 7(f) < 7 < 1,6(t) <o < L, 7,(t) < 1, <
1,0,(t) <oy <1,15,(t) <1, <1l,and 6,(t) <0, < L.

(S4) hy(t), Ei(t) are real-value nonnegative continuous
functions defined in [0, 00) satistying

J h; (s)ds < oo, J Ei(s)ds<oo, i=1,2,...,n
0 0
(10)

Lemma 1 (see [34]). Given any real matrices 2., £,, and 2,
of appropriate dimensions and a scalar € > 0 such that 0 <

3, = 21, then the following inequality holds:
DD INNED O TR XD Y IR X Wb I (11)

Lemma 2 (see [35]). Given a positive definite matrix P €
R™"and a symmetric matrix Q € R™?, then

Pmin (P_IQ) xTPx < xTQx < Pmax (P_IQ) xTPx,

Vx e R".

(12)
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Lemma 3 (Schur complement). Given constant symmetric
matrices 2y, X,, and X5, where 2, = ZlT and 0 < 3, = 37,
then T, + 213,'%, < 0 if and only if

Z Z;F X, X3
<23 -3, <0 or Z;F 5, < 0. (13)

For convenience, let

L; = diag (max {[I; |, [13]}

max {[L,|, By} . max {|L [ 1]
i=1,2,3,4,

fi = diag (max {'i;l R ’i;'} )

ma [ ]} - |

A

in

)

i=1,2,3,4,

> |Yin

0

H = diag(J'Oo hy (v)dv, Joohz v)dv,..., JOO h, (v) dv> ,
0 0

H= diag(joozl (v) dv, jmﬁz ) dv,..., JOO En (v) dv) .
0 0 0 1
14

3. Main Results

Theorem 4. Under assumptions (S;)-(S,), the two coupled
SCBNNs (4) and (5) can be synchronized, if there exist positive
constants, a,ﬁ,p,ﬁ,yi,nj (i=12...,Lj=12..m),
n X n positive matrices P, Q, U, P, 6, U and n x n
diagonal positive matrices W = diag(w,, w,,...,w,), W =
diag(w,, Wy,..., w,), M;, M, (i =1,2,3) such that

. 1/2 1/2 . 1/2
2 2 2
Z,i PRy PR, (Z%‘j) p (any) P <lzcrij> p
i=1 j

j=1

j=1

* =M, 0 0
* * =M, 0 0 0
* * * -M; 0 0
* * * * -1, 0
* * * * * -W
<0,
(15)
. 1/2 . 1/2 . 1/2
— —— ) —2 — 5 —
Z,; PR, PR, (Zam P <Zbrﬂ> P (chm> P
i=1 i=1 i=1
£ -M; 0 0 0 0
* x  —M, 0 0 0
% % % —M; 0 0
* * * % -1, 0
* * * * * -W
<0,

(16)

5
: - 2ap <0, P> pl, P>Dpl,
(17)
l -2Bp<0
1-1, P=5

L,M,L,-(1-1)Q<0, M;-(1-1,)U<0, (18)

LML, - (1-0)Q<0, M;-(1-0,)U<0, (19
and the adaptive feedback controllers are designed as

u; (t) = - [Yi +o; (t)] e (1),
v () =—[n;+B; (1)) & (®),

6('1‘ 1)) ?
o (t) = 4 w“’ e; (t)||2¢0,
O lof =0
( 2
G(& ()
B () = Wﬁ le; )] #0,
j = i
O e @ =o.

where Z,; = —2PD,+Ly;HW H Ly +L, M, L, +mU -2y,P+Q,
Z,;==2PD,+L;HWHL;+L,M,L, +lU+Q-21;P, 7 € X,
i=1,2,....Land j=1,2,...,m.

Proof. For the error dynamical system (6), we design the
following Lyapunov-Krasovskii function:

V)=V (E®)+V,(E(®)), (21)

where E(t) = (el (t), el (t), ..., e (t), el (t), L (¢), ..., el (1),

I ot

1
Vi=Yel (t)Pe(t)+ ) J

i=1 i=1 Jt=T

eiT (s) Qe; (s)ds
(]

(0]

h () dvj 1, (6)

0
t
x Le K (e;:(5)) ds do

+lij

j=1 t=7,(t)

t sjr () Ug; (5) ds

m t
l ZJ G' (¢(5))G(2(9))ds,

I-1, =17t ()
(22)



m T _ m t
v, = Zej (t)Pe; (1) + Zj
j=1 j=1 e

: sz (s) C_Qsj (s)ds

I n o _ o _
Yy [ R ke

i=1j=1 0
t p—
X J-e K; (e,-j (s)) dsdé (23)

Lot
+ mz J eiT (s)Ue; (s)ds
i=1 Yt (1)

l

m t —T ,. — .
l-o, z .[t—m(t) G (&©)G(& ) ds

i=1

+

Calculating the derivative of (22) along the trajectories of (6),
we have

. N
Vi= )&t

r=1

1
X «lZzeiT (t)P

i=1
X [ —D,e; (t) + R, F, (e; (1))
+R,F, (e; (t — 7 (1))

+ Y (t -7 (1)
=1

NgE

+ ZbﬁjG (s'j (t-1, (t))) +

j=1 =1

Crij

x Jt ht—s)K (& (s))ds +u, (t)]

1
+ el () Qe; (t) — (1-7(t)

i=1

1
x el (t-T(t) Qe (t—T(t)

i=1

+ iiwi <Ki (fji (t)) JOOO h; (v) dv)

j=1li=1

_ iiwi JOO by (v) dv

j=li=1  “0

2

< | mOK (¢ 0 -0)do
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+ lzef (5)Ue; (s) - (1 -1, (1)1
=1

x Y&l (=1, (£) Ug; (¢ - 7, (1))
j=1

6" (60)6 (¢ 0)

_L-h (),
1-1,

G (¢(t-1,(1))G (g (t -, (t)))} :

(24)

X

E

j=1

By Lemma 1, we can get from (S;)

2¢] (t) PR, F, (&; (1))
<e! (t) PR, M;'R},Pe, (t)
+ F{ (e (1) M, F, (¢; ()
<e (t)(PR,M;'R,P+L,M,L,)e(t),
2e! (t) PR,,F, (e; (t — 7 (1))
<e! (t) PR,,M;"'R%, Pe; (t)
+F) (e;(t - 7(1))) MyF, (e; (t - 7(£))) 2
<e! (t) PR,,M;"'R% Pe; (t)
+e] (t-1(t)L,M,Lye; (t—7(t)),
Za,ijeiT (t) Pe; (t -7, (1))
< afi].eiT (t) PM; " Pe; (t)

+e] (t-1, (1) Mye] (t—1, (D).

By assumptions (S;) and (S,), it is obvious that

iiwi (K,- (2 1)) LOO h; (v) dv)

j=1li=1

2

[
NgE

K" (¢; (1)) HWHK (&; (1)) (26)

-
Il
—

IA
NgE

T
g () L;HWHLs¢; (1),

-
Il
—

l t
2ZcrijeiT (t)P J h(t-s)K (sj (s)) ds
i=1 -

1
< lZcfijeiT (t) PW ' Pe, (t)
i=1

1 T

+ %Z(Jjwh(t - s)K(sj (s)) ds)

i=1



Abstract and Applied Analysis

ijt h(t-s)K (e (5)) ds

- lZcz el (t) PW ™' Pe; (t)

1’1] 1

+ ([OO h(t-s)K (sj (s)) ds)

ijt h(t-s)K (e (5)) ds

Observe that

OB O G (¢ ) 6 - 0)

+ ZZZe (t) PG (¢; (t — 7, (1))

i=1j=1

+ ZZZe (t) Pb,; (sj (t-, (t)))

i=1j=1

T

G (& (t-n®))G (& (t -1 1))

- —iZ(b”]Pe -G (&t -1, 1))

i=1j=1

x (byPe; (0 = G (& (t - 1, ()))

1
+ Zbe,JelT (t) Pe; (1),

i=1j=1

1
< Zbe,]elT (t) P?e; (t).

i=1j=1

Using inequality

(27)

(28)

J.OOO 2 (s)ds J:O g (s)ds > <LOO f(s)g(s) d5>2, (29)

we have

ij h(v)dvj B O) K2 (2, (t - 0)) d6

v

iwi (LOO B OV K, (25 (£~ 0)) d0>
([OO h(t-s)K (sj (s)) ds)T

xWJt h(t—s)K(ej(s))ds

2

(30)

Using Lemma 2 and condition (17), we get

[ICION}
le;

Substituting (20) into (24) and combining (24)-(31), it can be
derived by condition (18) that

" P e () < —pG (& 1) (& ®). GV

. N
Vi< YE (D)
r=1

1
x {Ze? (1), ¢ (¢)

i=1
1
+ el (t -7 (1) [LyMyL, - (1 - 1) Q]
i=1
xe; (t—1(t))

+ Y€l () (IU + LyHWHL; ) ¢ (s)
j=1

+ Zs;r (t-1 () [IM;-1(1-7,)U]
j=1
xe;(t—1, (1)

-SG5 0)6 (5 0)

2]1

- 2ap iGT (& (1) G (¢ (t))]’

i=1

N
< Y& ®N
r=1
1
x {Ze? (1) Qpie; (1)
i=1

+ Y€ (1) (IU + LyHWHL;) ¢ (1)
j=1

Y6 (60) G ¢ )

i=1

—2ap ZG ¢ ()G (¢ (t))]»,
(32)
where Q; = -2PD, + PR,IM 'RIP + LML, +

PR,M;'RLP  + Y7 @ PM;'P + Y7 lbflJPZ +
Y76 PWTIP =2y, + Q.



Meanwhile, by a similar process, the following inequality

can be true:

) N
V, < Y E (D)
r=1

X {Zsz () Q¢ (1)
j=1

1
+ el (t)(mU+L,HWHL,)e; () (33)

i=1

m

+

1
YR CIONECA0)

2i=1
i $6 (6 )6 <r>>},
=

—_— —— — 1 —T — - — —

—2PD, + PR,M, R, P + LML, +

— — 1T — | g =——1= ] 2 =2

PR,M, R,P + Y. & ,PM;P + Y_b,P +
5 =—=-1= = =

mZizlcfﬁPW P-2n;P+Q.

By condition (17), we have

where 5]. =

N
V< YE A
r=1

i=1

+y & (1) (Q,;+1U + LHWHL; ) & (t) | .
j=1
(34)

By (15)-(16) and Lemma 3 (Schur complement), it can be

obtained that Q,; + mU + LLHWHL; < 0,Q,; + U +
L;HWHL; < 0. Set p = min{p,, p,}, where
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Therefore, V' is nonincreasing in t > 0. One has V bounded
since 0 < V(¢, E(t)) < V(0, E(0)), solim, _, .,V (¢, E(t)) exists
and

t
lim J ET (s)E(s)ds
t—+00 Jo

t
<L im j Vi (37)
pt—+oo Jo ds

“Yvoroy-LimveEw).
p ptHJroo

From (22)-(23) and conditions P > pI, P> pI and we have
0 < ET(t)E(t) < max{1/p,1/ p}V(t, E(t)), so ET(t)E(t) is
bounded. According to error system (6), (d/d)ET()E(®) =
2ET(t)E(t) is bounded for t > 0 due to the boundedness of
activation functions. From the above we can see that E(t) €
L*N L% and (d/dt)ET (t)E(t) € L. By using Barbalat lemma
(see [36]), one has limt_,+OOET(t)E(t) = 0, so the two SBNNs
(4) and (5) can obtain synchronization under the controllers
(20). This completes the proof. O

We take CBDN (1) as drive network. The response net-
work of the drive network (1) is

X ()= —DX;(t) + R, f, (X; (1)) + Ry f, (X (t — T (1))

+1(t)+ Y a;p; (¢ -7 (1))
i

+ ibijg (5’1 (t-1, (t)))

=1

m t
+Ze~jj h(t=s)k(;(9)ds+u (),
IS

¥;®)= =D3; (0 + Ry f, (3 () + Rof (7 (¢~ 0 (1))

1
+ () + Y ;% (t -0y (1)
i=1

ren, 1<i<l},
_ (35)
p, = —minipi (Q,; +IU+ LyHWHL,), L
: { ( ! ’ 3) +ij,-g (x,- (t-o, (t)))
rex, 1<j<mf, =
1 t _
then p > 0, and + zEﬁ J h(t—s)k(%;(s))ds+v; (1),
-1~ J-e
I m (38)
V<-p el (t)e(t)—p e (t)e (1)
i=1 j=1 (36)

<—pE"()E(t).

where u;(t), vj(t) € R" are the control inputs.
From Theorem 4, we can get the following corollary.
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Corollary 5. Under assumptions (S,)-(S,), the two coupled
CBDNs (1) and (38) can be synchronized, if there exist positive
constants o, B, p, > Y1y (i = 1,2,..,L j = 1,2,...,m),
n X n positive matrices P, Q, U, P, 6, Uand n x n
diagonal positive matrices W = diag(w,, w,, ... w

,w,), W =
diag(w,, w,, ..., w,), M;, M; (i = 1,2, 3) such that

Z; PR,
j=1 j=1 j=1

= —-M; 0 0 1] 0

* * =M, 0 0 0

% * * —M; 0 0
* * * * -1, 0

* * * * * -W

<0,

NI
=
=
2]
=
N
O
M~
Q
=N
vH
S
ol
~

* =M, 0 0 0 0
* * -M, 0 0 0
* * * —M3 0 0
* * * * =1, 0
* * * * * —W
<0
; -2ap <0 P>pl, P>Dpl,
)
-2Bp<0
e Bp
L,M,L,—(1-1)Q<0, M;-(1-1)U<0

L,M,L,-(1-0)Q <0,

(39)
and the adaptive feedback controllers are designed as
w () ==y +a®]e®),
v;(0) = =[n;+B; ()] & @),
Gl(e
L . ,(()f')” o la @ 40
o O
( 2
G(¢;
SO oo
FO=1 Jeol
oo -o

where Z; = —2PD+L3HWHL3 +L,M,L, + mU - 2y,P+

Q Z;=-2PD+L HWHL +L, ML, +lU-21,P+Q, i=
1,2,...,L j=1,2,.

Remark 6. From Corollary 5, we can easily get that the
controllers in this paper are simpler than those of Theorem
1in [29].

Remark 7. If the coupling matrix of the SCBNN is not a
diffusive matrix satisfying the sum of every row being zero, we
can still obtain the same result from the proof of Theorem 4.
Theorem 8 presents another sufficient condition to ascer-
tain that the two networks (4) and (5) can be synchronized,
using the following simple adaptive feedback controllers:

u; ) = —Yi€; ),
(41)
vi() = T, (1),
wherei = 1,2,...,1, j = 1,2,...,m, ¥, and y; are positive
constants.
Let

et) = (eF ©),el (©),...oef ()

e@) = (L 0.l ®),....eh @),

Fele(®) = (B (e (0) L (e (1), L (&),
k=1,2,

B (e(t) = (TD{ (e, 1), Fy (&,®)),.... F, (e, (t)))T,
k=12,

G@E®) = (G (& ®),G" (& ),....G" (6,®))
Ge®) =(G (&,1).G (& ®),....G (& (t)))T,
R(e®) = (K™ (e 1), K" (&, (1)) ... K" (5, (1)),
—T T

K(e(t))—(K (e, 0).K (e,(1),....K (e (t))) ,

=—d1ag(y1,y2,...,yl),

= —diag (Y, Vo> V) >
(42)

then the error dynamical system of (6) becomes

N
et)= Y& (M)
r=1

x[- (L, ®D,)e(t)+ (L, ®R,)F (e(t)

+(L®R,)E (e(t—7(1)
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with

+(A,®L)e(t—1,(t)
+(B,®L,)G(¢(t—1,(t)))

+(C,®1,) Jt (I,®h(t-s))K(e(s))ds

+(Tel,)e),

x[-(I,®D)e(t) + (I, ®R,)F (e(t)

+(L,®R,) Fy (e(t - (£)))

Abstract and Applied Analysis

®1,)G(é(t -0, (1))

+(C,®1,) Jt (Loh(t—s))K (e(s)ds

+(Te1,)e),
(43)

Theorem 8. Under assumptions (S,)-(S,) and using the
adaptive feedback controllers (41), the two coupled SCBNNs
(4) and (5) can be synchronized, if there exist n x n positive

matrices P,U, P,U and n x n diagonal positive matrices W =
diag(w,, w,, ..., w,), W = diag(w,, w,, ..., w,),Q V, M, Q,

V, M such that for r € X, the following matrix inequalities

+(4,©1,)e(t—o, (1) hold:
v, ¥, v, v, v, v,
« ¥, [®(R{VR,) A,®(RLV) B,®(RLV) C,&(R,V)
o | ¥ A,@(RV) B,@(R,V) C,&(R,V) o
’ N + ¥,  (ATB)eV (A’C,)eV ’
B « x ¥ o (BIC,)eV
B * * . v,
¥, ¥, ¥, 7, 7. 7, (44)
+ ¥, Lo (R,VR,) 4e(R,V) B,®(R,V) C,e(R,V)
a.| v 7, A 0(R,V) B,®(R,V) C o(R,V) L
£ % * 7, (B)ev (AC)ev
£ % * * 7., B.C,eV
* * * * * r1l
¥, =(ATA,) eV -(1-1)(,8U),
¥, = L®(-PD, - D'P+Q+T ¥, =(B/B,)®oV-(1-1,)(L,®(L;'VL")),
+LHWHL; + L,ML, + D'VD,) T = (C’TC’)®‘7_I”‘T®W’
+2l®P+I’eV -T®(D/V+VD,), Vi =1n® ( “PD, =D P+ QU+ LHWHL,
¥, =Te(VR,)+]&(PR, - D'VR,), +L,ML, +D,VD,)
¥, = Lo (PR, - D'VR,)+ To VR, +2leP+T @V -Ta(D,V+VD,),
¥, = (TA) eV + A, (P-DIV), ¥,=Te(VR,)+1,e (PR, -D,VR,),
¥, = (TB,)®V +B,&(P-DIV), ?3=Im®(ﬁ}_22—D,V§,2)+f®VI_Z,2,
¥, = (IC,)®V +C, @ (P-DIV), ¥,=(T4,)ev+4e(P-D,V),
¥, = ,® (RVR, - M), ¥ =(TB,)eV+B,e(P-D,V),
W = ® [RLVR, - (1-1)1;'QL;'], ¥, =(TC,)®V+C,e(P-D,V),
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?77 = Im ® <EEIVE71 - M) >
Vo= (44,)eV-(1-0)(1e0),

¥10=(B, B, )ev-(1-0)(18(L, VL)),
¥,,=(C,C)ev-Law

(45)

Proof. For the error dynamical system (43), we define the
following Lyapunov-Krasovskii function:

Vit.e(t),e(t) =V, (te(®),e) +V,(te(t),e(h),

Vi=e' (1) (,®P)e(t) + r e’ (5) (I, ®Q)e(s)ds

t—1(t)

+ Jt e (s)(I,®U)e(s)ds
t=7,(t)

+ZZ“’J h(v)dvj h, 60)

j=li=1
! 2
X Le K; (sﬁ (s)) dsdf
t
+ J & (s) (I, ®V)é(s)ds,
t=1,(t)
V,=¢' (t)(I,®P)e(t)

t T .
+ L_G(t) e (s) (Im ® Q) e(s)ds

+ J:_ o el (s) (I, ® U) e(s)ds
+ le:zlm] |, B[ Ho
t J—
X J K; (e,-j (s)) dsdo
-6
t R
+ L_ Y e () (L eV)e(s)ds,
Vi=e (t)(,®P)ét)+¢é" () (I ® P)e(t)
+el ) (LeQ)e() - (1-1(t) e’ (t-1(1))
x(LeQ)e(t-1(t)+e (t)(I,®U)e(t)

—(1-5®)e (-1, ) (I, ®U)e(t -7, (1))

1

2

* Zzw < (e 0) J:O h; (v) dv>

s
_;;w J h; (v) dv L hi (0)K; (e (t - 6)) do
+e7 (1) (I,8V)E®)

—(1-1,®)) (t-1, ) (I,,®V)é(t -1, (1),

V, =" (t)(I,®P)e(t)+&" (t)(I,®P)e(t)
+e(t)(I,0Q)e(t)~(1-d®)e(t—o (1)
x(I,®Q)et-a®) +e' (t)(L,®T)e(t)
~(1-6,0)e" (t-0,®) (LeU)e(t -0, (1)

* Zzw (K (e,](t))J h; (v)dv>2

i=1j=1

_YYa, j B, (v)de B O)K (e (¢ - 0))do

i=1j=1
+e' (1) (LeV)e) - (1-6,1)e" (t-0,(1)

x(L®V)e(t-o,(t).
(46)

By (26), we have

m n o0 2

Zzwi (Ki (5ﬁ (t)) L h; (v) dv)

j=li=1
S (47)

Z (t) L;HWHL¢; (1)
j=1

= &' (t)(1,, ® (LyHWHL,)) e (t) .

Using (30), we get

m n [e'e]

) dy L 1 (0) K2 (e5:(5) (t — 6)) dO

™M
™

£
s

T

=y (j;oh(t “9K(59) ds)

j=1

xWJt h(t—s)K(sj (s)) ds (48)

T

- (J'_too (I,®h(t—-s))K (e(s)) dS> (I, ®W)

x r (I, ®h(t ) R (e (s)) ds.
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From (S;) and (46)-(48), we have

Vi<se (t)(L®P)ét)+¢é" (t) (I, ®P)e(t)
+el )L eQ)et)-(1-1)e' (t-1(t)
x([®Q)e(t—1(t))
+e (t)[I,® (U +L;HWHL;)] £ (t)

(-1 (t-1,0)) (I, 0U)e(t -1, (1))

t . (49)
- (j (I,®h(t —s))E(e(s))ds> (I,®W)
t —_—
« J (I, ®h(t - s)) R (e (s)) ds
+& 0 (L, eV)et) - (1-1,)& (t-1, ()
x(I,®V)é(t-1,(t)).
In the same way, we have
Vy<e ()(1,®P)e(t)+& (1) (L ®P)e(t)
+e' (1)(L,®Q)e(® - (1-0)e’ (t-0(t)
x(L,®Q)e(t—-o(t)
+e' () [ ®(U+LHWHL)|e ()
—(1-0)e (t-0,(0)) (L ®T)e(t -0, (1))
(50)

¢ T
—(J (Il®ﬁ(t—s))1?(e(s))ds> (LeW)
xr (Leh(t-s))K(e(s))ds
+e ) (LeV)e) - (1-0))é" (-0, (1))

x(L®V)é(t-o, ().
From (S,) and (S,),

e" (1) [, ® (L,ML,)]e(t)

~F (e@®) (L ® M) F, (e(1)) = 0,
e ()L, ®(LML,)]e®)

~F () (L,® M) F (1) 2 0,
e (t-1(t) (LeQ)e(t—1(t)

> F) (e(t-1(1) [Le(L}'QLy )| B et -7 (1)),

Abstract and Applied Analysis

e (t-o00)(I,eQ)e(t -0 (1)

e (t-10) (L,®V)é(t -1, (1)
>G (e(t-1,0) (Iy® (L3'VL,')) G (e (t -, (1)),

' (t-0,0) (L 8V)e(t -0, (1))

(51)

With the aid of (43) and (51), we have

N
VYE®D [ Q0+ ©Qq®)],  (52)
r=1
where

n(t) = (eT (t),Fl (e(t),F) (e(t -7 (1), e (t-7, (1)),

G (¢ (t-n 1)),
t \T
(] aiene-9)Rema) ) ,

() = (sT (t),F] (e(®)),E (et -a@)),e (t—0, (1)),

G (é(t-o,(1)),

t _ T\T
<j (zl®h(t—s))ﬁ(e(s))ds> ) )
(53)
Let p = min{p;,p,}, where p, = —min{p,;,(Q,), r €
R}, p, = - min{p,;,(Q,), r € X}, then p > 0 and
l m
V<-p e O)et)-p)e (e )
i=1 =1
(54)

1 m
<—p| e e )+ e e ).
j=1

i=1

The following proof is similar to that of Theorem 4 and is
omitted here. O
4. Simulations

In this section, numerical examples are provided to demon-
strate the validity of the synchronization criteria obtained
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in the previous sections. Consider the following network as
drive network:

N
% (6) = YE (1)
r=1

- D,x; + R, fy (x; (1))
+ R, fr (xi (t-7 (t)))

m
+ 1+ Y agy; (t -7 (1)
i

+ Zbrijg (Yj (t-1, (1‘)))
i

m

+Zc,ij J_OO h(t-s)k (yj (s)) ds] ,

j=1

i=12,...,1

N
9 () = YE (M)
r=1

x |: - Bry] + E1’1?1 (y] (t)>
+ R f, (y; (-0 ()

+ ] + Zarﬂ Xi 01 (t))
l -_—
+ zbrjiy (%; (t =0, (1))
i=1

!
+;Erﬁ [OO h(t-s)k(x;(s)) ds] ,

j=L2,...,m,
(55)

where x;(t), yj(t) e R2%1 = 3, andm = 3. fl(z(t))

0. 1(tanh(z1(t)) tanh(z, (¢ )))T, z(t) = (z,(t), 2, t) f1 =
g=g=k=k=f,=f,= fi,and h(t) = h(t) = diag(e™,
eh). Choose time delays 7(f) = 1 + 0.4sint, 7,(t) = 2 +
0.2 arctan(t), 7,(t) = 0.6 + 0.5cost, and o(t) = 1 + 0.8sint,
o,(t) = 0.7 + 0.1cost, o,(t) = 0.5+ (0.3¢"/(1 + €')). We
define a switching rule A : t € [0,+00) — {1,2}, A(t) =
int(t) mod 2 + 1. The other parameters are as follows:

1.8 0 -1 1
D1=<0 4)’ RH:(o 0.2)’

1 05
Ry, = (0.6 _1)) L=]= (1>2)T)

-2 -2 0
Ay =(ay)=0 2 -2,
11 -2
02 0 -02
By =(b;) = 01 -04 03 |,
02 01 -03
1 -1 0
Cr=(ay)=(1 1 -2,
-1 0 1
— (20 = -03 1
Dl‘(o 1)’ Rll‘(o.z 0.3
03 04 -
:<0.6 05) Al:(alﬁ):<
- 01 0 -0.1
B, =(b;)=(02 -03 0.1
0.1 02 -0.2

D,

R22

=)= (2 0

202>

40

0.1 -0.1

B, = (by;) = <01 -05 0.4

02 0

i)«
:<162 1(.)2>’
a0

4, = (a,;) = (

0.4

2 =2
3 -1
0 -1

E21 =

1 -1
1 2
11

0.2 -0.2

B, = (by;) = (0.1 02 0.1

0.3 0.1

C, = (&) =<

=51

2

4

1 ) A, = (ay;) :<

0

-0.2

0
-2
1

0
-3
-2

g

)

—4

0

-0.4

4

1 1-2

-10

1

).

-5 3

1

1

0 2

)

).

031

1

).

3
2 _1>) IZ = ]2 = (3)4)T$

)

0
-2

12 1 —2.2)

13

(56)
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The response network of drive network (55) is

. N
% ()= )& (tA)
r=1

x| =D,%; (t) + R, f (%, (1))

+ R f (% (t - 7(1)))

+1,+ Y a3 (t -7 (1)

=1
Z rz]g (y] t— T (t)))

m

t
SYS J_Oo hit-9k(5,(5))ds+ 1) |

j=1

X [ - Br?j (t) +1—2r1?1 (J7] (t))
PRty (7, - 0 )

+ ] + Zarjr Xi 01 (t))

t-0,(1))

+ beﬂg(

1
+;Erﬁ J;O h (t—ys) k (x;(s))ds + v; (t):| ,

(57)

where u;(t), vj(t) € R%.
Lety, =y, =y; =151,

by employing MATLAB LMI Toolbox be as follows:

p=75267,  p=7.8951,

3.6674 68.8593

p- 12.9508 0.2817
~\ 0.2817 10.7871

83.6405 3.6674
o= )

U = 119.1080 0.2216
“\ 02216 55.7869

2337870 0
W=< 0 223.7801)’

=1, =#3 =16, =0.5,=0.5,
and the feasible solution of the matrix inequalities (15)-(19)

Abstract and Applied Analysis

227.1153 0
M, = ( 202.1669)’

206. 3034 0
217.8341

M, = (86 9723 P

19.4548 0.0336
0 41.4980

0.0336 11.6060
- 26.1973 0.5411
o )

= (309126 0.9850
0.5411 9.6902 B

0.9850 22.6634

W= <316.6943 0 )

0 287.9793

Ml _ (183.0419 0 )’

0 162.4080
— (2502787 0
M, = ( 0 409.0398)’
— (138704 0
M; = ( 0 10.1694>'

(58)

The initial values are chosen as x;(s) = (-5,9), yj(s) = (-6,
N %) = 2i(2,5), 7.(s) = 3j(2,-1)", and s € [-2,0].
Clearly, the two coupll d networks (55) and (57) sat-
isfy the conditions of Theorem 4. Figurel presents the
synchronization errors of the state variables between the two
networks. The simulation result shows that the synchroniza-
tion is achieved under the proposed controllers (20). Thus,
the proposed synchronization control scheme in Theorem 4
is valid.

Lety, =y, =y; = 12,9, =y, = ¥; = 17, then the
feasible solution of the matrix inequalities (44) in Theorem 8
by employing MATLAB LMI Toolbox is as follows:

_(0.0251 0.0005 _( 3.7826 —0.0043
0.0005 0.0214 ~\-0.0043 3.5381

42792 0
Q‘( 0 3.7789)’

0.0116 0 34521 0
V‘( 0 0.0079)’ M‘< 0 3.1482)’

37071 0 = (00298 0
W‘< 0 3.3433)’ P‘( 0 0.0268)’

—~ (72228 0
Q= ( 0 6.3479)’
7o <o.0077 0 )

T (33924 0
0 0.0052 “\ 0o 30142)

— (34120 0
W=< 0 3.2474)'

— ([ 3.3712 -0.0132
~\-0.0132 3.1782

(59)
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FIGURE 1: Synchronization errors of BDN (55) and (57) with adaptive feedback controllers (20).

lley |
o w
S —

llesl
[
SS

S —

lles|l
SN
S o

S —

0 5 10 15 20 25 30
(e)

llex I
-
(=}

S —

(b)

llesl

(d)

lle

SN

oo o
.

0 5 10 15 20 25 30
()

FIGURE 2: Synchronization errors with adaptive feedback controllers (41).

Using the controllers (41), the simulation result is given in
Figure 2, which shows that the proposed synchronization
control scheme in Theorem 8 is effective.

5. Conclusions

In this paper, we have proposed a general SCBNN with
distributed delays and derivative coupling and investigated
the synchronization problem in the two coupled SCBNNG.
Using linear matrix inequality (LMI) approach and Barbalat
lemma, we have deviated some useful synchronization cri-
teria to ensure the synchronization of these two SCBNNs
by constructing effective controllers. Compared with relative
previous jobs, the controllers proposed by us are more simple
and feasible. Some simulation results have been presented to
demonstrate our theoretical results. In our future work, we
will consider using pinning control to realize the synchro-
nization of SCBNNs and identify the network topology of the
unknown SCBNNE.
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