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Image restoration is one of the most fundamental issues in imaging science. Total variation regularization is widely used in image
restoration problems for its capability to preserve edges. In this paper, we consider a constrainedminimization problemwith double
total variation regularization terms. To solve this problem, we employ the split Bregman iteration method and the Chambolle’s
algorithm. The convergence property of the algorithm is established. The numerical results demonstrate the effectiveness of the
proposed method in terms of peak signal-to-noise ratio (PSNR) and the structure similarity index (SSIM).

1. Introduction

Image restoration is a fundamental problem in the literature
of image processing. It plays an important role in various
areas such as remote sensing, astronomy, medical imaging,
and microscopy [1, 2]. Many image restoration tasks can be
posed as linear inverse problems of the form:

𝑔 = 𝐻𝑓 + 𝑛, (1)

where 𝐻 ∈ R𝑛
2
×𝑛
2

is a blurring matrix constructed from a
discretized point spread function (PSF), 𝑓 ∈ R𝑛

2

is an original
𝑛 × 𝑛 gray-scale image, 𝑔 ∈ R𝑛

2

is a degraded observation,
and 𝑛 ∈ R𝑛

2

is additive noise. We remark that the matrix 𝐻

has special structure that can be exploited in computations,
when the special boundary conditions such as periodic and
Dirichlet boundary conditions are imposed [3, 4]. In this
work, the PSF is assumed to be known. In fact, if the PSF is
unknown, there are a variety of means of techniques available
for estimating it [5, 6].

Image restoration problems are frequently ill condi-
tioned; thus, the straightforward solution of (1) typically does
not yield ameaningful approximation [7, 8]. In order to avoid
this difficulty, one typical method is to replace the linear
system (1) by a nearby system that is less sensitive to the error

𝑛 in 𝑔 and considers the computed solutions of the latter
system. This replacement is known as regularization.

One of the most popular regularization approaches is
Tikhonov regularization [9] which seeks to minimize a
penalized least squares problem of the form:

min
𝑓

{
𝑔 − 𝐻𝑓


2

2
+ 𝛼

𝑅𝑓

2

2
} , (2)

where the first term is the data fidelity of the solution 𝑓,
and the regularization term ‖𝑅𝑓‖

2

2
restricts smoothness of the

solution. The positive regularization parameter 𝛼 plays the
role of balancing the tradeoff between the fidelity and noise
sensitivity.The regularization operator𝑅 is a carefully chosen
matrix, often the identity matrix or a discrete approximation
of the first or second order derivative operator.

In application to image processing, however, the
Tikhonov regularization can produce poor solutions (with
overly smoothed edges) when the desired solution comes
from an image with edges; that is, it overly penalizes
discontinuities in the solutions [10]. In this regard, Rudin et
al. [11] proposed a total variation (TV) regularization which
has the ability to preserve edges well and remove noise at
the same time. The resulting model (commonly referred to
as the Rudin-Osher-Fatemi (ROF) model) has been proven
to be successful in a wide range of applications in image
processing [12]. We should note that there are many other
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edge-preserving restoration techniques in the literature,
such as the anisotropic diffusion methods of Perona and
Malik for denoising [13], morphological wavelets, and
dyadic tree-based edge-preserving method proposed by
Xiang and Ramadge [14]. In this paper, we focus on the the
minimization problem with TV regularization

min
𝑓

{
𝑔 − 𝐻𝑓


2

2
+ 𝛼

𝑓
TV} , (3)

where ‖ ⋅ ‖TV denotes the discrete TV norm. To define the
discrete TV norm, we first introduce the discrete gradient ∇𝑓
[15]:

(∇𝑓)
𝑖,𝑗

= ((∇𝑓)
𝑥

𝑖,𝑗
, (∇𝑓)

𝑦

𝑖,𝑗
) (4)

with

(∇𝑓)
𝑥

𝑖,𝑗
= {

𝑓
𝑖+1,𝑗

− 𝑓
𝑖,𝑗
, if 𝑖 < 𝑛,

0, if 𝑖 = 𝑛,

(∇𝑓)
𝑦

𝑖,𝑗
= {

𝑓
𝑖,𝑗+1

− 𝑓
𝑖,𝑗
, if 𝑗 < 𝑛,

0, if 𝑗 = 𝑛,

(5)

for 𝑖, 𝑗 = 1, . . . , 𝑛, and 𝑓
𝑖,𝑗
represents the value of pixel (𝑖, 𝑗) in

the image (the (𝑗 − 1)𝑛 + 𝑖th entry of the vector 𝑓). Then the
discrete TV norm of 𝑓 is defined as follows:

𝑓
TV := ∑

1≤𝑖,𝑗≤𝑛


(∇𝑓)
𝑖,𝑗


= ∑

1≤𝑖,𝑗≤𝑛

√((∇𝑓)
𝑥

𝑖,𝑗
)
2

+ ((∇𝑓)
𝑦

𝑖,𝑗
)
2

,

(6)

where |𝑦| = √𝑦2
1
+ 𝑦2
2
for every 𝑦 = (𝑦

1
, 𝑦
2
) ∈ R2.

In recent years, a great many of algorithms have been
developed for total variation based image restoration and
proved to be effective for reducing blur and noise while
preserving edges. In the original TV regularization paper [11],
the authors proposed a time marching scheme to solve the
associated Euler-Lagrange equation of (3). The drawback of
this method is very slow due to stability constraints. Later,
Vogel and Oman [16] proposed a lagged diffusivity fixed
point method to solve the same Euler-Lagrange equation of
(3). They proved that this method had a global convergent
property and was asymptotically faster than the explicit
time marching scheme [17]. In [18], Chan et al. applied the
Newton’s method to solve the nonlinear primal-dual system
of the system (3). Chambolle [15] considered a dual formu-
lation of the TV denoising problem and proposed a semi-
implicit gradient descent algorithm to solve the resulting
constrained optimization problem. This method is globally
convergent with a suitable step size. Recently, Wang et al. [19]
proposed a fast total variation deconvolution method which
uses splitting technique and constructs an iterative procedure
of alternately solving a pair of easy subproblems associated
with an increasing sequence of penalty parameter values. In
[20], Goldstein and Osher proposed the novel split Bregman
iterative algorithm to deal with the artificial constraints; their
method has several advantages such as fast convergence rate
and stability.

More recently, Huang et al. [2] proposed a minimization
problem of the form

min
𝑓,𝑢

J (𝑓, 𝑢) ≡ min
𝑓,𝑢

𝐻𝑓 − 𝑔

2

2
+ 𝛼
1

𝑓 − 𝑢

2

2
+ 𝛼
2
‖𝑢‖TV,

(7)
where 𝛼

1
and 𝛼

2
are positive regularization parameters. The

authors employed an alternating minimization algorithm
to solve the system (7). The numerical results on image
restoration show the efficiency of their method. The idea of
this method is similar to the one proposed in [19]. Both of
them use the penalty method by introducing an auxiliary
variable.

In [2], the minimization problem (7) can be solved by
two steps: one is the deblurring step which is employed by
the Tikhonov regularization and the other step is denoising.
Although the noise can be removed to a certain extent in the
second step, we may lose some details before the denoising
step because of the Tikhonov regularization used in the first
step (deblurring), as we know that Tikhonov regularization
penalizes edges.

In [21], Chavent and Kunisch considered a total bounded
variation regularization minimization problem given by

min
𝑓

𝐻𝑓 − 𝑔

2

2
+ 𝛼

𝑓

2

2
+ 𝛽

𝑓
TV, (8)

where 𝛼, 𝛽 are both positive parameters. The authors proved
that the solution of system (8) is unique. In [22],Hinrermüller
and Kunisch applied the semismooth Newton method to
solve the Fenchel predual of (8). Numerical results for
image denoising and zooming/resizing showed the efficiency
of their approach. In [23], Liu and Huang introduced an
extended split Bregman iteration to solve the minimization
problem (8). Numerical simulations illustrated the excellent
reconstruction performance of their method.

Note that the unconstrained problem (3) is equivalent to
the following constrained minimization problem:

min
𝑓,𝑢

J (𝑓, 𝑢) ≡ min
𝑓

𝐻𝑓 − 𝑔

2

2
+ 𝛼
2

𝑓
TV + 𝛼

3
‖𝑢‖TV

s. t. 𝑓 = 𝑢,

(9)

where 𝛼
2
, 𝛼
3

> 0. Then using penalty method, we obtain
proposed minimization problem as follows:

min
𝑓,𝑢

J (𝑓, 𝑢) ≡ min
𝑓

𝐻𝑓 − 𝑔

2

2
+ 𝛼
1

𝑓 − 𝑢

2

2

+ 𝛼
2

𝑓
TV + 𝛼

3
‖𝑢‖TV,

(10)

where 𝛼
1
, 𝛼
2
, and 𝛼

3
are positive regularization parameters.

We note that the problem (9) is the same with the problem
(7) if we set the parameter 𝛼

2
= 0.Theminimization problem

(10) can be rewritten as follows:
min
𝑓,𝑢

J (𝑓, 𝑢)

≡ min
𝑢

{min
𝑓

{
𝐻𝑓 − 𝑔


2

2
+ 𝛼
1

𝑓 − 𝑢

2

2
+ 𝛼
2

𝑓
TV}

+𝛼
3
‖𝑢‖TV} .

(11)
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Themethod for solving theminimization problem (11) will be
discussed in Section 2. Our numerical results will show that
the proposed method yields state of the art results both in
terms of SSIM and PSNR.

This paper is outlined as follows. In the next section, we
first give a brief introduction of the split Bregman method,
and then we propose an iterative algorithm for solving (10).
The convergence property of the proposed method is given
in Section 3. In Section 4, we present numerical experiments
to show the efficiency of the proposed method. Finally, the
concluding remarks can be found in Section 5.

2. Alternating Minimization Iterative Scheme

In this section, we derive an algorithm to solve the min-
imization problem (11). Before we discuss the alternating
iterative algorithm for solving (11), we would like to give a
brief introduction of the split Bregman iteration [20].

2.1. Split Bregman Iteration

2.1.1. Bregman Iteration. Bregman iteration is a concept that
originated in functional analysis for finding minimizer of
convex functionals [24]. Osher et al. [25] first applied the
Bregman iteration to the ROF model for denoising problem
in image processing. The basic idea of the Bregman iteration
is to transform a constrained optimization problem to an
unconstrained problem. The objective functional in the
transformed unconstrained problem is defined by means of
the Bregman distance of a convex functional. Suppose the
unconstrained problem is formulated as

min
𝑓

𝐽 (𝑓) +
𝜆

2
𝐹 (𝑓, 𝑔) , (12)

where 𝐽(𝑓) is a convex function and 𝐹(𝑓, 𝑔) is convex and
differentiable. The Bregman distance of a convex function
𝐽(𝑓) at the point V is defined as the following (nonnegative)
quantity:

𝐷
𝑝

𝐽
(𝑓, V) ≡ 𝐽 (𝑓) − 𝐽 (V) − ⟨𝑝, 𝑓 − V⟩, (13)

where 𝑝 ∈ 𝜕𝐽; that is, 𝑝 is one of the subgradients of 𝐽 at
V. Then the authors in [25] employed the Bregman iteration
method to solve the unconstrained problem (11). Assume
𝐹(𝑓, 𝑔) = ‖𝐻𝑓 − 𝑔‖

2, and then the Bregman iterationmethod
is to alternatively iterate the following scheme:

𝑓
𝑘+1

= argmin
𝑓

𝐷
𝑝
𝑘

𝐽
(𝑓, 𝑓
𝑘

) +
𝜆

2

𝐻𝑓 − 𝑔

2

2

= argmin
𝑓

𝐽 (𝑓) − ⟨𝑝
𝑘

, 𝑓 − 𝑓
𝑘

⟩ +
𝜆

2

𝐻𝑓 − 𝑔

2

2
,

𝑝
𝑘+1

= 𝑝
𝑘

− 𝜆𝐻
𝑇

(𝐻𝑓
𝑘+1

− 𝑔) .

(14)

As shown in [25, 26], when 𝐻 is linear, the iteration (13) can
be reformulated into the simplified method

𝑓
𝑘+1

= argmin
𝑢

𝐽 (𝑓) +
𝜆

2


𝐻𝑓 − 𝑏

𝑘


2

2

, (15)

𝑏
𝑘+1

= 𝑏
𝑘

+ (𝑔 − 𝐻𝑓
𝑘+1

) . (16)

This Bregman iteration technique has mainly two advantages
over tradition penalty function/continuation methods. One
is that it converges very quickly when applied to certain types
of objective functions, especially for problems where 𝐽(𝑓)

contains an 𝑙
1
-regularization term. The other advantage is

that the value of 𝜆 in (14) remains constant. See [20, 25, 26]
for further details.

2.1.2. Split Bregman Iteration. In [20], the authors considered
the problem

min
𝑢,𝑑

‖𝑑‖
1
+ 𝐸 (𝑓) such that 𝑑 = 𝜙 (𝑓) , (17)

where 𝐸(𝑓) and 𝜙(𝑓) are convex and differentiable. To solve
the problem (16), they convert the constrained problem into
an unconstrained problem:

min
𝑓,𝑑

‖𝑑‖
1
+ 𝐸 (𝑓) +

𝜆

2

𝑑 − 𝜙(𝑓)

2

2
. (18)

Let 𝐽(𝑓, 𝑑) = ‖𝑑‖
1
+ 𝐸(𝑓) and 𝐹(𝑓, 𝑑) = ‖𝑑 − 𝜙(𝑓)‖

2

2
, and

the aforementioned Bregman iteration (14) can be similarly
applied to (17).Then, they obtained the following elegant two-
phase iterative algorithm (split Bregman iteration scheme).

Split Bregman iteration:

(𝑓
𝑘+1

, 𝑑
𝑘+1

) = min
𝑓,𝑑

‖𝑑‖
1
+ 𝐸 (𝑓) +

𝜆

2


𝑑 − 𝜙(𝑓) − 𝑏

𝑘


2

2

, (19)

𝑏
𝑘+1

= 𝑏
𝑘

+ (𝜙 (𝑓
𝑘+1

) − 𝑑
𝑘+1

) . (20)

The split Bregman iteration has stable convergence property,
and it is extremely fast and very simple to program. For more
details on split Bregman and its applications, see [20, 23, 27,
28].

2.2. ProposedAlternating Iteration Scheme. In this section, we
propose an alternating minimization algorithm to solve the
problem (10). Given an initial 𝑢0, we get

P
ℎ
(𝑢
𝑘−1

) := 𝑓
𝑘

= argmin
𝑓

{
𝐻𝑓 − 𝑔


2

2

+𝛼
1


𝑓 − 𝑢
𝑘−1



2

2

+ 𝛼
2

𝑓
TV} ,

P
𝑡V (𝑓
𝑘

) := 𝑢
𝑘

= argmin
𝑢

{𝛼
1


𝑢 − 𝑓
𝑘


2

2

+ 𝛼
3
‖𝑢‖TV} ,

(21)

for 𝑖 = 1, 2, . . .. As a matter of convenience, we express the
relationship between 𝑢

𝑘 and 𝑢
𝑘−1 as below:

𝑢
𝑖

= Ptv (Pℎ (𝑢
𝑖−1

)) , (22)
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(1) initialization: 𝜆, 𝛼
1
, 𝛼
2
, 𝑢, 𝑓
0

= 0, 𝑑
0

= 𝑏
0

= 0, 𝑖 = 0;
(2) iteration:

compute 𝑓𝑖+1 by using formula (27)

𝑑
𝑖+1

= max {∇𝑓
𝑖+1

+ 𝑏
𝑖

, 0}

∇𝑓
𝑖+1

+ 𝑏
𝑖


∇𝑓𝑖+1 + 𝑏𝑖



, with the convention 0 ⋅
0

0
= 0

𝑏
𝑖+1

= 𝑏
𝑖

+ (∇𝑓
𝑖+1

− 𝑑
𝑖+1

)

stop or set 𝑖 = 𝑖 + 1

Algorithm 1: The split Bregman scheme for subproblem (22).

we denote 𝑢
𝑘

= T(𝑢
𝑘−1

) for simplicity, where T(⋅) =

Ptv(Pℎ(⋅)).
Considering𝑓, the minimization problem (10) is reduced

to a minimization problem with respect to 𝑓

min
𝑓

{
𝐻𝑓 − 𝑔


2

2
+ 𝛼
1

𝑓 − 𝑢

2

2
+ 𝛼
2

𝑓
TV} . (23)

Although there are many methods to solve (22), we
focus on the split Bregman iteration here. Let 𝐸(𝑓) =

(1/𝛼
2
) ‖𝐻𝑓 − 𝑔‖

2

2
+ (𝛼
1
/𝛼
2
) ‖𝑓 − 𝑢‖

2

, 𝐽(𝑓, 𝑑) = ‖𝑑‖
1
+ 𝐸(𝑓),

and 𝐹(𝑓, 𝑑) = ‖𝑑 − ∇𝑓‖
2. According to (18) and (19), we have

(𝑓
𝑖+1

, 𝑑
𝑖+1

) = argmin
𝑓,𝑑

‖𝑑‖
1
+

1

𝛼
2

𝐻𝑓 − 𝑔

2

2

+
𝛼
1

𝛼
2

𝑓 − 𝑢

2

2
+

𝜆

2


𝑑 − ∇𝑓 − 𝑏

𝑖


2

2

,

𝑏
𝑖+1

= 𝑏
𝑖

+ (∇𝑓
𝑖+1

− 𝑑
𝑖+1

) .

(24)

Clearly, the minimization with respect to 𝑓
𝑖+1 and 𝑑

𝑖+1 in
(23) is decoupled, and thus they can be solved separately.
We perform the subminimization problem (23) efficiently

by iteratively minimizing the following subproblems with
respect to 𝑓 and 𝑑 separately:

𝑓
𝑖+1

= argmin
𝑓

𝐻𝑓 − 𝑔

2

2
+ 𝛼
1

𝑓 − 𝑢

2

2

+
𝛼
2
𝜆

2


𝑑
𝑖

− ∇𝑓 − 𝑏
𝑖


2

2

,

(25)

𝑑
𝑖+1

= argmin
𝑑

‖𝑑‖
1
+

𝜆

2


𝑑 − ∇𝑓

𝑖+1

− 𝑏
𝑖


2

2

. (26)

The minimizer 𝑓𝑖+1 is given by normal equations:

(𝐻
𝑇

𝐻 + 𝛼
2

𝜆

2
∇
𝑇

∇ + 𝛼
1
𝐼)𝑓
𝑖+1

= 𝐻
𝑇

𝑔 + 𝛼
1
𝑢

+ 𝛼
2

𝜆

2
∇
𝑇

(𝑑
𝑖

− 𝑏
𝑖

) ,

(27)

where 𝐼 is the identity matrix and ∇
𝑇

= − div represents
the adjoint of ∇. When an appropriate boundary condition
is given, the normal equation (26) can be solved by fast
algorithms. In this paper, we impose the periodic boundary
condition, and then the matrix 𝐻

𝑇

𝐻,∇
𝑇

∇ are all block
circulant [4, 8], which can be diagonalized by the two-
dimensional discrete Fourier transform F [19]. By applying
the convolution theorem, we obtain

𝑓
𝑖+1

= F
−1

{

{

{

2F(𝐻)
∗

∘F (𝑔) + 2𝛼
1
F (𝑢) + 𝛼

2
𝜆 (F(∇

𝑥
)
∗

∘F (V𝑖
𝑥
)) + 𝛼

2
𝜆 (F(∇

𝑦
)
∗

∘F (V𝑖
𝑦
))

2F(𝐻)
∗

∘F (𝐻) + 2𝛼
1
𝐼 + 𝛼
2
𝜆 (F(∇

𝑥
)
∗

∘F (∇
𝑥
)) + 𝛼

2
𝜆 (F(∇

𝑦
)
∗

∘F (∇
𝑦
))

}

}

}

, (28)

where “∗” denotes complex conjugacy, “∘” denotes compo-
nent-wise multiplication, V𝑖 = 𝑑

𝑖

− 𝑏
𝑖

= (𝑑
𝑖

𝑥
− 𝑏
𝑖

𝑥
, 𝑑
𝑖

𝑦
− 𝑏
𝑖

𝑦
) =

(V𝑖
𝑥
, V𝑖
𝑦
), ∇ = (∇

𝑥
, ∇
𝑦
), and the division is component-wise as

well.
The minimizer 𝑑

𝑖+1 of (25) can be determined by the
following shrinkage formula:

𝑑
𝑘+1

= max {∇𝑓
𝑖+1

+ 𝑏
𝑖

, 0}

∇𝑓
𝑖+1

+ 𝑏
𝑖


∇𝑓𝑖+1 + 𝑏𝑖



,

with the convention 0 ⋅
0

0
= 0.

(29)

To sumup, we get Algorithm 1 for solving the subproblem
(22).

Considering 𝑢, the outer minimization problem can be
interpreted as the TV minimization scheme to denoise the
recovered 𝑓 generated by the previous step. The minimum
problem is as follows:

Ptv (𝑓) = argmin
𝑢

{𝛼
1

𝑢 − 𝑓

2

+ 𝛼
3
‖𝑢‖TV} . (30)

There are several efficient methods for solving this problem,
such as the primal-dualmethod [18, 29], the lagged diffusivity
fixed point iteration proposed by Vogel and Oman [16],
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(1) initialization: 𝑢0, 𝑝0
𝑖,𝑗

w
0
, u
0
, 𝛼
1
, 𝛼
2
, 𝜆, 𝑘 = 0;

(2) iteration
compute 𝑓𝑘 using Algorithm 1 for fixed 𝑢

𝑘−1

compute 𝑢𝑘 according to Chambolle method (31) and
(34) for fixed 𝑓

𝑘

stop or set 𝑘 = 𝑘 + 1

Algorithm 2: Alternating iteration scheme for solving (10).

the semismooth Newton method [30], and Chambolle’s
dual algorithm [15]. For the simplicity of Chambolle’s dual
algorithm, we adopt it here for TV denoising problem (29).
The idea given by Chambolle is to replace the optimization
of the image 𝑢 by the optimization of a vector field 𝑝 that is
related to 𝑢 by 𝑢 = 𝑓 − (𝛼

3
/2𝛼
1
) div 𝑝. For a noisy image 𝑓,

the vector field is the one that minimizes

min
𝑝


𝑓 −

𝛼
3

2𝛼
1

div 𝑝


2

,

s.t. 
𝑝
𝑖,𝑗


≤ 1, ∀𝑖, 𝑗 = 1, . . . , 𝑛,

(31)

where

𝑝
𝑖,𝑗

= [

[

𝑝
𝑥

𝑖,𝑗

𝑝
𝑦

𝑖,𝑗

]

]

(32)

is the dual variable at the (𝑖, 𝑗)th pixel location, 𝑝 is the
concatenation of all 𝑝

𝑖,𝑗
, and the discrete divergence of 𝑝 is

given by

(div𝑝)
𝑖,𝑗

≡ 𝑝
𝑥

𝑖,𝑗
− 𝑝
𝑥

𝑖−1,𝑗
+ 𝑝
𝑦

𝑖,𝑗
− 𝑝
𝑦

𝑖,𝑗−1
(33)

with 𝑝
𝑥

0,𝑗
= 𝑝
𝑦

𝑖,0
= 0. The vector div𝑝 is the concatenation

of all (div𝑝)
𝑖,𝑗
. For simplicity, we denote 𝛽 = 𝛼

3
/2𝛼
1
. The

iterative scheme proposed by Chambolle for computing the
optimal solution 𝑝 is as follows:

𝑝
𝑙+1

𝑖,𝑗
=

𝑝
𝑙

𝑖,𝑗
+ 𝜏(∇(div 𝑝𝑙 − 𝑓/𝛽))

𝑖,𝑗

1 + 𝜏

(∇(div 𝑝𝑙 − 𝑓/𝛽))

𝑖,𝑗



, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑛, (34)

where 𝜏 is the step size and 𝑝
𝑙

𝑖,𝑗
is the 𝑙th iterate of the iterative

method for minimizer; see [15] for more details. After the
minimizer𝑝∗ of the constrained optimization problem in (31)
is determined, the denoised image can be computed by

𝑢
∗

= 𝑓 − 𝛽div𝑝∗. (35)

In summary, we obtain Algorithm 2 by using alternating
minimization scheme to solve the minimization problem
(10).

3. Convergence Analysis

In this section, we make use of a theorem proposed in [31]
to give the convergence property of the proposed algorithm.
The theorem is given by the following.

Theorem 1 (see [31]). Let T : R𝑛
2

→ R𝑛
2

be a 𝛽-averaged
nonexpansive operator and the set of fixed points of T be
nonempty. Then for any 𝑥0, the sequence 𝑥𝑘 = 𝑇

𝑘

𝑥
0 converges

weakly to a fixed point in R𝑛
2

.

Definition 2. An operatorT is called nonexpansive if, for all
𝑥 and 𝑦 ∈ R𝑛

2

,
T𝑥 −T𝑦

 ≤
𝑥 − 𝑦

 . (36)

Given a nonexpansive operator N, let T = (1 − 𝛼)I + 𝛼𝑁;
for some 𝛼 ∈ (0, 1), the operatorT is said to be 𝛼-average.

Definition 3. An operator T is called ]-inverse strongly
monotone (ism) if there is ] > 0, such that

⟨T𝑥 −T𝑦, 𝑥 − 𝑦⟩ ≥ ]T𝑥 −T𝑦

2

. (37)

Let E = I −T be complement of the operatorT, and then
we can easily get the following identity:

𝑥 − 𝑦

2

−
T𝑥 −T𝑦


2

= 2⟨E𝑥 −E𝑦, 𝑥 − 𝑦⟩ −
E𝑥 −E𝑦


2

.

(38)

An operatorF is called firmly nonexpansive if it is 1-ism.

Lemma 4 (see [31]). An operator N is nonexpansive if and
only if its complementE = I−N is 1/2-ism. IfE is ]-ism and
𝛾 > 0, then the operator 𝛾E is (]/𝛾)-ism.

Lemma 5. An operator P is 𝛽-average nonexpansive if and
only if its complement E = I −P is (1/2𝛽)-ism.

Proof. Firstly, suppose P is 𝛽-average; from Definition 2,
there exists a nonexpansiveN such thatP = (1−𝛽)I+𝛽N,
and thenE = I−P = 𝛽(I−N). SinceN is nonexpansive,
from Lemma 4, we have that I − N is 1/2-ism and E =

𝛽(I −N) is (1/2𝛽)-ism.
Now we assume that E is (1/2𝛽)-ism, we writeP = (1 −

𝛽)𝐼+𝛽N, forN = I− (1/𝛽)E, from Lemma 4, we have that
I − N is (1/2)-ism and N is nonexpansive, and then from
Definition 2, the operatorP is 𝛽-average.

Lemma 6 (see [32]). Let be convex and semicontinuous and
𝛼 > 0. Suppose 𝑥 is defined as follows:

𝑥 = argmin
𝑥

𝑦 − 𝑥

2

+ 𝛼𝜑 (𝑥) . (39)

Define S such that 𝑥 = S(𝑦) for every 𝑦. Then S and I − S
are firmly nonexpansive.

Theorem 7. Let 𝛼
1
and 𝛼

2
be positive numbers. Suppose 𝑓 is

defined as follows:

𝑓 = argmin
𝑓

𝐻𝑓 − 𝑔

2

+ 𝛼
1

𝑓 − 𝑢

2

+ 𝛼
2

𝑓
TV. (40)

Define P
𝑛
such that 𝑓 = P

𝑛
(𝑢) for every 𝑢. Then P

𝑛
is 1/2-

averaged nonexpansive.
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Proof. Let 𝜙(𝑓) = ‖𝑓‖TV, for every 𝑢, the minimum in (22) is
achieved at a unique pointP

𝑛
which is characterized by the

inclusion

𝐻
𝑇

𝑔 + 𝛼
1
𝑢 − (𝐻

𝑇

𝐻 + 𝛼
1
𝐼)P
𝑛
(𝑢) ∈

𝛼
2

2
𝜕𝜙 (𝑓) (41)

from the property of subdifferential of 𝜙(𝑓), ∀𝑢, 𝑤 ∈ R𝑛
2

, and
we have the following inequalities:

2

𝛼
2

⟨P
𝑛
(𝑤) −P

𝑛
(𝑢) ,𝐻

𝑇

𝑔 + 𝛼
1
𝑢 − (𝐻

𝑇

𝐻 + 𝛼
1
𝐼)P
𝑛
(𝑢)⟩

+ 𝜙 (P
𝑛
(𝑢)) ≤ 𝜙 (P

𝑛
(𝑤)) ,

(42)

2

𝛼
2

⟨P
𝑛
(𝑢) −P

𝑛
(𝑤) ,𝐻

𝑇

𝑔 + 𝛼
1
𝑤 − (𝐻

𝑇

𝐻 + 𝛼
1
𝐼)P
𝑛
(𝑤)⟩

+ 𝜙 (P
𝑛
(𝑤)) ≤ 𝜙 (P

𝑛
(𝑢)) .

(43)

Adding these two inequalities, we obtain

[P
𝑛
(𝑤) −P

𝑛
(𝑢)]
𝑇

(
1

𝛼
1

𝐻
𝑇

𝐻 + 𝐼) [P
𝑛
(𝑤) −P

𝑛
(𝑢)]

≤ [P
𝑛
(𝑤) −P

𝑛
(𝑢)]
𝑇

(𝑤 − 𝑢) .

(44)

It is obvious that we have the following inequality:
P𝑛 (𝑤) −P

𝑛
(𝑢)


2

≤ [P
𝑛
(𝑤) −P

𝑛
(𝑢)]
𝑇

× (
1

𝛼
1

𝐻
𝑇

𝐻 + 𝐼) [P
𝑛
(𝑤) −P

𝑛
(𝑢)] .

(45)

From (43) and (44), we obtain
P𝑛(𝑤) −P

𝑛
(𝑢)


2

≤ [P
𝑛
(𝑤) −P

𝑛
(𝑢)]
𝑇

(𝑤 − 𝑢) . (46)

Then from Definition 3, the operator P
𝑛
is firmly nonex-

pansive. Analogously we can easily obtain that the operator
I−P

𝑛
is also firmly nonexpansive.Therefore, it follows from

Lemma 5 that the operator P
𝑛
and I − P

𝑛
is 1/2-averaged

nonexpansive.

Corollary 8. The operator T = Ptv(Pℎ) is 3/4-average
nonexpansive.

Proof. From Lemmas 5 and 6, and Theorem 7, we know that
Ptv and P

ℎ
are both 1/2-averaged nonexpansive operators,

and there exist nonexpansive operatorsN
ℎ
andNtv such that

P
ℎ
=

1

2
(I +N

ℎ
) ,

Ptv =
1

2
(I +Ntv) .

(47)

Thus we have

T = Ptv (Pℎ) =
1

4
(I +N

ℎ
+Ntv +NtvNℎ) . (48)

SetN = (1/3)(N
ℎ
+Ntv +NtvNℎ), then for any 𝑥 and 𝑦,

N𝑥 −N𝑦


=
1

3

Ntv (𝑥 − 𝑦) +N
ℎ
(𝑥 − 𝑦) +NtvNℎ (𝑥 − 𝑦)



≤
1

3
(
Ntv𝑥 −Ntv𝑦

 +
Nℎ𝑥 −N

ℎ
𝑦


+
NtvNℎ (𝑥) −NtvNℎ (𝑦)

)

≤
1

3
(2

𝑥 − 𝑦
 +

Nℎ (𝑥) −N
ℎ
(𝑦)

)

≤
1

3
(3

𝑥 − 𝑦
) =

𝑥 − 𝑦
 .

(49)

Consequently,N is nonexpansive, and we rewriteP
ℎ
as

T = (1 −
3

4
)I +

3

4
N. (50)

It follows from Definition 2 that the operator T = P
𝑡V(Pℎ)

is 3/4-averaged.

According to Theorem 1 and Corollary 8, we conclude
that for any initial guess 𝑢

0

∈ R𝑛
2

, {𝑢𝑘} generated by (20)
converges to the minimizer ofJ in (10).

4. Numerical Experiments

In this section, we present several numerical experiments
to illustrate the behavior of the proposed method for image
restoration problems. The quality of the restoration results
by different methods is compared quantitatively by using
the PSNR and SSIM. PSNR is an engineering term for the
ratio between the maximum possible power of a signal and
the power of corrupting noise that affects the fidelity of its
representation. The higher PSNR value, the higher image
quality. The SSIM is a well-known quality metric used to
measure the similarity between two images. The method is
developed by Wang et al. [33] and is based on three specific
statistical measures that are much closer to how the human
eye perceives differences between images. The higher SSIM
value, the better restoration. We also use blur signal-to-noise
ratio (BSNR) to describe how much noise is added in the
blurry image. Suppose 𝑓, 𝑔, 𝑓, and 𝑛 are the original image,
the blurred and noisy image, the restored image, and the
noise, respectively. The PSNR, SSIM, and BSNR are defined
as follows [2, 34]:

PSNR = 10 log
𝑛
2Max2
𝐼


𝑓 − 𝑓



2
, (51)

where Max
𝐼
is the maximum possible pixel value of the

image (i.e., when the pixels are represented by using 8 bits per
sample, this is 255):

SSIM = 𝑙 (𝑓, 𝑓) 𝑐 (𝑓, 𝑓) 𝑠 (𝑓, 𝑓) , (52)
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(a) (b) (c) (d)

Figure 1: Original images. (a) “Cameraman,” (b) “Resolution Chart,” (c) “Bridge,” (d) “Lena.”

(a) (b) (c)

(d) (e) (f)

Figure 2: Results of different methods when restoring blurred and noisy image “Cameraman” degraded by average 9 × 9 uniform blur and a
noise with BSNR = 40 dB: (a) blurred and noisy image “Cameraman”; (b) restored image by FastTV; (c) restored image by FNDTV; (d) SSIM
index map of the corrupted image; (e) SSIM index map of the recovered image by FastTV; (f) SSIM index map of the recovered image by
FNDTV.

where

𝑙 (𝑓, 𝑓) =

2𝜇
𝑓
𝜇 ̃
𝑓
+ 𝐶
1

𝜇2
𝑓
+ 𝜇2
̃
𝑓

+ 𝐶
1

,

𝑐 (𝑓, 𝑓) =

2𝜎
𝑓
𝜎 ̃
𝑓
+ 𝐶
2

𝜎2
𝑓
+ 𝜎2
̃
𝑓

+ 𝐶
2

,

𝑠 (𝑓, 𝑓) =

2𝜎
𝑓
̃
𝑓
+ 𝐶
3

𝜎
𝑓
𝜎 ̃
𝑓
+ 𝐶
3

.

(53)

The first term in (52) is the luminance comparison function
which measures the closeness of the two images’ mean
luminance (𝜇

𝑓
and 𝜇 ̂

𝑓
). The unique maximum of this factor

equals 1 if and only if 𝜇
𝑓

= 𝜇 ̂
𝑓
. The second term 𝑐(𝑓, 𝑓)

is the contrast comparison function which measures the
closeness of the contrast of the two images. Here the contrast
is measured by the standard deviation 𝜎

𝑓
and 𝜎 ̂

𝑓
. This term

achieves maximum value 1 if and only if 𝜎
𝑓
= 𝜎 ̂
𝑓
. The third

term is the structure comparison function which measures
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(a) (b) (c)

(d) (e) (f)

Figure 3: Results of different methods when restoring blurred and noisy image “Resolution Chart” degraded by motion blur with length 7
and a noise with BSNR = 30 dB: (a) blurred and noisy image “Resolution Chart”; (b) restored image by FastTV; (c) restored image by FNDTV;
(d) SSIM index map of the corrupted image; (e) SSIM index map of the recovered image by FastTV; (f) SSIM index map of the recovered
image by FNDTV.

the correlation coefficient between the two images 𝑓 and 𝑓.
Note that 𝜎

𝑓
̃
𝑓
is the covariance between𝑓 and𝑓.The positive

values of the SSIM index are in [0, 1]. A value of 0 means
no correlation between images, and 1 means that 𝑓 = 𝑓.
The positive constants 𝐶

1
, 𝐶
2
, and 𝐶

3
can be thought of as

stabilizing constants for near-zero denominator values. In the
following experiments, we will also use SSIM index map to
reveals areas of high/low similarity between two images, the
whiter SSIM index map, the closer between the two images.
We refer the reader to see [33, 34] for further details on SSIM
and SSIM index map.

The BSNR is given by

BSNR = 20 log
10

𝑔


‖𝑛‖
. (54)

In the following experiments, we compare our proposed
method (we call the proposed method FNDTV later) with
FastTV [2]. For FastTV, based on the suggestions in [2], we
fixed its parameters 𝛼

1
= 0.003 for BSNR = 40 dB and 𝛼

1
=

0.006 for BSNR = 30 dB, and we determine the best value
of 𝛼
2
such as the restored images with best performance.

For our method, we also determine the best value of the
regularization parameters to give the best performance.

The stopping criterion of the proposed method is that
the relative difference between the successive iteration of the
restored image should satisfy the following inequality:


𝑓
𝑘+1

− 𝑓
𝑘


𝑓
𝑘+1



≤ tol, (55)

where 𝑓
𝑘 is the computed image at the 𝑘th iteration of the

proposed method. We set tol = 1 × 10
−4 in all tests for both

methods.
Four test images, “Cameraman,” “Bridge,” “Lena,” and

“Resolution Chart,” which are commonly used in the litera-
ture, are shown in Figure 1. We test several kinds of blurring
kernels including average, motion, gaussian, and out-of-
focus. These different blurring kernels can be generated by
the Matlab built-in function 𝑓 𝑠𝑝𝑒𝑐𝑖𝑎𝑙. In all tests, we add the
Gaussianwhite noise of different BSNR to the blurred images.

All experiments are carried out on Windows XP 32-bit
andMatlab v7.10 running on a desktop equippedwith an Intel
Core2 Duo CPU 2.93GHz and 2GB of RAM.

4.1. Average Blur Example. In this example, we consider the
well-known “Cameraman” image (256×256) which is shown
in Figure 1(a). The image is blurred by a 3 × 3 box average
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(a) (b) (c)

(d) (e) (f)

Figure 4: Results of differentmethodswhen restoring blurred and noisy image “Bridge” degraded byGaussian blur with radius 3 and standard
deviation 𝜎 = 3 and a noise with BSNR = 40 dB: (a) blurred and noisy image “Bridge”; (b) restored image by FastTV; (c) restored image by
FNDTV; (d) SSIM index map of the corrupted image; (e) SSIM index map of the recovered image by FastTV; (f) SSIM index map of the
recovered image by FNDTV.

Table 1: Numerical results for the experiments in terms of PSNR
(dB) and SSIM.

Problem Method PSNR SSIM
Cameraman
9 × 9 uniform, BSNR = 40

FastTV 29.47 0.8781
FNDTV 29.60 0.8830

Resolution chart
motion with length 7, BSNR = 30

FastTV 33.76 0.9811
FNDTV 34.38 0.9853

Bridge
Gaussian with radius 7, 𝜎 = 3, BSNR = 40

FastTV 25.29 0.7860
FNDTV 25.42 0.7882

Lena
Out-of-focus with radius 7, BSNR = 30

FastTV 26.43 0.7639
FNDTV 26.56 0.7661

kernel and contaminated by BSNR = 40 dB Gaussian noise.
The blurred and noisy image is shown in Figure 2(a).

Figures 2(b)–2(d) show the restored images by FNDTV
and FastTV. We can see that the visual quality of reconstruc-
tion by FNDTV is slightly better than the outcome of FastTV.
From Table 1, it is not difficult to see that both of PSNR and
SSIM of the recovered image by FNDTV are higher than the
one obtained by FastTV.

We also show the SSIM index maps of the restored
images recovered by the two methods in Figures 2(e)–2(f),

and the map can deliver more information about the quality
degradation of the restored images. In contrast, the SSIM
map of the restored image by the proposed method is slightly
whiter than the SSIM map by FastTV.

4.2. Motion Blur Example. Motion blur is considered in this
example. The observed image is the so-called “Resolution
Chart” [11], it is degraded by a motion bur with length 7 and
contaminated by a white Gaussian noise with BSNR = 30 dB.
The degraded image is shown in Figure 3(a). The restored
images by FastTV and FNDTV are presented in Figures 3(b)
and 3(c). We also report the PSNR and SSIM values by these
methods in Table 1. We see that both the PSNR and SSIM
values of the restored image by the FNDTV method are
higher than FastTV. In addition, the SSIM map obtained
by the proposed method is slightly whiter than the map by
FastTV.

4.3. Gaussian Blur Example. The original image “Bridge”
is shown in Figure 1(c). The blurred and noisy image is
degraded by a Gaussian blur with radius 3 and standard
deviation 𝜎 = 3 and then contaminated by Gaussian noise
with BSNR = 40 dB. Figure 4(a) shows the blurred and noisy
observation. The restored images obtained by FastTV and
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(a) (b) (c)

(d) (e) (f)

Figure 5: Results of different methods when restoring blurred and noisy image “Lena” degraded by out-of-focus blur with radius 3 and a
noise with BSNR = 30 dB: (a) blurred and noisy image “Lena”; (b) restored image by FastTV; (c) restored image by FNDTV; (d) SSIM index
map of the corrupted image; (e) SSIM index map of the recovered image by FastTV; (f) SSIM index map of the recovered image by FNDTV.

FNDTV are shown in Figures 4(b) and 4(c). The numerical
results of two different methods in terms of PSNR and SSIM
are given in Table 1.

From Table 1, it is not difficult to see that the PSNR and
SSIM of the restored image by FNDTV are higher than the
one obtained by FastTV.

4.4. Out-of-Focus Blur Example. This example consists in
restoring the image “Lena” degraded by an out-of-focus blur
with radius 3 and contaminated by BSNR= 30whiteGaussian
noise. The image “Lena” is a good test image because it has a
nice mixture of detail, flat regions, shading area, and texture
and has been widely used in the literature to test image
restoration algorithms [19]. Figure 5(a) shows the blurred and
noisy image.The restored results by both methods are shown
in Figures 5(b)–5(d), and Table 1 lists the PSNR and SSIM
values. From the table, we observe that both the PSNR and
SSIM values of the restored image by the proposed method
are better than what obtained by FastTV.

5. Conclusion

In this paper, we have presented a new efficient algorithm for
image restoration based on total variation regularization. We

give a convergence proof for the algorithm, and the numerical
results show that the proposed method is competitive with
the state of the art method FastTV. In addition, an important
feature is that the proposed method can suppress noise very
well while it can preserve details of the restored image.Wewill
consider extending the proposed method for color or other
multichannel image restoration in the future.

Conflict of Interests

All of the coauthors do not have a direct financial relation
with the trademarks mentioned in our paper that might lead
to a conflict of interests for any of the coauthors.

Acknowledgments

The work of Jun Liu, Ting-Zhu Huang, and Si Wang is sup-
ported by 973 Program (2013CB329404), NSFC (61170311),
Chinese Universities Specialized Research Fund for the Doc-
toral Program (20110185110020), Sichuan Province Sci., and
Tech. Research Project (2012GZX0080). The work of Xiao-
Guang Lv is supported by Nature science foundation of
Jiangsu Province (BK20131209).



Abstract and Applied Analysis 11

References

[1] M. R. BanhamandA.K.Kataggelos, “Digital image restoration,”
IEEE Signal Processing Magazine, vol. 14, pp. 24–41, 1997.

[2] Y. M. Huang, M. K. Ng, and Y.-W. Wen, “A fast total variation
minimization method for image restoration,”Multiscale Model-
ing & Simulation, vol. 7, no. 2, pp. 774–795, 2008.

[3] J. G. Nagy, M. K. Ng, and L. Perrone, “Kronecker product
approximations for image restoration with reflexive boundary
conditions,” SIAM Journal on Matrix Analysis and Applications,
vol. 25, no. 3, pp. 829–841, 2003.

[4] J.Huang, T.-Z.Huang, X.-L. Zhao, andZ.-B. Xu, “Image restora-
tionwith shifting reflective boundary conditions,” ScienceChina
Information Sciences, vol. 56, no. 6, pp. 1–15, 2013.

[5] K. T. Lay and A. K. Katsaggelos, “Identification and restora-
tion based on the expectationmaximization algorithm,” Optical
Engineering, vol. 29, pp. 436–445, 1990.

[6] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring Images:
Matrices, Spectra, and Filtering, vol. 3, Society for Industrial and
Applied Mathematics, Philadelphia, Pa, USA, 2006.

[7] P. C. Hansen, Rank-deficient and Discrete Ill-Posed Problems,
Society for Industrial and Applied Mathematics, Philadelphia,
Pa, USA, 1998.

[8] X.-G. Lv, T.-Z. Huang, Z.-B. Xu, and X.-L. Zhao, “Kronecker
product approximations for image restoration with whole-
sample symmetric boundary conditions,” Information Sciences,
vol. 186, pp. 150–163, 2012.

[9] A. Tikhonov and V. Arsenin, Solution of Ill-Poised Problems,
Winston, Washington, DC, USA, 1977.

[10] V. Agarwal, A. V. Gribok, and M. A. Abidi, “Image restoration
using 𝐿

1
norm penalty function,” Inverse Problems in Science

and Engineering, vol. 15, no. 8, pp. 785–809, 2007.
[11] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation

based noise removal algorithms,” Journal of Physics D, vol. 60,
pp. 259–268, 1992.

[12] T. Chan, S. Esedoglu, F. Park, and A. Yip, “Total variation image
restoration: overview and recent developments,” in Handbook
of Mathematical Models in Computer Vision, pp. 17–31, Springer,
New York, NY, USA, 2006.

[13] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, pp. 629–639, 1990.

[14] Z. J. Xiang and P. J. Ramadge, “Edge-preserving image regu-
larization based on morphological wavelets and dyadic trees,”
IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 1548–
1560, 2012.

[15] A. Chambolle, “An algorithm for total variation minimization
and applications,” Journal of Mathematical Imaging and Vision,
vol. 20, no. 1-2, pp. 89–97, 2004.

[16] C. R. Vogel and M. E. Oman, “Iterative methods for total
variation denoising,” SIAM Journal on Scientific Computing, vol.
17, no. 1, pp. 227–238, 1996.

[17] T. F. Chan and P. Mulet, “On the convergence of the lagged dif-
fusivity fixed pointmethod in total variation image restoration,”
SIAM Journal on Numerical Analysis, vol. 36, no. 2, pp. 354–367,
1999.

[18] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlinear primal-
dual method for total variation-based image restoration,” SIAM
Journal on Scientific Computing, vol. 20, no. 6, pp. 1964–1977,
1999.

[19] Y.Wang, J. Yang,W. Yin, and Y. Zhang, “A new alternatingmin-
imization algorithm for total variation image reconstruction,”
SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248–272,
2008.

[20] T. Goldstein and S. Osher, “The split Bregman method for 𝐿1-
regularized problems,” SIAM Journal on Imaging Sciences, vol.
2, no. 2, pp. 323–343, 2009.

[21] G. Chavent and K. Kunisch, “Regularization of linear least
squares problems by total bounded variation,” ESAIM. Control,
Optimisation and Calculus of Variations, vol. 2, pp. 359–376,
1997.

[22] M.Hintermüller and K. Kunisch, “Total bounded variation reg-
ularization as a bilaterally constrained optimization problem,”
SIAM Journal on Applied Mathematics, vol. 64, no. 4, pp. 1311–
1333, 2004.

[23] X. Liu and L. Huang, “Split Bregman iteration algorithm for
total bounded variation regularization based image deblurring,”
Journal of Mathematical Analysis and Applications, vol. 372, no.
2, pp. 486–495, 2010.

[24] L. Bregman, “The relaxation method of finnding the common
points of convex sets and its application to the solution of
problems in convex optimization,” USSR Computational Math-
ematics and Mathematical Physics, vol. 7, pp. 200–217, 1967.

[25] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An
iterative regularization method for total variation-based image
restoration,” SIAM Multiscale Modeling and Simulation, vol. 4,
no. 2, pp. 460–489, 2005.

[26] W. T. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman
iterative algorithms for 𝑙

1
-minimization with applications to

compressed sensing,” SIAM Journal on Imaging Sciences, vol. 1,
no. 1, pp. 143–168, 2008.

[27] J.-F. Cai, S. Osher, and Z. Shen, “Split Bregman methods and
frame based image restoration,” SIAMMultiscale Modeling and
Simulation, vol. 8, no. 2, pp. 337–369, 2009.

[28] W. H. Li, Q. L. Li, W. Gong, and S. Tang, “Total variation blind
deconvolution employing split Bregman iteration,” Journal of
Visual Communication and Image Representation, vol. 23, pp.
409–417, 2012.

[29] M.Zhu andT. F.Chan, “An efficient primal-dual hybrid gradient
algorithm for total variation image restoration,” CAM Report
08-34, Mathematics Department, UCLA, 2008.

[30] M. K. Ng, L. Qi, Y.-F. Yang, and Y.-M. Huang, “On semismooth
Newton’s methods for total variation minimization,” Journal of
Mathematical Imaging and Vision, vol. 27, no. 3, pp. 265–276,
2007.

[31] C. Byrne, “A unified treatment of some iterative algorithms in
signal processing and image reconstruction,” Inverse Problems,
vol. 20, no. 1, pp. 103–120, 2004.

[32] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal
forward-backward splitting,” SIAMMultiscale Modeling & Sim-
ulation, vol. 4, no. 4, pp. 1168–1200, 2005.

[33] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.
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