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Let 𝑋 be a real Banach space and 𝐾 a nonempty closed convex subset of 𝑋. Let 𝑇
𝑖
: 𝐾 → 𝐾 (𝑖 = 1, 2, . . . , 𝑚) be 𝑚 asymptotically

nonexpansive mappings with sequence {𝑘
𝑛
} ⊂ [1, ∞),∑∞

𝑛=1
(𝑘
𝑛
− 1) < ∞, andF = ⋂

𝑚

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0, where 𝐹 is the set of fixed points

of 𝑇
𝑖
. Suppose that {𝑎

𝑖𝑛
}
∞

𝑛=1
, {𝑏
𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are appropriate sequences in [0, 1] and {𝑢

𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are bounded

sequences in 𝐾 such that ∑
∞

𝑛=1
𝑏
𝑖𝑛

< ∞ for 𝑖 = 1, 2, . . . , 𝑚. We give {𝑥
𝑛
} defined by 𝑥

1
∈ 𝐾, 𝑥

𝑛+1
= (1 − 𝑎

1𝑛
− 𝑏
1𝑛
)𝑦
𝑛+𝑚−2

+

𝑎
1𝑛
𝑇
𝑛

1
𝑦
𝑛+𝑚−2

+𝑏
1𝑛
𝑢
1𝑛
, 𝑦
𝑛+𝑚−2

= (1−𝑎
2𝑛

−𝑏
2𝑛
)𝑦
𝑛+𝑚−3

+𝑎
2𝑛
𝑇
𝑛

2
𝑦
𝑛+𝑚−3

+𝑏
2𝑛
𝑢
2𝑛
, . . . , 𝑦

𝑛+2
= (1−𝑎

(𝑚−2)𝑛
−𝑏
(𝑚−2)𝑛

)𝑦
𝑛+1

+𝑎
(𝑚−2)𝑛

𝑇
𝑛

𝑚−2
𝑦
𝑛+1

+

𝑏
(𝑚−2)𝑛

𝑢
(𝑚−2)𝑛

, 𝑦
𝑛+1

= (1−𝑎
(𝑚−1)𝑛

−𝑏
(𝑚−1)𝑛

)𝑦
𝑛
+𝑎
(𝑚−1)𝑛

𝑇
𝑛

𝑚−1
𝑦
𝑛
+𝑏
(𝑚−1)𝑛

𝑢
(𝑚−1)𝑛

, 𝑦
𝑛
= (1−𝑎

𝑚𝑛
−𝑏
𝑚𝑛

)𝑥
𝑛
+𝑎
𝑚𝑛

𝑇
𝑛

𝑚
𝑥
𝑛
+𝑏
𝑚𝑛

𝑢
𝑚𝑛

, 𝑚 ≥ 2, 𝑛 ≥ 1.

The purpose of this paper is to study the above iteration scheme for approximating common fixed points of a finite family of
asymptotically nonexpansivemappings and to proveweak and some strong convergence theorems for suchmappings in real Banach
spaces. The results obtained in this paper extend and improve some results in the existing literature.

1. Introduction

Let 𝐾 be a nonempty subset of a real Banach space 𝑋 and let
𝑇 : 𝐾 → 𝐾 be a mapping. Let 𝐹(𝑇) = {𝑥 ∈ 𝐾 : 𝑇𝑥 = 𝑥} be
the set of fixed points of 𝑇.

A mapping 𝑇 : 𝐾 → 𝐾 is called nonexpansive if

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (1)

for all 𝑥, 𝑦 ∈ 𝐾. Similarly, 𝑇 is called asymptotically
nonexpansive if there exists a sequence {𝑘

𝑛
} ⊂ [1,∞) with

lim
𝑛→∞

𝑘
𝑛
= 1 such that

󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (2)

for all 𝑥, 𝑦 ∈ 𝐾 and 𝑛 ≥ 1. The mapping 𝑇 is called uniformly

L-Lipschitzian if there exists a positive constant 𝐿 such that
󵄩󵄩󵄩󵄩𝑇
𝑛
𝑥 − 𝑇
𝑛
𝑦
󵄩󵄩󵄩󵄩 ≤ 𝐿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (3)

for all 𝑥, 𝑦 ∈ 𝐾 and 𝑛 ≥ 1.
It is easy to see that if 𝑇 is asymptotically nonexpansive,

then it is uniformly𝐿-Lipschitzianwith the uniformLipschitz
constant 𝐿 = sup{𝑘

𝑛
: 𝑛 ≥ 1}.

The class of asymptotically nonexpansive mappings
which is an important generalization of the class nonex-
pansive maps was introduced by Goebel and Kirk [1]. They
proved that every asymptotically nonexpansive self-mapping
of a nonempty closed convex bounded subset of a uniformly
convex Banach space has a fixed point.

The main tool for approximation of fixed points of
generalizations of nonexpansive mappings remains itera-
tive technique. Iterative techniques for nonexpansive self-
mappings in Banach spaces including Mann type (one-step),
Ishikawa type (two-step), and three-step iteration processes
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have been studied extensively by various authors; see, for
example, ([2–8]).

Recently, Chidume and Ali [9] defined (4) and con-
structed the sequence for the approximation of common
fixed points of finite families of asymptotically nonexpansive
mappings. Yıldırım and Özdemir [10] introduced an iteration
scheme for approximating common fixed points of a finite
family of asymptotically quasi-nonexpansive self-mappings
and proved some strong and weak convergence theorems for
such mappings in uniformly convex Banach spaces. Quan et
al. [11] studied sufficient and necessary conditions for finite
step iterative schemes with mean errors for a finite family
of asymptotically quasi-nonexpansive mappings in Banach
spaces to converge to a common fixed point. Peng [12] proved
the convergence of finite step iterative schemes with mean
errors for asymptotically nonexpansive mappings in Banach
spaces. More recently Kızıltunç and Temir [13] introduced
and studied a new iteration process for a finite family of
nonself asymptotically nonexpansivemappings with errors in
Banach spaces.

In [9], the authors introduced an iterative process for
a finite family of asymptotically nonexpansive mappings as
follows:

𝑥
1
∈ 𝐾,

𝑥
𝑛+1

= (1 − 𝑎
1𝑛
) 𝑥
𝑛
+ 𝑎
1𝑛
𝑇
𝑛

1
𝑦
𝑛+𝑚−2

,

𝑦
𝑛+𝑚−2

= (1 − 𝑎
2𝑛
) 𝑥
𝑛
+ 𝑎
2𝑛
𝑇
𝑛

2
𝑦
𝑛+𝑚−3

,

...

𝑦
𝑛+1

= (1 − 𝑎
(𝑚−1)𝑛

) 𝑥
𝑛
+ 𝑎
(𝑚−1)𝑛

𝑇
𝑛

𝑚−1
𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝑎

𝑚𝑛
) 𝑥
𝑛
+ 𝑎
𝑚𝑛

𝑇
𝑛

𝑚
𝑥
𝑛
, if 𝑚 ≥ 2, 𝑛 ≥ 1,

(4)

where 𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑚
: 𝐾 → 𝐾 are 𝑚 asymptotically

nonexpansive mappings and {𝑎
𝑖𝑛
} ⊂ [0, 1] for 𝑖 = 1, . . . , 𝑚.

Inspired andmotivated by these facts, it is our purpose in
this paper to construct an iteration scheme for approximat-
ing common fixed points of finite family of asymptotically
nonexpansive mappings and study weak and some strong
convergence theorems for such mappings in real Banach
spaces.

Let 𝑋 be a real Banach space and 𝐾 a nonempty closed
convex subset of 𝑋. Let 𝑇

𝑖
: 𝐾 → 𝐾 (𝑖 = 1, 2, . . . , 𝑚)

be 𝑚 asymptotically nonexpansive mappings with sequence
{𝑘
𝑛
} ⊂ [1,∞), ∑∞

𝑛=1
(𝑘
𝑛
− 1) < ∞, and F = ⋂

𝑚

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0.

Suppose that {𝑎
𝑖𝑛
}
∞

𝑛=1
, {𝑏
𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are appropriate

sequences in [0, 1] and {𝑢
𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are bounded

sequences in𝐾 such that∑∞
𝑛=1

𝑏
𝑖𝑛

< ∞ for 𝑖 = 1, 2, . . . , 𝑚. Let
{𝑥
𝑛
} be defined by

𝑥
1
∈ 𝐾,

𝑥
𝑛+1

= (1 − 𝑎
1𝑛

− 𝑏
1𝑛
) 𝑦
𝑛+𝑚−2

+ 𝑎
1𝑛
𝑇
𝑛

1
𝑦
𝑛+𝑚−2

+ 𝑏
1𝑛
𝑢
1𝑛
,

𝑦
𝑛+𝑚−2

= (1 − 𝑎
2𝑛

− 𝑏
2𝑛
) 𝑦
𝑛+𝑚−3

+ 𝑎
2𝑛
𝑇
𝑛

2
𝑦
𝑛+𝑚−3

+ 𝑏
2𝑛
𝑢
2𝑛
,

...

𝑦
𝑛+2

= (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

) 𝑦
𝑛+1

+ 𝑎
(𝑚−2)𝑛

𝑇
𝑛

𝑚−2
𝑦
𝑛+1

+ 𝑏
(𝑚−2)𝑛

𝑢
(𝑚−2)𝑛

,

𝑦
𝑛+1

= (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

) 𝑦
𝑛

+ 𝑎
(𝑚−1)𝑛

𝑇
𝑛

𝑚−1
𝑦
𝑛
+ 𝑏
(𝑚−1)𝑛

𝑢
(𝑚−1)𝑛

,

𝑦
𝑛
= (1 − 𝑎

𝑚𝑛
− 𝑏
𝑚𝑛

) 𝑥
𝑛
+ 𝑎
𝑚𝑛

𝑇
𝑛

𝑚
𝑥
𝑛

+ 𝑏
𝑚𝑛

𝑢
𝑚𝑛

, 𝑚 ≥ 2, 𝑛 ≥ 1.

(5)

2. Preliminaries

Let 𝑋 be a real Banach space, 𝐾 a nonempty closed convex
subset of 𝑋, and 𝐹(𝑇) the set of fixed points of 𝑇. A Banach
space 𝑋 is said to be uniformly convex if the modulus of
convexity of𝑋

𝛿 (𝜀) = inf {1 −

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
: ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 = 𝜀} > 0

(6)

for all 0 < 𝜀 ≤ 2 (i.e., 𝛿 : (0, 2] → [0, 1]). Recall that a
Banach space𝑋 is said to satisfy Opial’s condition if, for each
sequence {𝑥

𝑛
} in𝑋, the condition 𝑥

𝑛
⇀ 𝑥 implies that

lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩 < lim inf
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦
󵄩󵄩󵄩󵄩 (7)

for all 𝑦 ∈ 𝑋 with 𝑦 ̸= 𝑥. It is well known that all 𝑙
𝑟
spaces for

1 < 𝑟 < ∞ have this property. However, the 𝐿
𝑟
spaces do not

have unless 𝑟 = 2.
A mapping 𝑇 : 𝐾 → 𝐾 is said to be semicompact if, for

any bounded sequence {𝑥
𝑛
} in 𝐾 such that ‖𝑥

𝑛
− 𝑇𝑥
𝑛
‖ → 0

as 𝑛 → ∞, there exists a subsequence say {𝑥
𝑛𝑗
} of {𝑥

𝑛
} such

that {𝑥
𝑛𝑗
} converges strongly to some 𝑥

∗ in 𝐾. 𝑇 is said to be
completely continuous if for every bounded sequence {𝑥

𝑛
} in

𝐾, there exists a subsequence say {𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that the

sequence {𝑇𝑥
𝑛𝑗
} converges strongly to some element of the

range of 𝑇.
The following lemmas were given in [14, 15], respectively,

and we need them to prove our main results.

Lemma 1. Let {𝑠
𝑛
}, {𝑡
𝑛
}, and {𝜎

𝑛
} be sequences of nonnegative

real numbers satisfying the following conditions: for all 𝑛 ≥ 1,
𝑠
𝑛+1

≤ (1 + 𝜎
𝑛
)𝑠
𝑛
+ 𝑡
𝑛
, where ∑

∞

𝑛=1
𝜎
𝑛
< ∞ and ∑

∞

𝑛=1
𝑡
𝑛
< ∞.

Then

(i) lim
𝑛→∞

𝑠
𝑛
exists;

(ii) in particular, if {𝑠
𝑛
} has a subsequence {𝑠

𝑛𝑗
} converging

to 0, then lim
𝑛→∞

𝑠
𝑛
= 0.

Lemma 2. Let 𝑝 > 1 and 𝐶 > 0 be two fixed numbers. Then a
Banach space𝑋 is uniformly convex if and only if there exists a
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continuous, strictly increasing, convex function 𝑔 : [0,∞) →

[0,∞) with 𝑔(0) = 0 such that

󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆)𝑦
󵄩󵄩󵄩󵄩

𝑝
≤ 𝜆‖𝑥‖

𝑝
+ (1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑝

− 𝑤
𝑝 (𝜆) 𝑔 (

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩)

(8)

for all 𝑥, 𝑦 ∈ 𝐵
𝐶

:= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝐶}, and 𝜆 ∈ [0, 1], where
𝑤
𝑝
(𝜆) = 𝜆(1 − 𝜆)

𝑝
+ 𝜆
𝑝
(1 − 𝜆).

The following lemmas were proved in [3].

Lemma 3. Let 𝑋 be a uniformly convex Banach space and
𝐵
𝐶

:= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝐶}, 𝐶 > 0. Then there exists a
continuous, strictly increasing, convex function 𝑔 : [0,∞) →

[0,∞) with 𝑔(0) = 0 such that

󵄩󵄩󵄩󵄩𝜆𝑥 + 𝜇𝑦 + ]𝑧󵄩󵄩󵄩󵄩
2
≤ 𝜆‖𝑥‖

2
+ 𝜇

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

+ ]‖𝑧‖2 − (𝜆𝜇) 𝑔 (
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩)

(9)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐵
𝐶
and 𝜆, 𝜇, ] ∈ [0, 1] with 𝜆 + 𝜇 + ] = 1.

Lemma 4. Let 𝑋 be a uniformly convex Banach space, 𝐾 a
nonempty closed convex subset of 𝑋, and 𝑇 : 𝐾 → 𝐾 an
asymptotically nonexpansive mapping.Then 𝐼−𝑇 (𝐼 is identity
mapping) is demiclosed at zero; that is, if 𝑥

𝑛
→ 𝑥
∗ weakly and

𝑥
𝑛
− 𝑇𝑥
𝑛

→ 0 strongly, then 𝑥
∗
∈ 𝐹(𝑇), where 𝐹(𝑇) is the set

of fixed points of 𝑇.

Definition 5. A family {𝑇
𝑖
: 𝑖 ∈ {1, . . . , 𝑚}} of asymptotically

nonexpansive mappings on𝐾withF = ⋂
𝑚

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0 is said

to satisfy condition (A) on 𝐾 if there exists a nondecreasing
function 𝑓 : [0,∞) → [0,∞)with 𝑓(0) = 0, 𝑓(𝑟) > 0, for all
𝑟 ∈ (0,∞) such that max

1≤𝑖≤𝑚
‖𝑥 − 𝑇

𝑖
𝑥‖ ≥ 𝑓(𝑑(𝑥, 𝐹)) for all

𝑥 ∈ 𝐾.

3. Main Results

In this section, we prove weak and strong convergence of
the iterative sequence generated by iterative scheme (5) to a
common element of the sets of fixed points of a finite family
of asymptotically nonexpansive mappings in a real Banach
space.

Lemma 6. Let 𝑋 be a real Banach space and 𝐾 a nonempty
closed convex subset of𝑋. Let 𝑇

𝑖
: 𝐾 → 𝐾 (𝑖 = 1, 2, . . . , 𝑚) be

𝑚 asymptotically nonexpansivemappings with sequence {𝑘
𝑛
} ⊂

[1,∞), ∑∞
𝑛=1

(𝑘
𝑛
− 1) < ∞, and F = ⋂

𝑚

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0. Suppose

that {𝑎
𝑖𝑛
}
∞

𝑛=1
, {𝑏
𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are appropriate sequences

in [0, 1] and {𝑢
𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are bounded sequences in

𝐾 such that ∑∞
𝑛=1

𝑏
𝑖𝑛

< ∞ for 𝑖 = 1, 2, . . . , 𝑚. Let {𝑥
𝑛
} be given

by (5). Then {𝑥
𝑛
} is bounded and lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ exists for

𝑝 ∈ F.

Proof. For any given 𝑝 ∈ F, since {𝑢
𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are

bounded sequences in𝐾, let

𝑀 = sup
𝑛≥1, 𝑖=1,2,...,𝑚

󵄩󵄩󵄩󵄩𝑢𝑖𝑛 − 𝑝
󵄩󵄩󵄩󵄩 . (10)

For each 𝑛 ≥ 1, using (5), we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩((1 − 𝑎

𝑚𝑛
− 𝑏
𝑚𝑛

) 𝑥
𝑛
+ 𝑎
𝑚𝑛

𝑇
𝑛

𝑚
𝑥
𝑛
+ 𝑏
𝑚𝑛

𝑢
𝑚𝑛

) − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
𝑚𝑛

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

+ 𝑏
𝑚𝑛

󵄩󵄩󵄩󵄩𝑢𝑚𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
𝑚𝑛

𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑏
𝑚𝑛

󵄩󵄩󵄩󵄩𝑢𝑚𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
𝑚𝑛

𝑀,

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
((1 − 𝑎

(𝑚−1)𝑛
− 𝑏
(𝑚−1)𝑛

) 𝑦
𝑛
+ 𝑎
(𝑚−1)𝑛

𝑇
𝑛

(𝑚−1)
𝑦
𝑛

+ 𝑏
(𝑚−1)𝑛

𝑢
(𝑚−1)𝑛

) − 𝑝
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
(𝑚−1)𝑛

×
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩
+ 𝑏
(𝑚−1)𝑛

󵄩󵄩󵄩󵄩𝑢(𝑚−1)𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
(𝑚−1)𝑛

𝑘
𝑛

×
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑏
(𝑚−1)𝑛

󵄩󵄩󵄩󵄩𝑢(𝑚−1)𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
(𝑚−1)𝑛

𝑀

≤ 𝑘
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
𝑚𝑛

𝑀𝑘
𝑛
+ 𝑏
(𝑚−1)𝑛

𝑀,

󵄩󵄩󵄩󵄩𝑦𝑛+2 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
((1 − 𝑎

(𝑚−2)𝑛
− 𝑏
(𝑚−2)𝑛

) 𝑦
𝑛+1

+ 𝑎
(𝑚−2)𝑛

𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

+ 𝑏
(𝑚−2)𝑛

𝑢
(𝑚−2)𝑛

) − 𝑝
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝑎
(𝑚−2)𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

+ 𝑏
(𝑚−2)𝑛

󵄩󵄩󵄩󵄩𝑢(𝑚−2)𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

+ 𝑎
(𝑚−2)𝑛

𝑘
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

+ 𝑏
(𝑚−2)𝑛

󵄩󵄩󵄩󵄩𝑢(𝑚−2)𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
(𝑚−2)𝑛

𝑀

≤ 𝑘
3

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
𝑚𝑛

𝑀𝑘
2

𝑛
+ 𝑘
𝑛
𝑏
(𝑚−1)𝑛

𝑀 + 𝑏
(𝑚−2)𝑛

𝑀,

...
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−2 − 𝑝

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩((1 − 𝑎

2𝑛
− 𝑏
2𝑛
) 𝑦
𝑛+𝑚−3

+ 𝑎
2𝑛
𝑇
𝑛

2
𝑦
𝑛+𝑚−3

+ 𝑏
2𝑛
𝑢
2𝑛
) − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
2𝑛

− 𝑏
2𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−3 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
2𝑛
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×
󵄩󵄩󵄩󵄩𝑇
𝑛

2
𝑦
𝑛+𝑚−3

− 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
2𝑛

󵄩󵄩󵄩󵄩𝑢2𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
2𝑛

− 𝑏
2𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−3 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
2𝑛
𝑘
𝑛

×
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−3 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑏
2𝑛

󵄩󵄩󵄩󵄩𝑢2𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−3 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
2𝑛
𝑀

≤ 𝑘
(𝑚−1)

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑘
(𝑚−2)

𝑛
𝑏
𝑚𝑛

𝑀 + 𝑘
(𝑚−3)

𝑛
𝑏
(𝑚−1)𝑛

𝑀

+ ⋅ ⋅ ⋅ + 𝑘
𝑛
𝑏
3𝑛
𝑀 + 𝑏

2𝑛
𝑀,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩((1 − 𝑎

1𝑛
− 𝑏
1𝑛
) 𝑦
𝑛+𝑚−2

+ 𝑎
1𝑛
𝑇
𝑛

1
𝑦
𝑛+𝑚−2

+ 𝑏
1𝑛
𝑢
1𝑛
) − 𝑝

󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
1𝑛

− 𝑏
1𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−2 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
1𝑛

×
󵄩󵄩󵄩󵄩𝑇
𝑛

1
𝑦
𝑛+𝑚−2

− 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
1𝑛

󵄩󵄩󵄩󵄩𝑢1𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
1𝑛

− 𝑏
1𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−2 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑎
1𝑛
𝑘
𝑛

×
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−2 − 𝑝

󵄩󵄩󵄩󵄩 + 𝑏
1𝑛

󵄩󵄩󵄩󵄩𝑢1𝑛 − 𝑝
󵄩󵄩󵄩󵄩

≤ 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−2 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑏
1𝑛
𝑀

≤ 𝑘
𝑚

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑘
(𝑚−1)

𝑛
𝑏
𝑚𝑛

𝑀 + 𝑘
(𝑚−2)

𝑛
𝑏
(𝑚−1)𝑛

𝑀

+ ⋅ ⋅ ⋅ + 𝑘
2

𝑛
𝑏
3𝑛
𝑀 + 𝑘

𝑛
𝑏
2𝑛
𝑀 + 𝑏

1𝑛
𝑀.

(11)

Then we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩 ≤ 𝑘
𝑚

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝑀

𝑚

∑

𝑖=1

𝑘
(𝑖−1)

𝑛
𝑏
𝑖𝑛
, (12)

which leads to
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩 ≤ (1 + (𝑘
𝑚

𝑛
− 1))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 + 𝜑
𝑛
, 𝑛 ≥ 1, (13)

where

𝜑
𝑛
= 𝑀

𝑚

∑

𝑖=1

𝑘
(𝑖−1)

𝑛
𝑏
𝑖𝑛
. (14)

Since 𝑡𝑚 − 1 ≤ 𝑚𝑡
𝑚−1

(𝑡 − 1) for all 𝑡 ≥ 1, the only assumption
∑
∞

𝑛=1
(𝑘
𝑛
−1) < ∞ is enough for the boundedness for {𝑘

𝑛
}, then

𝑘
𝑛
⊂ [1, 𝐷], for all 𝑛 ≥ 1, and for some 𝐷. Hence 𝑘

𝑚

𝑛
− 1 ≤

𝑚𝐷
𝑚−1

(𝑘
𝑛
−1)holds for all 𝑛 ≥ 1.Therefore∑∞

𝑛=1
(𝑘
𝑚

𝑛
−1) < ∞

and also∑
∞

𝑛=1
𝜑
𝑛
< ∞. Equation (13) and Lemma 1 guarantee

that the sequence {𝑥
𝑛
} is bounded and lim

𝑛→∞
‖𝑥
𝑛
−𝑝‖ exists.

Theorem 7. Let 𝑋 be a real uniformly convex Banach space
and 𝐾 a nonempty closed convex subset of 𝑋. Let 𝑇

𝑖
:

𝐾 → 𝐾 (𝑖 = 1, 2, . . . , 𝑚) be 𝑚 asymptotically nonexpansive
mappings with sequence {𝑘

𝑛
} ⊂ [1,∞), ∑∞

𝑛=1
(𝑘
𝑛
− 1) < ∞

and F = ⋂
𝑚

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0. Suppose that {𝑎

𝑖𝑛
}
∞

𝑛=1
, {𝑏
𝑖𝑛
}
∞

𝑛=1
, 𝑖 =

1, 2, . . . , 𝑚 are appropriate sequences in [0, 1] and {𝑢
𝑖𝑛
}
∞

𝑛=1
, 𝑖 =

1, 2, . . . , 𝑚 are bounded sequences in𝐾 such that∑∞
𝑛=1

𝑏
𝑖𝑛

< ∞

for 𝑖 = 1, 2, . . . , 𝑚. Let {𝑥
𝑛
} be given by (5). Suppose that

0 < lim inf
𝑛→∞

𝑎
𝑖𝑛

< lim sup
𝑛→∞

(𝑎
𝑖𝑛

+ 𝑏
𝑖𝑛
) < 1 (15)

for 𝑖 = 1, . . . , 𝑚. Then

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇𝑖𝑥𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0, (𝑖 = 1, 2, . . . , 𝑚) . (16)

Proof. Let 𝑝 ∈ F. Then by Lemma 6, lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖

exists. Since {𝑢
𝑖𝑛
}
∞

𝑛=1
, 𝑖 = 1, 2, . . . , 𝑚 are bounded sequences

in 𝐾, let 𝑀 = sup
𝑛≥1, 𝑖=1,2,...,𝑚

‖𝑢
𝑖𝑛

− 𝑝‖; moreover, it follows
that {𝑦

𝑛+𝑚−𝑖
− 𝑝} is also bounded for each 𝑖 ∈ {2, 3, . . . , 𝑚},

and hence {(𝑢
(𝑚−𝑖+1)𝑛

− 𝑦
𝑛+𝑖−1

)} is also bounded for 𝑖 ∈

{1, 2, . . . , 𝑚}. By using (5), we obtain
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩((1 − 𝑎

𝑚𝑛
− 𝑏
𝑚𝑛

) 𝑥
𝑛
+ 𝑎
𝑚𝑛

𝑇
𝑛

𝑚
𝑥
𝑛
+ 𝑏
𝑚𝑛

𝑢
𝑚𝑛

) − 𝑝
󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑎
𝑚𝑛

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑏
𝑚𝑛

󵄩󵄩󵄩󵄩𝑢𝑚𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤ (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑎
𝑚𝑛

𝑘
2

𝑛

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑚𝑛

󵄩󵄩󵄩󵄩𝑢𝑛𝑚 − 𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤ 𝑘
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑚𝑛

𝑀
2
− (1 − 𝑎

𝑚𝑛
− 𝑏
𝑚𝑛

)

× 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩) ,

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩((1 − 𝑎

(𝑚−1)𝑛
− 𝑏
(𝑚−1)𝑛

) 𝑦
𝑛
+ 𝑎
(𝑚−1)𝑛

×𝑇
𝑛

(𝑚−1)
𝑦
𝑛
+ 𝑏
(𝑚−1)𝑛

𝑢
(𝑚−1)𝑛

) − 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑎
(𝑚−1)𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑝

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑏
(𝑚−1)𝑛

󵄩󵄩󵄩󵄩𝑢(𝑚−1)𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

) 𝑎
(𝑚−1)𝑛

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑎
(𝑚−1)𝑛

𝑘
2

𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑏
(𝑚−1)𝑛

𝑀
2

− (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

) 𝑎
(𝑚−1)𝑛

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑘
2

𝑛

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑏
(𝑚−1)𝑛

𝑀
2
− (1 − 𝑎

(𝑚−1)𝑛
− 𝑏
(𝑚−1)𝑛

)

× 𝑎
(𝑚−1)𝑛

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑘
2

𝑛
(𝑘
2

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑏
𝑚𝑛

𝑀
2
− (1 − 𝑎

𝑚𝑛
− 𝑏
𝑚𝑛

)

× 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩) ) + 𝑏
(𝑚−1)𝑛

𝑀
2

− (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

) 𝑎
(𝑚−1)𝑛

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
) ,
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󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝑘
4

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑘
2

𝑛
𝑏
𝑚𝑛

𝑀
2
+ 𝑏
(𝑚−1)𝑛

𝑀
2

− (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

− (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

) 𝑎
(𝑚−1)𝑛

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
) ,

󵄩󵄩󵄩󵄩𝑦𝑛+2 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
((1 − 𝑎

(𝑚−2)𝑛
− 𝑏
(𝑚−2)𝑛

) 𝑦
𝑛+1

+ 𝑎
(𝑚−2)𝑛

𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

+ 𝑏
(𝑚−2)𝑛

𝑢
(𝑚−2)𝑛

) − 𝑝
󵄩󵄩󵄩󵄩󵄩

2

≤ (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑎
(𝑚−2)𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

− 𝑝
󵄩󵄩󵄩󵄩󵄩

2

+ 𝑏
(𝑚−2)𝑛

󵄩󵄩󵄩󵄩𝑢(𝑚−2)𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

) 𝑎
(𝑚−2)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

− 𝑦
𝑛+1

󵄩󵄩󵄩󵄩󵄩
)

≤ (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

)
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝑎
(𝑚−2)𝑛

𝑘
2

𝑛

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑏
(𝑚−2)𝑛

𝑀
2

− (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

) 𝑎
(𝑚−2)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

− 𝑦
𝑛+1

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑘
2

𝑛

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑏
(𝑚−2)𝑛

𝑀
2

− (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

) 𝑎
(𝑚−2)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

− 𝑦
𝑛+1

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑘
2

𝑛
(𝑘
4

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑘
2

𝑛
𝑏
𝑚𝑛

𝑀
2
+ 𝑏
(𝑚−1)𝑛

𝑀
2

− (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

− (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

) 𝑎
(𝑚−1)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
) ) + 𝑏

(𝑚−2)𝑛
𝑀
2

− (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

)𝑎
(𝑚−2)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

− 𝑦
𝑛+1

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑘
6

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑘
4

𝑛
𝑏
𝑚𝑛

𝑀
2
+ 𝑘
2

𝑛
𝑏
(𝑚−1)𝑛

𝑀
2
+ 𝑏
(𝑚−2)𝑛

𝑀
2

− (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

− (1 − 𝑎
(𝑚−1)𝑛

− 𝑏
(𝑚−1)𝑛

) 𝑎
(𝑚−1)𝑛

𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−1)
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩
)

− (1 − 𝑎
(𝑚−2)𝑛

− 𝑏
(𝑚−2)𝑛

)𝑎
(𝑚−2)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−2)
𝑦
𝑛+1

− 𝑦
𝑛+1

󵄩󵄩󵄩󵄩󵄩
)

...
(17)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝑘
2𝑚

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
+ 𝑀
2

𝑚−1

∑

𝑖=0

𝑘
2𝑖

𝑛
𝑏
(𝑖+1)𝑛

−

𝑚−2

∑

𝑖=0

((1 − 𝑎
(𝑖+1)𝑛

− 𝑏
(𝑖+1)𝑛

) 𝑎
(𝑖+1)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑖+1
𝑦
𝑛+𝑚−𝑖−2

− 𝑦
𝑛+𝑚−𝑖−2

󵄩󵄩󵄩󵄩) )

− (1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩) .

(18)

Note that 0 ≤ 𝜃
2
− 1 ≤ 2𝜃(𝜃 − 1) for all 𝜃 ≥ 1, the assumption

∑
∞

𝑛=1
(𝑘
𝑛
−1) < ∞ implies that∑∞

𝑛=1
(𝑘
2

𝑛
−1) < ∞. Since {𝑘

𝑛
} is

bounded, there exists𝐷 > 0 such that 𝑘
𝑛
∈ [1, 𝐷], 𝑛 ≥ 1.Then

𝑘
2𝑚

𝑛
− 1 ≤ 2𝑚𝐷

2𝑚−1
(𝑘
𝑛
− 1) holds for all 𝑛 ≥ 1. Therefore, the

assumption∑
∞

𝑛=1
(𝑘
𝑛
−1) < ∞ implies that∑∞

𝑛=1
(𝑘
2𝑚

𝑛
−1) < ∞.

Then

(𝑘
2𝑚

𝑛
− 1)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2
≤ 2𝑚𝐷

2𝑚−1
𝐶
2
(𝑘
𝑛
− 1) . (19)

It follows from (18) and (19) that

(1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

+

𝑚−1

∑

𝑖=0

((1 − 𝑎
(𝑖+1)𝑛

− 𝑏
(𝑖+1)𝑛

) 𝑎
(𝑖+1)𝑛

× 𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑖+1
𝑦
𝑛+𝑚−𝑖−2

− 𝑦
𝑛+𝑚−𝑖−2

󵄩󵄩󵄩󵄩) )

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝑚𝐷

2𝑚−1
𝐶
2
(𝑘
𝑛
− 1)

+ 𝑀
2

𝑚−1

∑

𝑖=0

𝑘
2𝑖

𝑛
𝑏
(𝑖+1)𝑛

.

(20)

We first obtain that

(1 − 𝑎
𝑚𝑛

− 𝑏
𝑚𝑛

) 𝑎
𝑚𝑛

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2
+ 2𝑚𝐷

2𝑚−1
𝐶
2
(𝑘
𝑛
− 1)

+ 𝑀
2

𝑚−1

∑

𝑖=0

𝑘
2𝑖

𝑛
𝑏
(𝑖+1)𝑛

.

(21)

Now if 0 < lim inf
𝑛→∞

𝑎
𝑚𝑛

and 0 < lim inf
𝑛→∞

𝑎
𝑚𝑛

<

lim sup
𝑛→∞

(𝑎
𝑚𝑛

+ 𝑏
𝑚𝑛

) < 1, there exist a positive integer 𝑛
0

and 𝜂, 𝜂
󸀠
∈ (0, 1) such that 0 < 𝜂 < 𝑎

𝑚𝑛
, 𝑎
𝑚𝑛

+ 𝑏
𝑚𝑛

< 𝜂
󸀠
< 1

for all 𝑛 ≥ 𝑛
0
. This implies by (21) that

𝜂 (1 − 𝜂
󸀠
) 𝑔 (

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝑚𝐷
2𝑚−1

𝐶
2
(𝑘
𝑛
− 1) + 𝑀

2

𝑚−1

∑

𝑖=0

𝑘
2𝑖

𝑛
𝑏
(𝑖+1)𝑛

.

(22)
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It follows from (22) that for ℓ ≥ 𝑛
0
,

ℓ

∑

𝑛=𝑛0

𝑔 (
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩)

≤
1

𝜂 (1 − 𝜂󸀠)
(

ℓ

∑

𝑛=𝑛0

(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑝

󵄩󵄩󵄩󵄩

2
)

+ 2𝑚𝐷
2𝑚−1

𝐶
2

ℓ

∑

𝑛=𝑛0

(𝑘
𝑛
− 1)

+ 𝑀
2

ℓ

∑

𝑛=𝑛0

𝑚−1

∑

𝑖=0

𝑘
2𝑖

𝑛
𝑏
(𝑖+1)𝑛

) .

(23)

Then ∑
∞

𝑛=𝑛0
𝑔(‖𝑇
𝑛

𝑚
𝑥
𝑛

− 𝑥
𝑛
‖) < ∞, and therefore

lim
𝑛→∞

𝑔(‖𝑇
𝑛

𝑚
𝑥
𝑛

− 𝑥
𝑛
‖) = 0, and by property of 𝑔, we

have lim
𝑛→∞

‖𝑇
𝑛

𝑚
𝑥
𝑛
−𝑥
𝑛
‖ = 0. By a similar method, together

with (20) and by property of 𝑔, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚−1
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚−2
𝑦
𝑛+1

− 𝑦
𝑛+1

󵄩󵄩󵄩󵄩

...

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑖
𝑦
𝑛+𝑚−𝑖−1

− 𝑦
𝑛+𝑚−𝑖−1

󵄩󵄩󵄩󵄩

...

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑇
𝑛

1
𝑦
𝑛+𝑚−2

− 𝑦
𝑛+𝑚−2

󵄩󵄩󵄩󵄩 = 0

(24)

for 2 ≤ 𝑖 < 𝑚. Thus, we conclude that

lim sup
𝑛→∞

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑖−1
𝑦
𝑛+𝑚−𝑖

− 𝑦
𝑛+𝑚−𝑖

󵄩󵄩󵄩󵄩 = 0, (25)

for 2 ≤ 𝑖 ≤ 𝑚. From (5) and for 𝑖 = 1, 2, . . . , 𝑚

󵄩󵄩󵄩󵄩𝑦𝑛+𝑖 − 𝑦
𝑛+𝑖−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝑎

(𝑚−𝑖)𝑛
− 𝑏
(𝑚−𝑖)𝑛

) 𝑦
𝑛+𝑖−1

+ 𝑎
(𝑚−𝑖)𝑛

𝑇
𝑛

(𝑚−𝑖)
𝑦
𝑛+𝑖−1

+ 𝑏
(𝑚−𝑖)𝑛

𝑢
(𝑚−𝑖)𝑛

− 𝑦
𝑛+𝑖−1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑎
(𝑚−𝑖)𝑛

(𝑇
𝑛

(𝑚−𝑖)
𝑦
𝑛+𝑖−1

− 𝑦
𝑛+𝑖−1

)

+ 𝑏
(𝑚−𝑖)𝑛

(𝑢
(𝑚−𝑖)𝑛

− 𝑦
𝑛+𝑖−1

)
󵄩󵄩󵄩󵄩󵄩

≤ 𝑎
(𝑚−𝑖)𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛

(𝑚−𝑖)
𝑦
𝑛+𝑖−1

− 𝑦
𝑛+𝑖−1

󵄩󵄩󵄩󵄩󵄩

+ 𝑏
(𝑚−𝑖)𝑛

󵄩󵄩󵄩󵄩𝑢(𝑚−𝑖)𝑛 − 𝑦
𝑛+𝑖−1

󵄩󵄩󵄩󵄩 .

(26)

This together with (25) implies that for each 𝑖 = 1, 2, . . . , 𝑚−2

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛+𝑖 − 𝑦
𝑛+𝑖−1

󵄩󵄩󵄩󵄩 = 0. (27)

It follows from (5) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝑎

𝑚𝑛
− 𝑏
𝑚𝑛

) 𝑥
𝑛
+ 𝑎
𝑚𝑛

𝑇
𝑛

𝑚
𝑥
𝑛
+ 𝑏
𝑚𝑛

𝑢
𝑚𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ 𝑎
𝑚𝑛

󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 + 𝑏
𝑚𝑛

󵄩󵄩󵄩󵄩𝑢𝑚𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(28)

Equations (24) and (28) imply that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (29)

It follows from (5) that

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛+𝑚−2

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩(1 − 𝑎

1𝑛
− 𝑏
1𝑛
) 𝑦
𝑛+𝑚−2

+ 𝑎
1𝑛
𝑇
𝑛

1
𝑦
𝑛+𝑚−2

+ 𝑏
1𝑛
𝑢
1𝑛

− 𝑦
𝑛+𝑚−2

󵄩󵄩󵄩󵄩

≤ 𝑎
1𝑛

󵄩󵄩󵄩󵄩𝑇
𝑛

1
𝑦
𝑛+𝑚−2

− 𝑦
𝑛+𝑚−2

󵄩󵄩󵄩󵄩 + 𝑏
1𝑛

󵄩󵄩󵄩󵄩𝑢1𝑛 − 𝑦
𝑛+𝑚−2

󵄩󵄩󵄩󵄩 .

(30)

Thus, (24) and (30) guarantee that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛+𝑚−2

󵄩󵄩󵄩󵄩 = 0. (31)

Continuing in this fashion, for each 𝑖 = 2, . . . , 𝑚 we get,

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛+𝑖−2

󵄩󵄩󵄩󵄩 = 0, (32)
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛+𝑚−2
+ 𝑦
𝑛+𝑚−2

− ⋅ ⋅ ⋅ + 𝑦
𝑛+1

− 𝑦
𝑛
+ 𝑦
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛+𝑚−2

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛+𝑚−2 − 𝑦

𝑛+𝑚−3

󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 .

(33)

Taking the limit on both sides inequality from (33), we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (34)

Since𝑇
𝑚
is an asymptotically nonexpansivemapping with 𝑘

𝑛
,

we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇
𝑛

𝑚
𝑥
𝑛+1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛
+ 𝑥
𝑛
− 𝑇
𝑛

𝑚
𝑥
𝑛
+ 𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑇
𝑛

𝑚
𝑥
𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛+1

− 𝑇
𝑛

𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(35)

Taking the limit on both sides inequality (35), and by using
(24), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇
𝑛

𝑚
𝑥
𝑛+1

󵄩󵄩󵄩󵄩 = 0. (36)
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Since 𝑇
𝑚−1

is an asymptotically nonexpansive mapping with
𝑘
𝑛
, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇

𝑛

𝑚−1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛
+ 𝑦
𝑛
− 𝑇
𝑛

𝑚−1
𝑦
𝑛
+ 𝑇
𝑛

𝑚−1
𝑦
𝑛
− 𝑇
𝑛

𝑚−1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚−1
𝑥
𝑛+1

− 𝑇
𝑛

𝑚−1
𝑦
𝑛

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚−1
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 + 𝑘
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑦
𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚−1
𝑦
𝑛
− 𝑦
𝑛

󵄩󵄩󵄩󵄩 .

(37)

Also, taking the limit on both sides inequality (37), and by
using (24), we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑇
𝑛

𝑚−1
𝑥
𝑛+1

󵄩󵄩󵄩󵄩 = 0. (38)

In a similar way, one can prove that for each 𝑖 = 2, . . . , 𝑚 − 1

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑛

𝑚−𝑖
𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (39)

Next, we consider
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚
𝑥
𝑛+1

− 𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚
𝑥
𝑛
− 𝑇
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚
𝑥
𝑛+1

− 𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝐿
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(40)

It follows from (34), (36), and the above inequality (40) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑚
𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0, (41)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇

𝑚−1
𝑥
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚−1
𝑥
𝑛+1

− 𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚−1
𝑥
𝑛+1

− 𝑇
𝑛+1

𝑚−1
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚−1
𝑥
𝑛
− 𝑇
𝑚−1

𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩󵄩
𝑇
𝑛+1

𝑚−1
𝑥
𝑛+1

− 𝑥
𝑛+1

󵄩󵄩󵄩󵄩󵄩

+ 𝐿
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 + 𝐿
󵄩󵄩󵄩󵄩𝑇
𝑛

𝑚−1
𝑥
𝑛
− 𝑥
𝑛

󵄩󵄩󵄩󵄩 .

(42)

It follows from (34), (38) and (42) that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑚−1

𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (43)

Continuing similar process, for each 𝑖 = 0, . . . , 𝑚 − 1 we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇
𝑚−𝑖

𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (44)

The proof is completed.

Theorem 8. Let 𝑋 be a real uniformly convex Banach space
and 𝐾 a nonempty closed convex subset of 𝑋. Let 𝑇

𝑖
:

𝐾 → 𝐾 (𝑖 = 1, 2, . . . , 𝑚) be 𝑚 asymptotically nonexpansive
mappings with sequence {𝑘

𝑛
} ⊂ [1,∞), ∑∞

𝑛=1
(𝑘
𝑛
− 1) < ∞

and F = ⋂
𝑚

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0. Suppose that {𝑎

𝑖𝑛
}
∞

𝑛=1
, {𝑏
𝑖𝑛
}
∞

𝑛=1
, 𝑖 =

1, 2, . . . , 𝑚 are appropriate sequences in [0, 1] and {𝑢
𝑖𝑛
}
∞

𝑛=1
, 𝑖 =

1, 2, . . . , 𝑚 are bounded sequences in𝐾 such that∑∞
𝑛=1

𝑏
𝑖𝑛

< ∞

for 𝑖 = 1, 2, . . . , 𝑚. Suppose that

0 < lim inf
𝑛→∞

𝑎
𝑖𝑛

< lim sup
𝑛→∞

(𝑎
𝑖𝑛

+ 𝑏
𝑖𝑛
) < 1 (45)

for 𝑖 = 1, . . . , 𝑚. If one of {𝑇
𝑖
} is either completely continuous

or semicompact, for some 𝑖 ∈ {1, 2, . . . , 𝑚}, then the sequence
{𝑥
𝑛
} generated by (5) converges strongly to an element ofF.

Proof. Assume that there exists ℓ ∈ {1, 2, . . . , 𝑚} such that 𝑇
ℓ

is semi-compact. Since {𝑥
𝑛
} is bounded and by Theorem 7,

‖𝑥
𝑛
− 𝑇
ℓ
𝑥
𝑛
‖ → 0 as 𝑛 → ∞, there exists a subsequence

{𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that 𝑥

𝑛𝑗
converges strongly to 𝑝 ∈ 𝐾. Since

lim
𝑗→∞

‖𝑥
𝑛𝑗

− 𝑇
ℓ
𝑥
𝑛𝑗
‖ = 0, it follows from Lemma 4 that

𝑇
ℓ
𝑝 = 𝑝. Also, from Theorem 7 lim

𝑗→∞
‖𝑥
𝑛𝑗

− 𝑇
𝑖
𝑥
𝑛𝑗
‖ = 0,

𝑖 = 1, 2, . . . , 𝑚. Therefore, from Lemma 4 we obtain that
𝑝 ∈ ⋂

𝑚

𝑖=1
𝐹(𝑇
𝑖
). So {𝑥

𝑛
} converges strongly to 𝑝.

If one of 𝑇
𝑖
’s is completely continuous, say 𝑇

ℓ
, since {𝑥

𝑛
}

is bounded, there exists a subsequence {𝑥
𝑛𝑗
} of {𝑥

𝑛
} such

that 𝑇
ℓ
𝑥
𝑛𝑗

converges strongly to 𝑝 ∈ 𝐾. By Theorem 7,
lim
𝑗→∞

‖𝑥
𝑛𝑗

− 𝑇
ℓ
𝑥
𝑛𝑗
‖ = 0. It follows from continuity of ‖ ⋅ ‖

that

0 = lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗

− 𝑇
ℓ
𝑥
𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
= lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛𝑗

− 𝑝
󵄩󵄩󵄩󵄩󵄩󵄩
= 0. (46)

Using {𝑥
𝑛𝑗
} → 𝑝 as 𝑗 → ∞, lim

𝑗→∞
‖𝑥
𝑛𝑗

− 𝑇
𝑖
𝑥
𝑛𝑗
‖ = 0, 𝑖 =

1, 2, . . . , 𝑚 and Lemma 4, we obtain that 𝑝 ∈ F = ⋂
𝑚

𝑖=1
𝐹(𝑇
𝑖
).

Also using {𝑥
𝑛𝑗
} → 𝑝 as 𝑗 → ∞ and Lemma 6, we obtain

that lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = 0. This completes the proof.

Next, we prove a strong convergence theorem for asymp-
totically nonexpansive mappings in a uniformly convex
Banach space satisfying condition (A).

Theorem 9. Let 𝑋 be a real uniformly convex Banach space
and 𝐾 a nonempty closed convex subset of 𝑋. Let 𝑇

𝑖
:

𝐾 → 𝐾 (𝑖 = 1, 2, . . . , 𝑚) be m asymptotically nonexpansive
mappings with sequence {𝑘

𝑛
} ⊂ [1,∞), ∑∞

𝑛=1
(𝑘
𝑛
− 1) < ∞

and satisfying the condition (A). Suppose that {𝑎
𝑖𝑛
}
∞

𝑛=1
, {𝑏
𝑖𝑛
}
∞

𝑛=1
,

𝑖 = 1, 2, . . . , 𝑚 are appropriate sequences in [0, 1] and {𝑢
𝑖𝑛
}
∞

𝑛=1
,

𝑖 = 1, 2, . . . , 𝑚 are bounded sequences in𝐾 such that∑∞
𝑛=1

𝑏
𝑖𝑛

<

∞ for 𝑖 = 1, 2, . . . , 𝑚. Suppose that F = ⋂
𝑚

𝑖=1
𝐹(𝑇
𝑖
) ̸= 0

and 0 < lim inf
𝑛→∞

𝑎
𝑖𝑛

< lim sup
𝑛→∞

(𝑎
𝑖𝑛

+ 𝑏
𝑖𝑛
) < 1 for

𝑖 = 1, . . . , 𝑚.Then the sequence {𝑥
𝑛
} generated by (5) converges

strongly to an element ofF.

Proof. Since lim
𝑛→∞

‖𝑥
𝑛
−𝑝‖ exists for all𝑝 ∈ F by Lemma6,

then, for any 𝑝 ∈ F such that

𝑑 (𝑥
𝑛
,F) =

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑝
󵄩󵄩󵄩󵄩 , (47)

we have that lim
𝑛→∞

‖𝑥
𝑛
−𝑝‖ exists. It follows from (47) that

lim
𝑛→∞

𝑑(𝑥
𝑛
,F) exists. From condition (A)

0 ≤ 𝑓 (𝑑 (𝑥
𝑛
,F)) ≤

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑇
𝑖0
𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
, (48)
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where ‖𝑥
𝑛

− 𝑇
𝑖0
𝑥
𝑛
‖ is max

1≤𝑖≤𝑚
‖𝑥
𝑛

− 𝑇
𝑖
𝑥
𝑛
‖. From The-

orem 7 lim
𝑛→∞

‖𝑥
𝑛

− 𝑇
𝑖0
𝑥
𝑛
‖ = 0. It then follows

(48) that lim
𝑛→∞

𝑓(𝑑(𝑥
𝑛
,F)) = 0. By property of 𝑓,

lim
𝑛→∞

𝑑(𝑥
𝑛
,F) = 0. It also follows from (47) that

lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = 0. Therefore lim

𝑛→∞
𝑥
𝑛
= 𝑝 ∈ F.

Now, we prove the weak convergence of iteration (5)
for a family of asymptotically nonexpansive mappings in a
uniformly convex Banach space.

Theorem 10. Let 𝑋 be a uniformly convex Banach space
satisfying Opial’s condition, and let 𝐾 be a nonempty closed
convex subset of 𝑋. Let 𝑇

𝑖
: 𝐾 → 𝐾 (𝑖 = 1, 2, . . . , 𝑚)

be 𝑚 asymptotically nonexpansive mappings with sequence
{𝑘
𝑛
}, and let the sequences {𝑎

𝑖𝑛
}
∞

𝑛=1
, {𝑏
𝑖𝑛
}
∞

𝑛=1
, and {𝑢

𝑖𝑛
}
∞

𝑛=1
, 𝑖 =

1, 2, . . . , 𝑚 be the same as inTheorem 7.Then the sequence {𝑥
𝑛
}

defined by (5) converges weakly to a common fixed point of
{𝑇
𝑖
: 𝑖 = 1, . . . , 𝑚}.

Proof. It follows from Lemma 6 that lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists.

Therefore, {𝑥
𝑛
− 𝑝} is a bounded sequence in 𝑋. Then by

the reflexivity of 𝑋 and the boundedness of {𝑥
𝑛
}, there exists

a subsequence {𝑥
𝑛𝑗
} of {𝑥

𝑛
} such that 𝑥

𝑛𝑗
⇀ 𝑝 weakly. By

Theorem 7, lim
𝑛→∞

‖𝑥
𝑛
−𝑇
𝑖
𝑥
𝑛
‖ = 0, and 𝐼 −𝑇

𝑖
is demiclosed

at 0 for 𝑖 = 1, 2, . . . , 𝑚. So we obtain 𝑇
𝑖
𝑝 = 𝑝 for 𝑖 =

1, 2, . . . , 𝑚. Finally, we prove that {𝑥
𝑛
} converges to𝑝. Suppose

𝑝, 𝑞 ∈ 𝑤({𝑥
𝑛
}), where 𝑤({𝑥

𝑛
}) denotes the weak limit set of

{𝑥
𝑛
}. Let {𝑥

𝑛𝑗
} and {𝑥

𝑚𝑗
} be two subsequences of {𝑥

𝑛
} which

converge weakly to 𝑝 and 𝑞, respectively. Opial’s condition
ensures that𝜔(𝑥

𝑛
) is a singleton set. It follows that𝑝 = 𝑞.Thus

{𝑥
𝑛
} converges weakly to an element ofF.This completes the

proof.
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