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Using Lyapunov-Krasovskii functional approach, we establish a new result to guarantee the existence of periodic solutions of a
certain multidelay nonlinear functional differential equation of second order. By this work, we extend and improve some earlier
result in the literature.

1. Introduction

It is well known that the problem of the existence of periodic
solutions of retarded functional differential equations of
second order is not only very important in the background
applications, but also of considerable significance in theory
of differential equations. Besides, the scope of retarded
functional differential equations is very general. For exam-
ple, it contains ordinary differential equations, differential-
difference equations, integrodifferential equations, and so on.
The motivation of this paper is that in recent years the study
of the existence of periodic solutions to various kinds of
retarded functional differential equations of second order has
become one of the most attractive topics in the literature.
Especially, by using the famous continuation theorem of
degree theory (see Gaines and Mawhin [1]), many authors
have made a lot of interesting contributions to the topic for
retarded functional differential equations of second order.
Here, we would not like to give the details of these works.

On the other hand, amongst the achieved excellent
results, one of them is the famous Yoshizawa’s theorem [2]
for existence of periodic solutions of retarded functional
differential equations, which has vital influence and has been
widely used in the literature. This theorem has also been
generally one of the best results in the literature from the past
till now. It should be noted that in 1994, Zhao et al. [3] proved
four sufficiency theorems on the existence of periodic solu-
tions for a class of retarded functional differentials to have the

existence of an 𝜔-periodic solution. By this work, the authors
proved that their theorems are better than Yoshizawa’s [2]
periodic solutions theorem primarily by removing restric-
tions of the size of the constant delay ℎ. An example of
application was given at the end of the paper. Namely, in
the same paper, the authors applied the following Theorem
A to discuss the existence of an 𝜔-periodic solution of the
nonlinear delay differential equation of the second order:

𝑥
󸀠󸀠

(𝑡) + 𝑎𝑥
󸀠

(𝑡) + 𝑔 (𝑥 (𝑡 − 𝜏)) = 𝑝 (𝑡) , (1)

where 𝑝(𝑡) is an external force, 𝑔(𝑥(𝑡 − 𝜏)) is a delayed
restoring force, the delay 𝜏 is a positive constant and the
friction is proportional to the velocity, and 𝑎 is a positive
constant. It should be noted that a feedback system with
friction proportional to velocity, an external force 𝑝(𝑡), and
a delayed restoring force 𝑔(𝑥(𝑡 − 𝜏)), (𝜏 > 0) may be written
as (1) (see Burton [4]).

Consider the following general nonautonomous delay
differential equation:

𝑥̇ = 𝐹 (𝑡, 𝑥
𝑡
) , 𝑥

𝑡
= 𝑥 (𝑡 + 𝜃) ,

− ℎ ≤ 𝜃 ≤ 0, 𝑡 ≥ 0,

(2)

where 𝐹 : R × 𝐶 → R𝑛, 𝐶 = 𝐶([−ℎ, 0],R𝑛), ℎ is a positive
constant, and we suppose that 𝐹 is continuous, 𝜔-periodic,
and takes closed bounded sets into bounded sets of R𝑛; and
such that solutions of initial value problems are unique, ℎ
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can be either larger than 𝜔, or equal to or smaller than 𝜔.
Here (𝐶, ‖ ⋅ ‖) is the Banach space of continuous function 𝜙 :

[−ℎ, 0] → R𝑛 with supremum norm; ℎ > 0, 𝐶
𝐻
is the open

𝐻-ball in 𝐶; 𝐶
𝐻

:= {𝜙 ∈ 𝐶([−ℎ, 0],R𝑛) : ‖𝜙‖ < 𝐻}. Standard
existence theory, see Burton [4], shows that if 𝜙 ∈ 𝐶

𝐻
and

𝑡 ≥ 0, then there is at least one continuous solution 𝑥(𝑡, 𝑡
0
, 𝜙)

such that on [𝑡
0
, 𝑡
0
+ 𝛼) satisfying (2) for 𝑡 > 𝑡

0
, 𝑥
𝑡
(𝑡, 𝜙) = 𝜙

and 𝛼 is a positive constant. If there is a closed subset 𝐵 ⊂ 𝐶
𝐻

such that the solution remains in 𝐵, then 𝛼 = ∞. Further, the
symbol | ⋅ | will denote a convenient norm in R𝑛 with |𝑥|=
max
1≤𝑖≤𝑛

|𝑥
𝑖
|. Let us assume that𝐶(𝑡) = {𝜙 : [𝑡−𝛼, 𝑡] → R𝑛 |

𝜙 is continuous} and 𝜙
𝑡
denotes the 𝜙 in the particular 𝐶(𝑡),

and that ‖𝜙
𝑡
‖ = max

𝑡−𝛼≤𝑠≤𝑡
|𝜙(𝑡)|. Finally, by the periodicity,

we mean that that there is an 𝜔 > 0 such that 𝐹(𝑡, 𝜙) is 𝜔-
periodic in the sense that if 𝑥(𝑡) is a solution of (2) so is
𝑥(𝑡 + 𝜔).

Definition 1. Solutions of (2) are uniform bounded at 𝑡 = 0 if
for each 𝐵

1
there exists 𝐵

2
such that [𝜙 ∈ 𝐶, ‖𝜙‖ < 𝐵

1
, 𝑡 ≥ 0]

imply that |𝑥(𝑡, 0, 𝜙)| < 𝐵
2
(see Burton [4]).

Definition 2. Solutions of (2) are uniform ultimate bounded
for bound 𝐵 at 𝑡 = 0 if for each 𝐵

3
> 0 there exists a 𝐾 > 0

such that [𝜙 ∈ 𝐶, ‖𝜙‖ < 𝐵
3
, 𝑡 ≥ 𝐾] imply that |𝑥(𝑡, 0, 𝜙)| < 𝐵

(see Burton [4]).

The first theorem given in Zhao et al. [3] is the following.

Theorem A. If the solutions of (2) are ultimately bounded by
the bound 𝐵, then

(i) equation (2) has an𝜔-periodic solution and is bounded
by 𝐵,

(ii) if (2) is autonomous, then (2) has an equilibrium
solution and is bounded by 𝐵 (see Zhao et al. [3]).

Regarding (1) Zhao et al. [3] proved the following theorem
as example of application.

Theorem B. Assume that the following conditions hold:

(1) 𝑝(𝑡) is an 𝜔-periodic continuous function, 𝑔 is a
continuous differentiable function,

(2) lim
|𝑥|→∞

𝑔(𝑥) sgn𝑥 = ∞, and there is a bounded set
Ω containing the origin such that |𝑔󸀠(𝑥)| ≤ 𝑐 onΩ

𝑐;Ω𝑐
is the complement of the set Ω,

(3) 𝜏𝑐 < 𝑎.

Then, (1) has an 𝜔-periodic motion.

Moreover, when 𝑝(𝑡) = 𝐾, 𝐾 is a constant, under the
above conditions (1) has a constant motion 𝑥 = 𝑐

0
, and the

constant 𝑐
0
satisfies 𝑔(𝑐

0
) = 𝐾. In fact, from the condition

(2), there is a bounded setΩ
1
containing the origin such that

|𝑔
󸀠
(𝑥)| ≤ 𝑐 and ∫

𝑥

0
𝑔(𝑠)𝑑𝑠 > 0 on Ω

𝑐

1
; Ω𝑐
1
is the complement

of the set Ω
1
.

In this paper, we consider the following nonlinear differ-
ential equation of second order withmultiple constant delays,
𝜏
𝑖
(> 0):

𝑥
󸀠󸀠

(𝑡) + {𝑓 (𝑥 (𝑡) , 𝑥
󸀠

(𝑡)) + 𝑔 (𝑥 (𝑡) , 𝑥
󸀠

(𝑡)) 𝑥
󸀠

(𝑡)} 𝑥
󸀠

(𝑡)

+ ℎ (𝑥 (𝑡)) +

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥 (𝑡 − 𝜏

𝑖
)) = 𝑝 (𝑡) ,

(3)

where 𝜏
𝑖
are fixed constants delay with 𝑡 − 𝜏

𝑖
≥ 0; the primes

in (3) denote differentiation with respect to 𝑡 ∈ R, 𝑓, 𝑔, ℎ, 𝑔
𝑖
,

and 𝑝 are continuous functions in their respective arguments
onR2,R2,R,R, andR, respectively, and also depend only
on the arguments displayed explicitly.The continuity of these
functions is a sufficient condition for existence of the solution
of (3). It is also assumed as basic that the functions 𝑓, 𝑔, ℎ,
and 𝑔

𝑖
satisfy a Lipschitz condition in 𝑥, 𝑥

󸀠
, 𝑥(𝑡 − 𝜏

1
), 𝑥(𝑡 −

𝜏
2
), . . . , 𝑥(𝑡 − 𝜏

𝑛
). By this assumption, the uniqueness of

solutions of (3) is guaranteed.The derivatives 𝑑𝑔
𝑖
/𝑑𝑥 ≡ 𝑔

󸀠

𝑖
(𝑥)

exist and are continuous. It should be noted that throughout
the paper, sometimes, 𝑥(𝑡) and 𝑦(𝑡) are abbreviated as 𝑥 and
𝑦, respectively.

We write (3) in system form as follows:

𝑥
󸀠
= 𝑦,

𝑦
󸀠
= − {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦 − ℎ (𝑥) −

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥)

+

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠 + 𝑝 (𝑡) ,

(4)

where 𝑔
󸀠

𝑖
(𝑥(𝑡 + 𝑠)) = 𝑑𝑔

𝑖
/𝑑𝑥.

It is clear that (3) is a particular case of (2). It should
be noted that the reason or the motivation for taking into
consideration (3) comes from the followingmodified Liénard
type equation of the form:

𝑥
󸀠󸀠

(𝑡) + {𝑓 (𝑥 (𝑡)) + 𝑔 (𝑥 (𝑡)) 𝑥
󸀠

(𝑡)} 𝑥
󸀠

(𝑡) + ℎ (𝑥 (𝑡)) = 𝑒 (𝑡) .

(5)

These types of equations have great applications in theory and
applications of the differential equations. Therefore, till now,
the qualitative behaviors, the stability, boundedness, global
existence, existence of periodic solutions, and so forth, of
these type differential equations have been studied by many
researchers, and the researches on these topics are still being
done in the literature. For example, we refer the readers to the
books ofAhmad andRao [5], Burton [4], Gaines andMawhin
[1], and the papers of Constantin [6], Graef [7], Huang andYu
[8], Jin [9], Liu andHuang [10],NápolesValdés [11], Qian [12],
Tunç [13–21], C. Tunç and E. Tunç [22], Zhao et al. [3], Zhou
[23], and the references cited in these works.

We here give certain sufficient conditions to guarantee
the existence of an 𝜔-periodic solution of (3). This paper is
inspired by the mentioned papers and that in the literature.
Our aim is to generalize and improve the application given in
[3] for (3). This paper has also a contribution to the inves-
tigation of the qualitative behaviors of retarded functional
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differential equations of second order, and itmay be useful for
researchers whowork on the abovementioned topics. Finally,
without using the famous continuation theorem of degree
theory, which belongs to Gaines and Mawhin [1], we prove
the following main result. This case makes the topic of this
paper interesting.

2. Main Result

Our main result is the following.

Theorem 3. We assume that there are positive constants 𝑎, 𝑎,
𝑏, 𝜏, and 𝑐

𝑖
such that the following conditions hold:

(i) 𝑎 ≥ 𝑓(𝑥, 𝑦) + 𝑔(𝑥, 𝑦)𝑦 ≥ 𝑎,

(ii) lim
|𝑥|→∞

ℎ(𝑥) sgn𝑥 = ∞, and there is a bounded set
Ω containing the origin such that |ℎ󸀠(𝑥)| ≤ 𝑏 onΩ

𝑐;Ω𝑐
is the complement of the set Ω,

(iii) lim
|𝑥|→∞

𝑔
𝑖
(𝑥) sgn𝑥 = ∞, and there is a bounded set

Ω containing the origin such that |𝑔󸀠
𝑖
(𝑥)| ≤ 𝑐

𝑖
onΩ
𝑐;Ω𝑐

is the complement of the set Ω,

(iv) 𝑝(𝑡) is an 𝜔-periodic continuous function.

If 𝜏∑
𝑛

𝑖=1
𝑐
𝑖
< 𝑎, then (3) has an 𝜔-periodic solution.

Moreover, 𝑝(𝑡) = 𝐾, 𝐾-constant, under the above con-
ditions (3) has a constant motion 𝑥 = 𝑐

0
, and the constant 𝑐

0

satisfies ℎ(𝑐
0
) + 𝑔
𝑖
(𝑐
0
) = 𝐾.

Proof. Define the Lyapunov-Krasovskii functional 𝑉 =

𝑉(𝑥
𝑡
, 𝑦
𝑡
):

𝑉 =

1

2

𝑦
2
+ ∫

𝑥

0

ℎ (𝑠) 𝑑𝑠 +

𝑛

∑

𝑖=1

∫

𝑥

0

𝑔
𝑖
(𝑠) 𝑑𝑠

+

𝑛

∑

𝑖=1

𝜆
𝑖
∫

0

−𝜏𝑖

∫

𝑡

𝑡+𝑠

𝑦
2

(𝜃) 𝑑𝜃 𝑑𝑠,

(6)

where 𝜆
𝑖
are some positive constants to be determined later

in the proof.
Evaluating the time derivative of 𝑉 along system (4), we

get

𝑉̇ = − {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦
2

+ 𝑦

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠

+ 𝑦𝑝 (𝑡) +

𝑛

∑

𝑖=1

𝜆
𝑖
∫

0

−𝜏𝑖

(𝑦
2

(𝑡) − 𝑦
2

(𝑡 + 𝑠)) 𝑑𝑠

= − {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦
2

+ 𝑦

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠

+ 𝑦𝑝 (𝑡) +

𝑛

∑

𝑖=1

(𝜆
𝑖
𝜏
𝑖
) 𝑦
2

−

𝑛

∑

𝑖=1

𝜆
𝑖
∫

0

−𝜏𝑖

𝑦
2

(𝑡 + 𝑠) 𝑑𝑠.

(7)

By noting the assumption |𝑔
󸀠

𝑖
(𝑥)| ≤ 𝑐

𝑖
of the theorem and

the estimate 2|𝛼𝛾| ≤ 𝛼
2
+ 𝛾
2, one can obtain the following

estimates:

𝑦

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠

≤

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡 + 𝑠)

󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤

1

2

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑐
𝑖
(𝑦
2

(𝑡) + 𝑦
2

(𝑡 + 𝑠)) 𝑑𝑠

≤

1

2

𝑛

∑

𝑖=1

(𝑐
𝑖
𝜏
𝑖
) 𝑦
2
+

1

2

𝑛

∑

𝑖=1

𝑐
𝑖
∫

0

−𝜏𝑖

𝑦
2

(𝑡 + 𝑠) 𝑑𝑠.

(8)

Then, it follows that

𝑉̇ ≤ − {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦
2
+ 𝑦𝑝 (𝑡)

+

1

2

𝑛

∑

𝑖=1

(𝑐
𝑖
+ 2𝜆
𝑖
) 𝜏
𝑖
𝑦
2

+

1

2

𝑛

∑

𝑖=1

(𝑐
𝑖
− 2𝜆
𝑖
) ∫

0

−𝜏𝑖

𝑦
2

(𝑡 + 𝑠) 𝑑𝑠.

(9)

Let 𝜆
𝑖
= 𝑐
𝑖
/2 and 𝜏 = max{𝜏

1
, . . . , 𝜏

𝑛
}. In fact, these choices

imply that

𝑉̇ ≤ −{𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦 − 𝜏

𝑛

∑

𝑖=1

𝑐
𝑖
−

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

−1

}𝑦
2

≤ −(𝑎 − 𝜏

𝑛

∑

𝑖=1

𝑐
𝑖
−

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

−1

)𝑦
2
.

(10)

In view of the continuity and periodicity of the function
𝑝 and the assumption 𝑎 − 𝜏∑

𝑛

𝑖=1
𝑐
𝑖
> 0, it follows that there is

a bounded set Ω
2
⊇ Ω
1
with Ω

2
containing the origin and a

positive constant 𝜇 such that

𝜇 ≤ 𝑎 − 𝑐𝜏 −

󵄨
󵄨
󵄨
󵄨
𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨

for R × Ω
𝑐

2
. (11)

Therefore, we can write

𝑉̇ ≤ −𝜇𝑦
2 for (𝑡, 𝑥, 𝑦) ∈ R × Ω

𝑐

2
× Ω
𝑐

2
. (12)

From the last estimate, we can arrive that the 𝑦-coor-
dinate of the solutions of system (4) is ultimately bounded
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for a positive constant 𝛽. On the other hand, since 𝑝 is a
continuous periodic function, if |𝑦| ≤ 𝛽 and𝑉

1
= 𝑉+𝑦, then,

subject to the assumptions of the theorem, it can be easily seen
that there is a constant 𝐾

1
> 0 onR × Ω

𝑐

2
such that

𝑉̇
1
= 𝑉̇ + 𝑦

󸀠

= − {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦
2

+ 𝑦

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠 + 𝑦𝑝 (𝑡)

+

𝑛

∑

𝑖=1

(𝜆
𝑖
𝜏
𝑖
) 𝑦
2
−

𝑛

∑

𝑖=1

𝜆
𝑖
∫

0

−𝜏𝑖

𝑦
2

(𝑡 + 𝑠) 𝑑𝑠

− {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦 − ℎ (𝑥) −

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥)

+

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠 + 𝑝 (𝑡)

≤ −𝑎𝑦
2
+ 𝑦

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠

+ 𝑦𝑝 (𝑡) +

𝑛

∑

𝑖=1

(𝜆
𝑖
𝜏
𝑖
) 𝑦
2

−

𝑛

∑

𝑖=1

𝜆
𝑖
∫

0

−𝜏𝑖

𝑦
2

(𝑡 + 𝑠) 𝑑𝑠 + 𝑎
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
− ℎ (𝑥) −

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥)

+

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠 + 𝑝 (𝑡)

≤ −ℎ (𝑥) −

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥) + 𝐾

1
.

(13)

Since ℎ(𝑥) → ∞ and 𝑔
𝑖
(𝑥) → ∞ as 𝑥 → ∞, then it can

be chosen a positive constant 𝐵
1
such that

𝑉̇
1
≤ −0.5 for 𝑥 ≥ 𝐵

1
. (14)

Therefore, we can conclude that there is a positive constant
𝛼
1
such that the 𝑥-coordinate of the solutions of system (4)

satisfies 𝑥 ≤ 𝛼
1
for |𝑦| ≤ 𝛽.

In a similar manner, if |𝑦| ≤ 𝛽 and 𝑉
2

= 𝑉 − 𝑦, then,
subject to the assumptions of the theorem, it can be easily
followed by the time derivative of the functional𝑉

2
that there

is a constant 𝐾
2
> 0 onR × Ω

𝑐

2
such that

𝑉̇
2
= 𝑉̇ − 𝑦

󸀠

= − {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦
2

+ 𝑦

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠 + 𝑦𝑝 (𝑡)

+

𝑛

∑

𝑖=1

(𝜆
𝑖
𝜏
𝑖
) 𝑦
2
−

𝑛

∑

𝑖=1

𝜆
𝑖
∫

0

−𝜏𝑖

𝑦
2

(𝑡 + 𝑠) 𝑑𝑠

+ {𝑓 (𝑥, 𝑦) + 𝑔 (𝑥, 𝑦) 𝑦} 𝑦 + ℎ (𝑥) +

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥)

−

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠 − 𝑝 (𝑡)

≤ − 𝑎𝑦
2
+ 𝑦

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠

+ 𝑦𝑝 (𝑡) +

𝑛

∑

𝑖=1

(𝜆
𝑖
𝜏
𝑖
) 𝑦
2
−

𝑛

∑

𝑖=1

𝜆
𝑖
∫

0

−𝜏𝑖

𝑦
2

(𝑡 + 𝑠) 𝑑𝑠

+ 𝑎
󵄨
󵄨
󵄨
󵄨
𝑦
󵄨
󵄨
󵄨
󵄨
+ ℎ (𝑥) +

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥)

−

𝑛

∑

𝑖=1

∫

0

−𝜏𝑖

𝑔
󸀠

𝑖
(𝑥 (𝑡 + 𝑠)) 𝑦 (𝑡 + 𝑠) 𝑑𝑠 − 𝑝 (𝑡)

≤ ℎ (𝑥) +

𝑛

∑

𝑖=1

𝑔
𝑖
(𝑥) + 𝐾

2
.

(15)

Since ℎ(𝑥) → −∞ and 𝑔
𝑖
(𝑥) → −∞ as 𝑥 → −∞, then

it can be chosen a positive constant 𝐵
2
such that

𝑉̇
2
≤ −0.5 for 𝑥 ≤ −𝐵

2
. (16)

Then, we can conclude that there is a positive constant
𝛼
2
such that the 𝑥-coordinate of the solutions of system (4)

satisfies 𝑥 ≥ −𝛼
2
for |𝑦| ≤ 𝛽. On gathering the above whole

discussion, one can see that the solutions of system (4) are
ultimately bounded.Therefore, (3) has an 𝜔-periodic motion
(solution). When 𝑝(𝑡) = 𝐾, 𝐾-constant, (3) has a constant
motion 𝑥 = 𝑐

0
. From (3), it can be seen that the constant 𝑥 =

𝑐
0
is given by ℎ(𝑐

0
) + 𝑔
𝑖
(𝑐
0
) = 𝐾.
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