
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 264520, 5 pages
http://dx.doi.org/10.1155/2013/264520

Research Article
𝜆-Statistical Convergence in Paranormed Space

Mohammed A. Alghamdi1 and Mohammad Mursaleen2

1 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Correspondence should be addressed to Mohammad Mursaleen; mursaleenm@gmail.com

Received 24 October 2013; Accepted 9 December 2013

Academic Editor: S. A. Mohiuddine

Copyright © 2013 M. A. Alghamdi and M. Mursaleen. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The concept of 𝜆-statistical convergence for sequences of real numbers was introduced inMursaleen (2000). In this paper, we prove
decomposition theorem for 𝜆-statistical convergence.We also define and study 𝜆-statistical convergence, 𝜆-statistically Cauchy, and
strongly 𝜆𝑝-summability in Paranormed Space.

1. Introduction

The notion of statistical convergence was first introduced by
Fast [1]. In the recent years, statistical summability became
one of the most active areas of research in summability
theory, which was further generalized as lacunary statistical
convergence [2], 𝜆-statical convergence [3], statistical 𝐴-
summability [4], and statistical 𝜎-convergence [5]. Maddox
[6] studied this notion in locally convex Hausdorff topolog-
ical spaces and Kolk [7] defined and studied this notion in
Banach spaces while Çakalli [8] extended it to topological
Hausdorff groups. The concept of statistical convergence is
studied in probabilistic normed space and in intuitionistic
fuzzy normed spaces in [9, 10]. Recently, the statistical
convergence has been studied in Paranormed Space and
locally solid Riesz spaces in [11, 12], respectively. Therefore,
one can choose either some different setup to study these
concepts or generalizing the existing concepts through dif-
ferent means. In this paper, we will study the concept of 𝜆-
statistical convergence, 𝜆-statistical Cauchy, and strongly 𝜆𝑝-
summability in Paranormed Space.

A paranorm is a function 𝑔 : 𝑋 → R defined on a linear
space𝑋 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝑋

(𝑃1) 𝑔(𝑥) = 0 if 𝑥 = 𝜃,

(𝑃2) 𝑔(−𝑥) = 𝑔(𝑥),

(𝑃3) 𝑔(𝑥 + 𝑦) ≤ 𝑔(𝑥) + 𝑔(𝑦),

(𝑃4) if (𝛼𝑛) is a sequence of scalars with 𝛼𝑛 → 𝛼0 (𝑛 →

∞) and 𝑥𝑛, 𝑎 ∈ 𝑋 with 𝑥𝑛 → 𝑎 (𝑛 → ∞) in the
sense that 𝑔(𝑥𝑛 − 𝑎) → 0 (𝑛 → ∞), then 𝛼𝑛𝑥𝑛 →

𝛼0𝑎 (𝑛 → ∞), in the sense that 𝑔(𝛼𝑛𝑥𝑛 − 𝛼0𝑎) →

0 (𝑛 → ∞).

A paranorm 𝑔 for which 𝑔(𝑥) = 0 implies that 𝑥 = 𝜃 is
called a total paranorm on 𝑋, and the pair (𝑋, 𝑔) is called a
total Paranormed Space.

2. 𝜆-Statistical Convergence

Let 𝜆 = (𝜆𝑛) be a nondecreasing sequence of positive num-
bers tending to∞ such that

𝜆𝑛+1 ≤ 𝜆𝑛 + 1, 𝜆1 = 0. (1)

The generalized de la Vallée-Poussin mean is defined by

𝑡𝑛 (𝑥) =:
1

𝜆𝑛

∑

𝑗∈𝐼
𝑛

𝑥𝑗, (2)

where 𝐼𝑛 = [𝑛 − 𝜆𝑛 + 1, 𝑛].
A sequence 𝑥 = (𝑥𝑗) is said to be (𝑉, 𝜆)-summable to a

number 𝐿 if

𝑡𝑛 (𝑥) 󳨀→ 𝐿 as 𝑛 󳨀→ ∞. (3)
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Let 𝐾 be a subset of the set of natural numbers N. Then,
the 𝜆-density of𝐾 is defined as

𝛿𝜆 (𝐾) = lim
𝑛

1

𝜆𝑛

󵄨󵄨󵄨󵄨{𝑛 − 𝜆𝑛 + 1 ≤ 𝑗 ≤ 𝑛 : 𝑗 ∈ 𝐾}
󵄨󵄨󵄨󵄨 . (4)

The number sequence 𝑥 = (𝑥𝑗) is said to be 𝜆-statistically
convergent to the number 𝐿 (c.f. [3, 13, 14]) if 𝛿𝜆(𝐾(𝜖)) = 0;
that is, if for each 𝜖 > 0,

lim
𝑛

1

𝜆𝑛

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 ≥ 𝜖}
󵄨󵄨󵄨󵄨 = 0. (5)

In this case we write st𝜆-lim𝑘𝑥𝑘 = 𝐿 and we denote the set
of all 𝜆-statistically convergent sequences by 𝑆𝜆. In case 𝜆𝑛 =
𝑛, 𝜆-density reduces to the natural density and 𝜆-statistical
convergence reduces to statistical convergence. This notion
for double sequences has been studied in [15].

A sequence 𝑥 = (𝑥𝑘) is said to be strongly 𝜆𝑝-
summable (0 < 𝑝 < ∞) to the limit 𝐿 [14] if

lim
𝑛

1

𝜆𝑛

∑

𝑘∈𝐼
𝑛

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿
󵄨󵄨󵄨󵄨
𝑝
= 0, (6)

and we write it as 𝑥𝑘 → 𝐿[𝑉𝜆]𝑝. In this case 𝐿 is called the
[𝑉𝜆]𝑝-limit of 𝑥.

The following relation was established in [14].

Theorem 1. If 0 < 𝑝 < ∞ and a sequence 𝑥 = (𝑥𝑘) is str-
ongly 𝜆𝑝-summable to 𝐿, then it is 𝜆-statistically convergent to
𝐿. If a bounded sequence is 𝜆-statistically convergent to 𝐿, then
it is strongly 𝜆𝑝-summable to 𝐿.

The following theorem is 𝜆-statistical version of Connor’s
Decomposition Theorem [16].

Theorem 2. If 𝑥 = (𝑥𝑘) is strongly 𝜆𝑝-summable or statistica-
lly 𝜆-convergent to 𝐿, then there is a convergent sequence 𝑦 and
a 𝜆-statistically null sequence 𝑧 such that 𝑦 is convergent to
𝐿, 𝑥 = 𝑦 + 𝑧 and

lim
𝑛

1

𝜆𝑛

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼𝑛 : 𝑧𝑘 ̸= 0}
󵄨󵄨󵄨󵄨 = 0. (7)

Moreover, if 𝑥 is bounded, then 𝑦 and 𝑧 both are bounded.

Proof. By Theorem 1, it follows that 𝑥 is 𝜆-statistically con-
vergent to 𝐿 if 𝑥 is strongly 𝜆𝑝-summable to 𝐿. Set 𝑁0 = 0

and choose a strictly increasing sequence of positive integers
𝑁1 < 𝑁2 < 𝑁3 < ⋅ ⋅ ⋅ such that

1

𝜆𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼𝑛 :

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿
󵄨󵄨󵄨󵄨 ≥ 𝑗
−1
}
󵄨󵄨󵄨󵄨󵄨
< 𝑗
−1 (8)

for 𝑛 > 𝑁𝑗. Define 𝑦 and 𝑧 as follows.
If 𝑁0 < 𝑘 < 𝑁1 set 𝑧𝑘 = 0 and 𝑦𝑘 = 𝑥𝑘. Let 𝑗 ≥ 1 and

𝑁𝑗 < 𝑘 ≤ 𝑁𝑗+1. Now we set

𝑦𝑘 = {
𝑥𝑘 , 𝑧𝑘 = 0, if 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 < 𝑗
−1
;

𝐿, 𝑧𝑘 = 𝑥𝑘 − 𝐿, if 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿
󵄨󵄨󵄨󵄨 ≥ 𝑗
−1
.

(9)

Clearly, 𝑥 = 𝑦 + 𝑧 and 𝑦 and 𝑧 are bounded, if 𝑥 is bounded.
Also, we observe that for 𝑘 > 𝑁𝑗, we have

󵄨󵄨󵄨󵄨𝑦𝑘 − 𝐿
󵄨󵄨󵄨󵄨 < 𝜖 since 󵄨󵄨󵄨󵄨𝑦𝑘 − 𝐿

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 < 𝜖

if 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿
󵄨󵄨󵄨󵄨 < 𝑗
−1
,

󵄨󵄨󵄨󵄨𝑦𝑘 − 𝐿
󵄨󵄨󵄨󵄨 = |𝐿 − 𝐿| = 0 if 󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 > 𝑗
−1
.

(10)

Hence, lim𝑘𝑦𝑘 = 𝐿, since 𝜖 was arbitrary.
Next we observe that

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼𝑛 : 𝑧𝑘 ̸= 0}
󵄨󵄨󵄨󵄨 ≥

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼𝑛 :
󵄨󵄨󵄨󵄨𝑧𝑘

󵄨󵄨󵄨󵄨 ≥ 𝜖}
󵄨󵄨󵄨󵄨 (11)

for any natural number 𝑛 and 𝜖 > 0. Hence, lim𝑛(1/𝜆𝑛)|{𝑘 ∈

𝐼𝑛 : 𝑧𝑘 ̸= 0}| = 0; that is, 𝑧 is 𝜆-statistically null.
We now show that if 𝛿 > 0 and 𝑗 ∈ 𝑁 such that 𝑗−1 <

𝛿, then |{𝑘 ∈ 𝐼𝑛 : 𝑧𝑘 ̸= 0}| < 𝛿 for all 𝑛 > 𝑁𝑗. Recall from
the construction that if 𝑁𝑗 < 𝑘 ≤ 𝑁𝑗+1, then 𝑧𝑘 ̸= 0 only if
|𝑥𝑘 − 𝐿| > 𝑗

−1. It follows that if𝑁ℓ < 𝑘 ≤ 𝑁ℓ+1, then

{𝑘 ∈ 𝐼𝑛 : 𝑧𝑘 ̸= 0} ⊆ {𝑘 ∈ 𝐼𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿

󵄨󵄨󵄨󵄨 > ℓ
−1
} . (12)

Consequently,

1

𝜆𝑛

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼𝑛 : 𝑧𝑘 ̸= 0}
󵄨󵄨󵄨󵄨 ≤

1

𝜆𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ∈ 𝐼𝑛 :

󵄨󵄨󵄨󵄨𝑥𝑘 − 𝐿
󵄨󵄨󵄨󵄨 > ℓ
−1
}
󵄨󵄨󵄨󵄨󵄨

< ℓ
−1

< 𝑗
−1

< 𝛿,

(13)

if𝑁ℓ < 𝑛 ≤ 𝑁ℓ+1 and ℓ > 𝑗. That is,

lim
𝑛

1

𝜆𝑛

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼𝑛 : 𝑧𝑘 ̸= 0}
󵄨󵄨󵄨󵄨 = 0. (14)

This completes the proof of the theorem.

3. Application to Fourier Series

Let 𝑓 : T → C be a Lebesgue integrable function on the
torus T := [−𝜋, 𝜋); that is, 𝑓 ∈ 𝐿

1
(T). The Fourier series of 𝑓

is defined by

𝑓 (𝑥) ∼ ∑

𝑗∈Z

𝑓 (𝑗) 𝑒
𝑖𝑗𝑥
, 𝑥 ∈ T , (15)

where the Fourier coefficients 𝑓(𝑗) are defined by

𝑓 (𝑗) :=
1

2𝜋
∫
T

𝑓 (𝑡) 𝑒
−𝑖𝑗𝑡

𝑑𝑡, 𝑗 ∈ Z. (16)

The symmetric partial sums of the series in (15) are defined
by

𝑠𝑘 (𝑓; 𝑥) := ∑

|𝑗|≤𝑘

𝑓 (𝑗) 𝑒
𝑖𝑗𝑥
, 𝑥 ∈ T , 𝑘 ∈ N. (17)

The conjugate series to the Fourier series in (15) is defined by
[17, Vol. I, pp. 49]

∑

𝑗∈Z

(−𝑖 sgn 𝑗) 𝑓 (𝑗) 𝑒
𝑖𝑗𝑥
. (18)
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Clearly, it follows from (15) and (18) that

∑

𝑗∈Z

𝑓 (𝑗) 𝑒
𝑖𝑗𝑥

+ 𝑖∑

𝑗∈Z

(−𝑖 sgn 𝑗) 𝑓 (𝑗) 𝑒
𝑖𝑗𝑥

= 1 + 2

∞

∑

𝑗=1

𝑓 (𝑗) 𝑒
𝑖𝑗𝑥
,

(19)

and the power series

1 + 2

∞

∑

𝑗=1

𝑓 (𝑗) 𝑒
𝑖𝑗𝑥
, where 𝑧 := 𝑟𝑒

𝑖𝑥
, 0 ≤ 𝑟 < 1, (20)

is analytic on the open unit disk |𝑧| < 1, due to the fact that

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑗)

󵄨󵄨󵄨󵄨󵄨
≤

1

2𝜋
∫
𝜋

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 𝑑𝑡, 𝑗 ∈ Z. (21)

The conjugate function 𝑓 of a function 𝑓 ∈ 𝐿
1
(T) is defined

by

𝑓 (𝑥) := −lim
𝜀↓0

1

𝜋
∫
𝜀≤|𝑡|≤𝜋

𝑓 (𝑥 + 𝑡)

2 tan (𝑡/2)
𝑑𝑡

= lim
𝜀↓0

1

𝜋
∫

𝜋

𝜀

𝑓 (𝑥 − 𝑡) − 𝑓 (𝑥 + 𝑡)

2 tan (𝑡/2)
𝑑𝑡

(22)

in the “principal value” sense and that 𝑓(𝑥) exists at almost
every 𝑥 ∈ T .

The following is 𝜆-statistical version of [18] (c.f. [19,
Theorem 2.1 (ii)]).

Theorem 3. If 𝑓 ∈ 𝐿
1
(T), then for any 𝑝 > 0 its Fourier

series is strongly 𝜆𝑝-summable to 𝑓(𝑥) at almost every 𝑥 ∈ T .
Furthermore, its conjugate series (18) is strongly 𝜆𝑝-summable
for any 𝑝 > 0 to the conjugate function 𝑓(𝑥) defined in (22) at
almost every 𝑥 ∈ T .

FromTheorems 1 and 3, we easily get the following useful
result.

Theorem 4. If 𝑓 ∈ 𝐿
1
(T), then its Fourier series is 𝜆-stati-

stically convergent to𝑓(𝑥) at almost every 𝑥 ∈ T . Furthermore,
its conjugate series (18) is 𝜆-statistically convergent to the conj-
ugate function 𝑓(𝑥) defined in (22) at almost every 𝑥 ∈ T .

4. 𝜆-Statistical Convergence in
Paranormed Space

Recently, statistical convergence, statistical Cauchy, and stro-
ngly Cesàro summability have been studied in Paranormed
Space by Alotaibi and Alroqi [11].

In this paper, we define and study the notion of 𝜆-sum-
mable, 𝜆-statistical convergence, 𝜆-statistical Cauchy, and
strongly 𝜆𝑝-summability in Paranormed Space.

Let (𝑋, 𝑔) be a Paranormed Space.
A sequence 𝑥 = (𝑥𝑘) is said to be convergent to the

number 𝜉 in (𝑋, 𝑔) if, for every 𝜀 > 0, there exists a positive
integer 𝑘0 such that 𝑔(𝑥𝑘 − 𝜉) < 𝜀 whenever 𝑘 ≥ 𝑘0. In this
case, we write 𝑔-lim𝑥 = 𝜉, and 𝜉 is called the 𝑔-limit of 𝑥.

We define the following.

Definition 5. A sequence 𝑥 = (𝑥𝑘) is said to be 𝜆-statistically
convergent to the number 𝜉 in (𝑋, 𝑔) if, for each 𝜖 > 0,

lim
𝑛

1

𝜆𝑛

󵄨󵄨󵄨󵄨{𝑘 ∈ 𝐼𝑛 : 𝑔 (𝑥𝑘 − 𝜉) ≥ 𝜖}
󵄨󵄨󵄨󵄨 = 0. (23)

In this case we write st𝜆(𝑔)-lim𝑥 = 𝜉.

Definition 6. A sequence 𝑥 = (𝑥𝑘) is said to be 𝜆-statistically
Cauchy sequence in (𝑋, 𝑔) if for every 𝜖 > 0 there exists a
number𝑁 = 𝑁(𝜖) such that

lim
𝑛

1

𝜆𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑗 ∈ 𝐼𝑛 : 𝑔 (𝑥𝑗 − 𝑥𝑁) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
= 0. (24)

Definition 7. A sequence 𝑥 = (𝑥𝑘) is said to be strongly 𝜆𝑝-
summable (0 < 𝑝 < ∞) to the limit 𝜉 in (𝑋, 𝑔) if

lim
𝑛

1

𝜆𝑛

∑

𝑘∈𝐼
𝑛

(𝑔 (𝑥𝑘 − 𝜉))
𝑝
= 0, (25)

and we write it as 𝑥𝑘 → 𝜉[𝑉𝜆, 𝑔]𝑝. In this case 𝜉 is called the
[𝑉𝜆, 𝑔]𝑝-limit of 𝑥.

Now we define another type of convergence in Para-
normed Space.

Definition 8. A sequence (𝑥𝑘) in a Paranormed Space (𝑋, 𝑔)
is said to st∗

𝜆
(𝑔)-convergent to 𝜉 ∈ 𝑋 if there exists an index

set 𝐾 = {𝑘1 < 𝑘2 < ⋅ ⋅ ⋅ < 𝑘𝑛 < ⋅ ⋅ ⋅ } ⊆ N, 𝑛 = 1, 2, . . ., with
𝛿𝜆(𝐾) = 1 such that 𝑔(𝑥𝑘

𝑛

− 𝜉) → 0 (𝑛 → ∞). In this case,
we write 𝜉 = st∗

𝜆
(𝑔)-lim𝑥.

First we prove the following results on 𝜆-statistical con-
vzergence in (𝑋, 𝑔).

Theorem9. If 𝑔-lim𝑥 = 𝜉, then st𝜆(𝑔)-lim𝑥 = 𝜉 but converse
need not be true in general.

Proof. Let 𝑔-lim𝑥 = 𝜉. Then, for every 𝜀 > 0, there is a
positive integer𝑁 such that

𝑔 (𝑥𝑛 − 𝜉) < 𝜀 (26)

for all 𝑛 ≥ 𝑁. Since the set 𝐴(𝜖) := {𝑘 ∈ N : 𝑔(𝑥𝑘 − 𝜉) ≥ 𝜀} is
finite, 𝛿𝜆(𝐴(𝜖)) = 0. Hence, st𝜆(𝑔)-lim𝑥 = 𝜉.

The following example shows that the converse need not
be true.

Example 10. Let 𝑋 = ℓ(1/𝑘) := {𝑥 = (𝑥𝑘) : ∑𝑘 |𝑥𝑘|
1/(𝑘+1)

<

∞}with the paranorm 𝑔(𝑥) = (∑𝑘 |𝑥𝑘|
1/(𝑘+1)

). Define a sequ-
ence 𝑥 = (𝑥𝑘) by

𝑥𝑘 := {
𝑘, if 𝑛 − [𝜆𝑛] + 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ∈ N;

0, otherwise,
(27)

and write

𝐾 (𝜀) := {𝑘 ≤ 𝑛 : 𝑔 (𝑥𝑘) ≥ 𝜀} , 0 < 𝜀 < 1. (28)
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We see that

𝑔 (𝑥𝑘) := {
𝑘
1/(𝑘+1)

, if 𝑛 − [𝜆𝑛] + 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ∈ N;

0, otherwise,
(29)

and hence

lim
𝑘
𝑔 (𝑥𝑘) := {

1, if 𝑛 − [𝜆𝑛] + 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ∈ N;

0, otherwise.
(30)

Therefore 𝑔-lim𝑥 does not exist. On the other hand
𝛿𝜆(𝐾(𝜀)) = 0; that is, st𝜆(𝑔)-lim𝑥 = 0.

This completes the proof of the theorem.

We can easily prove the following results on 𝜆-statistical
convergence in (𝑋, 𝑔) similar to those of [11].

Theorem 11. If a sequence 𝑥 = (𝑥𝑘) is 𝜆-statistically conver-
gent in (𝑋, 𝑔), then 𝑠𝑡𝜆(𝑔)-limit is unique.

Theorem 12. Let 𝑠𝑡𝜆(𝑔)-lim𝑥 = 𝜉1 and 𝑠𝑡𝜆(𝑔)- lim𝑦 = 𝜉2.
Then,

(i) 𝑠𝑡𝜆(𝑔)-lim (𝑥 ± 𝑦) = 𝜉1 ± 𝜉2,
(ii) 𝑠𝑡𝜆(𝑔)-lim 𝛼𝑥 = 𝛼𝜉1, 𝛼 ∈ R.

Theorem 13. Let (𝑋, 𝑔) be a complete Paranormed Space.
Then a sequence 𝑥 = (𝑥𝑘) of points in (𝑋, 𝑔) is 𝜆-statistically
convergent if and only if it is 𝜆-statistically Cauchy.

Theorem 14. (a) If 0 < 𝑝 < ∞ and 𝑥𝑘 → 𝜉[𝑉𝜆, 𝑔]𝑝, then
𝑥 = (𝑥𝑘) is 𝜆-statistically convergent to 𝜉 in (𝑋, 𝑔).

(b) If 𝑥 = (𝑥𝑘) is bounded and 𝜆-statistically convergent to
𝜉 in (𝑋, 𝑔), then 𝑥𝑘 → 𝜉[𝑉𝜆, 𝑔]𝑝.

Theorem 15. Let (𝑋, 𝑔) be a complete Paranormed Space.
Then a sequence 𝑥 = (𝑥𝑘) of points in (𝑋, 𝑔) is 𝜆-statistically
convergent if and only if it is 𝜆-statistically Cauchy.

Note that the proof of Theorem 2.4 [11] is incorrect and
the correct proof is given in the following theorem which is
generalization ofTheorem2.4 [11]. Another formof this result
is given in [20] for ideal convergence.

Theorem 16. A sequence 𝑥 = (𝑥𝑘) in (𝑋, 𝑔) is 𝜆-statistically
convergent to 𝜉 if and only if it is 𝑠𝑡∗

𝜆
(𝑔)-convergent to 𝜉.

Proof. Suppose that 𝑥 = (𝑥𝑘) is 𝜆-statistically convergent to
𝜉; that is, 𝑠𝑡𝜆(𝑔)-lim𝑥 = 𝜉. Now, write for 𝑟 = 1, 2, . . ..

𝐾𝑟 := {𝑛 ∈ N : 𝑔 (𝑥𝑘
𝑛

− 𝜉) ≥
1

𝑟
} ,

𝑀𝑟 := {𝑛 ∈ N : 𝑔 (𝑥𝑘
𝑛

− 𝜉) <
1

𝑟
} (𝑟 = 1, 2, . . .) .

(31)

Then 𝛿𝜆(𝐾𝑟) = 0,

𝑀1 ⊃ 𝑀2 ⊃ ⋅ ⋅ ⋅ ⊃ 𝑀𝑖 ⊃ 𝑀𝑖+1 ⊃ ⋅ ⋅ ⋅ , (32)

𝛿𝜆 (𝑀𝑟) = 1, 𝑟 = 1, 2, . . . . (33)

Now we have to show that, for 𝑛 ∈ 𝑀𝑟, (𝑥𝑘
𝑛

) is 𝑔-con-
vergent to 𝜉. On contrary suppose that (𝑥𝑘

𝑛

) is not 𝑔-con-
vergent to 𝜉. Therefore, there is 𝜀 > 0 such that 𝑔(𝑥𝑘

𝑛

− 𝜉) ≥ 𝜀

for infinitely many terms. Let𝑀𝜀 := {𝑛 ∈ N : 𝑔(𝑥𝑘
𝑛

− 𝜉) < 𝜀}

and 𝜀 > 1/𝑟, 𝑟 ∈ N.
Then

𝛿𝜆 (𝑀𝜀) = 0, (34)

and by (32),𝑀𝑟 ⊂ 𝑀𝜀. Hence 𝛿𝜆(𝑀𝑟) = 0, which contradicts
(33) and we get that (𝑥𝑘

𝑛

) is 𝑔-convergent to 𝜉. Hence, 𝑥 is
st∗
𝜆
(𝑔)-convergent to 𝜉.
Conversely, suppose that𝑥 is st∗

𝜆
(𝑔)-convergent to 𝜉.Then

there exists a set 𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋅ ⋅ ⋅ < 𝑘𝑛 < ⋅ ⋅ ⋅ } with
𝛿𝜆(𝐾) = 1 such that 𝑔-lim𝑛→∞𝑥𝑘

𝑛

= 𝜉. Therefore, there is
a positive integer 𝑁 such that 𝑔(𝑥𝑛 − 𝜉) < 𝜀 for 𝑛 ≥ 𝑁. Put
𝐾𝜀 := {𝑛 ∈ N : 𝑔(𝑥𝑛−𝜉) ≥ 𝜀} and𝐾󸀠 := {𝑘𝑁+1, 𝑘𝑁+2, . . .}.Then
𝛿𝜆(𝐾
󸀠
) = 1 and 𝐾𝜀 ⊆ N − 𝐾

󸀠 which implies that 𝛿𝜆(𝐾𝜀) = 0.
Hence𝑥 = (𝑥𝑘) is𝜆-statistically convergent to 𝜉; that is st𝜆(𝑔)-
lim𝑥 = 𝜉.

This completes the proof of the theorem.
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