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We give refinement of Jensen’s type inequalities given by Bakula and Pecari¢ (2006) for the co-ordinate convex function. Also we
establish improvement of Jensen’s inequality for the convex function of two variables.

1. Introduction

Jensen’s inequality for convex functions plays a crucial role
in the theory of inequalities due to the fact that other
inequalities such as the arithmetic mean-geometric mean
inequality, the Holder and Minkowski inequalities, and the
Ky Fan inequality, can be obtained as particular cases of it.
Therefore, it is worth studying it thoroughly and refining it
from different point of view. There are many refinements of
Jensen’s inequality; see, for example, [1-14] and the references
in them.

A function f : [a,b] X [c,d] — R, [a,b] x [c,d] C R?
with a < b and ¢ < d is called convex on the co-ordinates
if the partial mappings f, : [a,b] — R defined as f(t) =
f(t,y)and f, : [c,d] — Rdefined as f,(s) = f(x,s) are
convex for all x € [a,b], ¥ € [c,d]. Note that every convex
function f : [a,b] x [c,d] — R is co-ordinate convex, but
the converse is not generally true [8].

The following theorem has been given in [4].

Theorem 1. Let f: [a,b] x [c,d] — R be a convex function
on the co-ordinates on [a, b] X [c, d]. Ifx is an n-tuple in [a, b],
y is m-tuple in [c,d], p is a nonnegative n-tuple, and w is

a nonnegative m-tuple such that P, = Y p; > 0 and W,, =
Yy w; >0, then

1< 1 <
f <szixi’ WZ“G‘%‘)

ni=1 m j=1

IN
N | =

%Zpif (x,7) + WLijf (E’yj) )

ni=1 m j=1

1 n m
= PW, Zzpiwjf (X,-,)/j),

m i=1j=1
where X = (1/P,) ¥, pixpp and y = (1/W,) YL, w;y;.

Recently Dragomir has given new refinement for Jensen
inequality in [9]. The purpose of this paper is to give
related refinements of Jensen’s type inequalities (1) for the
co-ordinate convex function. We will also discuss some
particular interesting cases. We establish improvement of
Jensen’s inequality for the convex function defined on the
rectangles. For related improvements of Jensen’s inequality,



see, for example, [1, 2, 9, 13, 14]. For further several related
integral inequalities, see [15].

2. Main Results

Let f : [a,b] x [c,d] — R be convex on the co-ordinate
on [a,b] x [¢,d]. If x; € [a,b], yj € [c,d], prw; > 0,i €
{1,2,...,n}, j € {1,2,...,m} with P, = Y p,and W,,, =
Z;":l w;, then for any subsets I < {1,2,...,n}and ] C
{1,2,...,m}, we assume that T := {1,2,...,n} \ITand ] :=
{1,2,...,m} \ J. Define P, = .., piy Pr = Yiipp W) =

Yjeywj and Wy = ¥ ;w;. For the functlon f and the n-,

m-tuples, x = (xl,xz,...,x LY =Yoo V) P = (P15
Do+ o> Pp)randw = (wy, w,, ..., w,,), we define the following
functionals:

D(f’P)XaI)yj)

P, F
= FI < Zplxz’y]> < Zplxl’y]>
n Tier n IIEI

D(f,w.y. )

-t (s )i (o)

D(fp )
P,
:PI < ZszvJ’>+— ( prc,,y)
Tier IieT

D(f,iw,y,])
( ZwaJ > < Zwa] )
JEI

(2)
where X = (1/P,) YL, pix;and ¥ = (1/W,,) Y7L, w;y;.
It is worth to observe that for I = {k}, k € {1,...,n},
and J = {l},1 € {1,...,m}, we have the functionals

Dy (fip.xy;)
=D(f,p.x{k},y;)
_ Pk P, = pr [ Xioy PiXi — P
nf(xk,yj) Pn f( Pn_pk ’yj>,

Dy (f,w,y,x;)
=D (fiw,y,{l},x;)

wy W, —w, ZT:1 Wiy =Wy
= i + i >
Wmf(xz yl) Wm f(xz Wm —w,
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Dy (f.p.x)
=D (f,p,x, {k})
— . P Vit PiXi = DX —
D, (f’WaY)
=D(fiw,y,{I})
W W,-w [ _ ZTzl w;y; — W
- Wmf(x,yl)-'- Wm f(x’ Wm_wl >

3)

The following refinement of (1) holds.

Theorem 2. Let f :
convex function on [a, b] x

[a,b] x [c,d] — R be a co-ordinate
[C’d]' I_fxi € [aa b]) )/J € [C’ d]) pi;

w; > 0,i€{l,2,...,n} je{L,2,....m} with P, = ¥ p,
and W, Z 1 W), then for any subsets I € {1,2,...,n} and
Jc{1,2,. ..,m} one has
(=)
1
< [D(hwy )+ D (L))
1
< E _zpzf(xz’y zw]f (x y])}
i Puis Wi jai
1
SE —ZplD(fw,y,]x Zw D(fp,x,I y])]
L ﬂz 1 m] 1

< 55 S s (50,

n'imi=1j=1

(4)
where x = (1/P,) Y., p;ix;, and y = (1/W,,) Z;il w;y;
Proof. One-dimensional Jensen’s inequality gives us
1 m
f 7)< oo Y wif (xl’yJ)
W i3
(5)
f(® y]) < _ZPI (x,,y])
nl 1
As we have
D(f’p)leyyj)
P P 6)
= PI ( prxz’y]> Zp,x,,y]
n Iier ” I iel
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so by Jensen’s inequality, we have

D(fipxLy))
P ki
= P < ;Prxz’y]> Pnf< Igpl'x”y1>
Pl Pl
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1
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D(f,p,x,l,yj) sz (xl’y])

nzl

As the function f is convex on the first co-ordinate, so we

have

D(fipxly)

Py LB
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o (53meen ) (50
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Vlzl

D(fpxty)z (

Now, from (7) and (8), we have

ZP; (xl,yj)

"11

f(®y)<D(fpxly) <

Similarly, we can write

fxy) <D(fwy. ] x) < o

Zwa (x,,yj)

Wl]l

(10)

Multiplying (9) and (10), respectively, by w; and p; and sum-
ming over i and j, we obtain

D (fpxLy)

HM§

_ 1
W waf (x’ }’j) W
(11)

pW ZzPl ]f(x,,yj)

mj=1j=1

sz

PW ZZPl Jf(x"yJ)

mj=1j=1

Zplf(xl’y) = fw’Y’]’xi)

Vlzl

(7)
(12)

Adding (11) and (12), we have

z%f@%ﬂ

mJ1

[ Zp,f (x7) + —

"11

1
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1 n
- (13)

ZwDUnxUQ]
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mi=]1j=1

Again by one-dimensional Jensen’s inequality, we have

f(®xy) < —ZP, f (x5,

'lzl

(14)
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As we have the functional

szxz’y> < Zpl‘xl’y>’
Tier Lier

(15)

D(f.p:x.1) = (

so by Jensen’s inequality, we get

Zplx,,y)

Iier
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P PIzeI n IzeI
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_ _szf (x,7) + Zplf (x,,7) Combining (13) and (20), we have
By iel "iel
=5 z plf (xl’y) f()_c’y)
zeIUI

<3 [DGiwy. )+ D(fpxD)
:>D(fp’x’1)<_zpz xz’y) -

nz 1 1
(16) =35 _n;:PI S )+ m;w]f (% y])]
and as the function f is convex on the first co-ordinate, so 1 [ 1)
we have =3 sz (frw,y.],x;)
2 nl 1
D(f,p.x1) = X, Y 1 &
(f ) f<PIlEIp y) +WZIWJD(f>p>X)I)y])}
m]:
pl'xl’y
( g > PnWm ggpl ]f (xpy])
O
P11
= f <ITI}TZ pixi + ZP,X,,,‘V > The following cases from the above inequalities are of
n - Liel 161 interest [6, 7].
=f ZP iXit o ZP iXi> Y ) Remark 3. We observe that the inequalities in (4) can be
Fuid " iel written equivalently as
Z p,xl,y> ( Zp,x,,y>
"ielul L=
) PW Zzp’ Jf (x”y])
= D(fipxI)> f(XY). il
17)
> max — pD(fiw,y.],x;)
Now from (16) and (17), we have ]ICC{{ll ’’’’’ ”}} 2 [ P, n;
FE<DGRRD S LR ). 0 S up(ipat y])]
n; m] 1
Similarly, we can prove that
D plf(xl’y)+_ wf Xy
3 Enr ) S ()
- 1 <
fEY) <D(fwy )< -dwif(%y). (9
min | L5 0 (fwy)x)
Ic{l ..... nt 1
Jcfl,.. }
Adding (18) and (19), we get
1 m
i 2w (f’P’XJ’yj)]
_ 1 m j=1
f&y) < [D(fwy.))+D(fpx1)]
1 S0 (53) o Y f (5)
< 3 ()« oY f (5,) | - -

nzl m]l

(0) z max [D(fiw.y,])+D(fipxI)],
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fxy)
< min [D(fw,y,])+D(fp,x, I)].
(22)

These inequalities imply the following results:

PW, ZZPI Jf(xl’yf)

mi=1j=1

- D > Y, X,
= an}ZI:PZpl lfwy 1)

le{1,...m} ni=l

YnJI

Zw D (fpx, y])]

_szf ('xl’ }’) + _ijf (.X, y])

n11 m]l

D bl bl

+ —Zw D (fpx, y])]

YnJI

_Zpo ('xl’ }’) + _ijf (.X, y])

nll m]l

= Kelloom) [Dy (f:w.y) + Dy (fip.%)]»

fEy) s min }5 (D1 (f:w.y) + Dic (fp.%)] -

1€{1,....m}

Moreover, from the above, we also have

Jax D(fipx]) 2 max Dy (fp.x),

max D(fw,y, ) > max Dl(fw, y),
Jc{l,...m} 1e{l,...,

(max D(fipxiLy;) > max Dy (fp.xy;),

max D(fw,y,]x)> Jmax. Dl(fw,y, )
Jc{lmt 7 T IEfL,.,

kr{l}m Dk(fp,x)> m1n D(fp,x,I)
€

min_ D,(fw,y)> min D(fwy, ),
le{l,. Jcd{L,...,

kmm Dk(fp,x,y])> mm D(fp,x,I y])

.....

lfmn Dy (fiw,y,x )>[?111n D(fiw,y:],%;).
€

(24)

We discuss the following particular cases of the above
inequalities which is of interest [6].

In the case when p;, = land w; = 1 fori € {1,...,n}
and j € {1,...,m}, consider the natural numbers k, [ with
l1<k<n-1landl<I<m-1 anddefine

Dy (f’x’yj)

—f lix +n_kf ! ix
k= P n n-k. 5 i)
Dl(f’Y>xi)

j=1 j=l+1
kK [1& —k 1 &
D, (f:x) f(z;xi,y>+”n f(n_kl_%lxi,y)
(fy) ! 1i ymol (o i
hy)==rf lj=1yj —f x,m_lj:my]
(25)

We can give the following result.
Corollary 4. Let f : [a,b] x [c,d] — R be a co-ordinate

convex function on [a,b]x[c,d]. If x; € [a,b] and y; € [c,d],
then forany k € {1,...,n—1} and l € {1,...,m — 1]{, one has

1 1 &
(1)

< S [Di(£y) + D ()]
< % %;f (% 7) + i;f (f’y;‘)] (26)
< % %iDl (fy. %)+ ika (f’x’yf)]
I i=1 j=1

< 238 s ().

i=1j=1



In particular, we have the bounds

3 ()

ll]l

> maX -
ke{l,...,
le{l,..., m}

ZDI (fy.x:)

+$ZD,( (f,x,yj)] ,
j=1

DYICR RS YA
i=1 j=1

(27)

ZDI (fyx;)

Di( x,m] ,
—zf (x7) + —Zf(x 7)

2 max [Dz (ﬁ y) + D (f,¥)],

1e{1,..., m}

_ 1
7)< min LDy (fy)+ D (0],

e{l,...n} 2

lef1,....m}

Remark 5. Note that if we substitute m = 1, f(x,y,) —
f(x)) D(f)waY)])xi) = f(i)r D(f)p)X)I)y]) = D(f)Prxyl)a
and D(f,w,y,J) = f(x) in Theorem 2, we get the following
result of Dragomir [9] for convex function defined on the

intervaland Y-, p; = P, > 0,
1< P 1
f<_ Pixi> < £ <_ pix 1) pix;
Pni:Z1 B, PI% %

ni=1
(28)
The following refinement of Holder inequality holds.
Corollary 6. Let x = (x1,X5,...,%,) andy = (¥, Yy« -> V)

be two positive n-tuples. Then for (1/p) + (1/q) = 1, p,q > 1,
one has

gx,.yi
) (o) ()

ola 1P (29)
+<ZJ’?> <in)’i> H
) s, 1611/q i€l
(5
i=1 i=1
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Proof. Using the functions f(x) = xf, p > 1, x; — x; yi_q/ r
and p; — y! in (28), we get (29). O

Remark 7. As mentioned above from the inequalities in (29),
we can write

(50 (5) (30)

-plq PP
+<Z)’iq> (in)’z) H )
iel iel
n
inyi
i1

| (1) () (3o)
&) G

(30)
The following improvement of Jensen’s inequality is valid.

Theorem 8. Let f: [a,b] x [c,d] — R be convex on the co-
ordinates of [a,b] x[c,d] € R>. If x is an n-tuple in [a,b], y is
an m-tuple in [c,d], p is a nonnegative n-tuple such that P, =
Yo, pi > 0, and w is a nonnegative m-tuple such that W,, =
Y w; >0, then

PW, ZZPI Jf(xl’yj)

mj=]1j=1

f=7)

N LS, w;|f (x;) - f (%)

n'imi=1j=1

(31)

n m

RN I e

mi=1j=1

af+ (? 7) (xl _z)

of. (% y _
LB y)(yj—y)H’

where X = (1/P,) XL, pixi, and y = (1/W,,) Y7L, w

Proof. Since f is convex on [a,b] x [c, d], therefore we have

floy) - fw2)
ofy (w, 2) of, (w, z) (32)
e
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From the above inequality, we have

d 0 ,
flsy) - Sz - LD oy D, )
5] ,
~|ren - fwa - LoD )
of, (wz)
T oz (y-2)
(x. ) = f W, 2)]
of, (w,2) of, (w, z)
[P ey o L ()|
(33)

Letx — x,y — y,w — Y. px;/P, =X, and z —
i1 w;y;/W,, ==, then (33) becomes

f(xi’yj) - f(i?)

of.®7) . . of.®y), _
—%(xi—x)—%(yj—y)

f(x7)

(34)

f(xoy;) -

i

9+ L2 (5, -)|

Multiplying (34) by p; and w; and summing over i and j, we
have

Zn:ipiwjf (xi>)’j) - zn:ipiwjf (%)

i=1j=1 i=1j=1

- iipiij (x; = %)

i=1j=1

ey 0 (%) -
33 50,
i=1j=
(35)

2 122 pw;|f (%0 75) - f

i=1j=1

(%7

n m

=)D piw;

i=1j=1

o )
L2 (- 3)

+8f+(_()f>7) (yf_?)l _

One has

$8 0, LED (g

i=1j=1

= i af+ (g’y) (Zpixi - Zpl 1) =0, (36)

i=1 nt 1
v of (%) _
22 pw—="(y;-7) =0.
i=1j=1
Therefore (35) becomes

Zn:ipiwjf (xi’yj) - iipiwjf (%)

i=1j=1 i=1j=1

= iipiwj |f (xi’yj) —f(fj)'

i=1j=1

(37)
)
- Zzpl w; (X - x)
i=1j=1
af+ (E 7) ( —)
az y] - y °
Multiplying both hand sides by 1/P,W,,,, we have
5 Wm ;JZIPI wif (xp9;) - f(%7)
piw; |f (x09) = £ (%)
PnWm ;; J | J '
=7) (38)
of. (%),
i (xi - x)
P Wm 2121 Uil ow
of ®¥) (-
* o b))
This completes the proof. O
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