
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 560258, 9 pages
http://dx.doi.org/10.1155/2013/560258

Research Article
Fixed Point of a New Three-Step Iteration Algorithm under
Contractive-Like Operators over Normed Spaces

Vatan Karakaya,1 Kadri DoLan,1 Faik Gürsoy,2 and Müzeyyen Ertürk2

1 Department of Mathematical Engineering, Faculty of Chemistry-Metallurgical, Yildiz Technical University,
Davutpasa Campus, Esenler, 34210 Istanbul, Turkey

2Department of Mathematics, Faculty of Science and Letters, Yildiz Technical University, Davutpasa Campus,
Esenler, 34220 Istanbul, Turkey

Correspondence should be addressed to Vatan Karakaya; vkkaya@yildiz.edu.tr

Received 2 September 2013; Accepted 14 October 2013

Academic Editor: S. A. Mohiuddine

Copyright © 2013 Vatan Karakaya et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a new three-step iteration scheme andprove that this new iteration scheme is convergent to fixed points of contractive-
like operators. Also, by providing an example, we show that our new iteration method is faster than another iteration method due
to Suantai (2005). Furthermore, it is shown that this new iteration method is equivalent to some other iteration methods in the
sense of convergence. Finally, it is proved that this new iteration method is T-stable.

1. Introduction and Preliminaries

Most of nonlinear equations 𝑓(𝑥) = 𝑦 appearing in physical
formulations can similarly be transformed into a fixed point
equation of the form 𝑥 = 𝑇𝑥. To obtain results on existence
and uniqueness of such equations’ solution, an approximate
fixed point theorem is applied. That is, this application will
bring us to the solution of the original equation via help of
a particular fixed point iteration method. For this reason,
it is crucial to define a new iteration method. To decide
whether an iteration method is useful for application, it is of
paramount importance to answer the following questions.

(i) Does it converge to fixed point of an operator?
(ii) Is it faster than the iterations defined in the existing

literature?
(iii) Is its convergence equivalent to the convergence of the

other iteration methods?
(iv) Is it 𝑇-stable? and so forth.

Throughout this paper we examine four essential con-
cepts based on the above questions for a new three-step
iteration method when applied to contractive-like mapping.

As a background to our exposition, we now give some
information about literature of those concepts.

The first concept of this work is about convergence of
fixed point iteration methods. Fixed point iteration methods
may exhibit radically different behaviors for various classes
of mappings. While a particular fixed point iteration method
is convergent for an appropriate class of mappings, it could
not be convergent for others. Therefore, it is important to
determine whether an iteration method converges to fixed
point of a mapping. In this field, there are numerous works
regarding convergence of various iterative methods, as one
can see in [1–14].

In this work, the second concept is the rate of convergence
of iterationmethods. After examining convergence of an iter-
ation method, it is important to check whether this iteration
method is faster than some well-known iteration methods or
not. If it is faster than some current iterationmethods, then it
could be more useful than the others. More details about the
rate of convergence can be found in [10, 15–17].

The third concept for thiswork is equivalence among con-
vergences of iteration methods. Rhoades and Soltuz [13, 18–
20] showed that the convergence of Mann iteration is equiv-
alent to Ishikawa iteration for different classes of operators.
They also showed in [21] that the convergence of modified
Mann iteration is equivalent to modified Ishikawa iteration
under certain mappings. Afterward, Rhoades and Soltuz [14]
studied that Mann and Ishikawa iteration sequences are
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equivalent to a multistep iteration scheme for various classes
of the operators. In addition, Soltuz [22] proved that the
convergence of Ishikawa iteration is equivalent to that of
Mann and Picard iterations for quasicontractive operators.
One can find detailed literature concerning this topic in the
following list [3–5, 23–25].

The final concept in this work is stability of fixed point
iteration methods. The topic of stability, as an application
of the theory of fixed point, has been studied by many
authors including Harder and Hicks [26, 27], Rhoades [28,
29], Osilike [30, 31], Ostrowski [32], Berinde [33], Olantiwo
[9] and Singh and Prasad [34]. First stability result in metric
spaces is due to Ostrowski [32], where he established the sta-
bility of Picard iteration by employing Banach’s contraction
condition. Afterward, several authors studied this concept in
different ways.

Throughout this paper, we denote the set of natural
numbers byN. Let𝐸be a normed space,𝐶 a nonempty convex
subset of a normed space 𝐸, and 𝑇 a self map of 𝐶. Let (𝑎

𝑛
),

(𝑏
𝑛
), (𝑐
𝑛
), (𝛼
𝑛
), (𝛽
𝑛
) ⊂ [0, 1] be real sequences satisfying

certain conditions. Let (𝑥
𝑛
) ⊂ 𝐶 be a sequence generated by a

particular iteration process including the operator 𝑇. That is,

𝑥
𝑛+1

= 𝑓 (𝑇, 𝑥
𝑛
) , (1)

where 𝑓 is suitable function and 𝑥
0

∈ 𝐶 is the initial
approximation. Suppose that (𝑥

𝑛
) converges to a fixed point

𝑥∗ of 𝑇. Let (𝑦
𝑛
) ⊂ 𝐶 be an arbitrary sequence and set

𝜖
𝑛
=
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑓 (𝑇, 𝑦𝑛)

󵄩󵄩󵄩󵄩 , (2)

for all 𝑛 ∈ N. Then, the iteration algorithm (1) is said to be 𝑇-
stable or stable with respect to 𝑇 if and only if lim

𝑛→∞
𝜖
𝑛
= 0

implies that lim
𝑛→∞

𝑦
𝑛
= 𝑝. If, in (1),

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = 𝑇𝑥

𝑛
, 𝑛 ∈ N,

(3)

then it is called the Picard iteration process [35].
The Mann iteration procedure given in [7] is defined by

𝑢
1
= 𝑢 ∈ 𝐶

𝑓 (𝑇, 𝑢
𝑛
) = (1 − 𝛼

𝑛
) 𝑢
𝑛
+ 𝛼
𝑛
𝑇𝑢
𝑛
, 𝑛 ∈ N.

(4)

The sequence (𝑥
𝑛
) defined by

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N,

(5)

is known as the Ishikawa iteration process [6].
The Noor iteration method [8] is defined by

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑧
𝑛
= (1 − 𝑐

𝑛
) 𝑥
𝑛
+ 𝑐
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(6)

Suantai [11] proposed an iterative scheme as follows:

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = (1 − 𝛼

𝑛
− 𝛽
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝑎

𝑛
− 𝑏
𝑛
) 𝑥
𝑛
+ 𝑎
𝑛
𝑇𝑧
𝑛
+ 𝑏
𝑛
𝑇𝑥
𝑛
,

𝑧
𝑛
= (1 − 𝑐

𝑛
) 𝑥
𝑛
+ 𝑐
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(7)

Agarwal et al. established an S-iteration method in [1] as
follows:

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(8)

Thianwan [12] introduced a two-step Mann iteration by

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = (1 − 𝛼

𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(9)

Recently, Phuengrattana and Suantai [10] defined an SP
iteration process as follows:

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = (1 − 𝛼

𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑧
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑧
𝑛
= (1 − 𝑐

𝑛
) 𝑥
𝑛
+ 𝑐
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N.

(10)

Inspired by the above iteration process, we will introduce the
following new iterative algorithm:

𝑥
1
= 𝑥 ∈ 𝐶,

𝑓 (𝑇, 𝑥
𝑛
) = (1 − 𝛼

𝑛
− 𝛽
𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇𝑦
𝑛
+ 𝛽
𝑛
𝑇𝑧
𝑛
,

𝑦
𝑛
= (1 − 𝑎

𝑛
− 𝑏
𝑛
) 𝑧
𝑛
+ 𝑎
𝑛
𝑇𝑧
𝑛
+ 𝑏
𝑛
𝑇𝑥
𝑛
,

𝑧
𝑛
= (1 − 𝑐

𝑛
) 𝑥
𝑛
+ 𝑐
𝑛
𝑇𝑥
𝑛
, 𝑛 ∈ N,

(11)

where (𝑎
𝑛
), (𝑏
𝑛
), (𝑐
𝑛
), (𝛼
𝑛
), and (𝛽

𝑛
) are real sequences in [0, 1]

satisfying

(𝛼
𝑛
+ 𝛽
𝑛
)
∞

𝑛=0
, (𝑎

𝑛
+ 𝑏
𝑛
)
∞

𝑛=0
∈ [0, 1] , ∀𝑛 ∈ N,

∞

∑
𝑛=0

(𝛼
𝑛
+ 𝛽
𝑛
) = ∞.

(12)

Some special cases of the new iteration process given in (11)
are as follows.

(i) If 𝑐
𝑛
= 1 and 𝛽

𝑛
= 𝛼
𝑛
= 𝑎
𝑛
= 𝑏
𝑛
= 0 for all 𝑛 ∈ N, then

(11) reduces to Picard iteration (3).
(ii) If 𝑐

𝑛
= 𝛽
𝑛
= 𝑎
𝑛
= 𝑏
𝑛
= 0 for all 𝑛 ∈ N, then (11) reduces

to Mann iteration (4).
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(iii) If 𝑐
𝑛
= 𝛽
𝑛
= 𝑎
𝑛
= 0 for all 𝑛 ∈ N, then (11) reduces to

Ishikawa iteration (5).
(iv) If 𝑐

𝑛
= 𝑏
𝑛
= 0 and 𝛼

𝑛
+ 𝛽
𝑛
= 1 for all 𝑛 ∈ N, then (11)

reduces to S-iteration (8).
(v) If 𝛽

𝑛
= 𝑏
𝑛
= 𝑐
𝑛
= 0 for all 𝑛 ∈ N, then (11) reduces to

two-step Mann iteration (9).
(vi) If 𝛽

𝑛
= 𝑏
𝑛
= 0 for all 𝑛 ∈ N, then (11) reduces to SP

iteration (10).

Quite recently, Imoru and Olatinwo [36] introduced a
class of operators called contractive-like mappings by

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜑 (‖𝑥 − 𝑇𝑥‖) + 𝛿

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ∀ 𝑥, 𝑦 ∈ 𝐸, (13)

where 𝛿 ∈ [0, 1) and 𝜑 : R+ → R+ is a monotone increasing
function with 𝜑(0) = 0.

In inequality (13), if we take 𝜑(𝑡) = 𝐿𝑡, then it is reduced
to the contractive definition due toOsilike andUdomene [31].
Also, by putting 𝐿 = 2𝛿 in (13), the class of quasicontractive
operators reduces to class of operators due to Berinde [2].

In [2] it was shown that the class of these operators is
wider than class of Zamfirescu operators given in [37], where
𝛿 := max{𝑎, 𝑏/(1 − 𝑏), 𝑐/(1 − 𝑐)}, 𝛿 ∈ [0, 1), and 𝑎, 𝑏, and
𝑐 are real numbers satisfying 0 < 𝑎 < 1, 0 < 𝑏, and 𝑐 <
1/2. Besides, it is easy to see that special case of Zamfirescu
operator gives Kannans’ and Chatterjeas’ results given in [38]
and [39], respectively.

In this paper, we will prove that the new iteration
method (11) is convergent to fixed point of contractive-like
mappings satisfying (13). Also, by using a counterexample
given in [17], we compare the rates of convergence between
the new iteration method (11) and the iteration method (7)
for the same class of mappings satisfying (13). Moreover,
we establish an equivalence among convergences of some
iteration methods including the new iteration method (11).
Finally, we prove that the new iteration method (11) is 𝑇-
stable.

We end this section with the following definition and
lemma which will be useful in proving our main results.

Definition 1 (see [17]). Assume that (𝑎
𝑛
)
𝑛∈N and (𝑏

𝑛
)
𝑛∈N

are two real convergent sequences with limits 𝑎 and 𝑏,
respectively. Then (𝑎

𝑛
)
𝑛∈N is said to converge faster than

(𝑏
𝑛
)
𝑛∈N if

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎
𝑛
− 𝑎

𝑏
𝑛
− 𝑏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (14)

Lemma 2 (see [33]). If 𝜌 is a real number satisfying 0 ≤
𝜌 < 1 and (𝜉

𝑛
)
𝑛∈N is a sequence of positive numbers such that

lim
𝑛→∞

𝜉
𝑛
= 0, then for any sequence of positive numbers

(𝜉
𝑛
)
𝑛∈N satisfying

𝑎
𝑛+1

≤ 𝜌𝑎
𝑛
+ 𝜉
𝑛
, 𝑛 = 1, 2, . . . , (15)

one has

lim
𝑛→∞

𝑎
𝑛
= 0. (16)

2. Main Results

Theorem 3. Let 𝐶 be a nonempty closed convex subset of an
arbitrary Banach space 𝐸 and 𝑇 : 𝐶 → 𝐶 be a mapping
satisfying (13) with 𝐹

𝑇
̸= ⌀. Let (𝑥

𝑛
) a sequence defined by (11)

with real sequences (𝑎
𝑛
), (𝑏
𝑛
), (𝑐
𝑛
), (𝛼
𝑛
), (𝛽
𝑛
) ⊂ [0, 1] satisfying

(𝛼
𝑛
+ 𝛽
𝑛
)∞
𝑛=0

, (𝑎
𝑛
+ 𝑏
𝑛
)∞
𝑛=0

⊂ [0, 1], and ∑∞
𝑛=0

(𝛼
𝑛
+ 𝛽
𝑛
) = ∞.

Then the iterative sequence (𝑥
𝑛
) converges strongly to the fixed

point of 𝑇.

Proof. Let𝑥∗ be the fixed point of𝑇. It can be seen easily from
(13) that 𝑥∗ is the unique fixed point of 𝑇. To show that (𝑥

𝑛
)

converges to the fixed point 𝑥∗ = 𝑇𝑥∗, we use condition (13).
Hence, we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛 − 𝛽𝑛) 𝑦𝑛 + 𝛼𝑛𝑇𝑦𝑛 + 𝛽𝑛𝑇𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ [(1 − 𝛼
𝑛
− 𝛽
𝑛
) + 𝛼
𝑛
𝛿]
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝛼𝑛𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

≤ [(1 − 𝛼
𝑛
− 𝛽
𝑛
) + 𝛼
𝑛
𝛿]
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ [𝛽
𝑛
+ 𝛼
𝑛
] 𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩) ,

(17)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(1 − 𝑎𝑛 − 𝑏𝑛) 𝑧𝑛 + 𝑎𝑛𝑇𝑧𝑛 + 𝑏𝑛𝑇𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
− 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑎𝑛
󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ [(1 − 𝑎
𝑛
− 𝑏
𝑛
) + 𝑎
𝑛
𝛿]
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝑎
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩) + 𝑏𝑛
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ [(1 − 𝑎
𝑛
− 𝑏
𝑛
) + 𝑎
𝑛
𝛿]
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝑏
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (𝑏𝑛 + 𝑎𝑛) 𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩) ,

(18)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(1 − 𝑐𝑛) 𝑥𝑛 + 𝑐𝑛𝑇𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 − 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑐𝑛
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ [1 − 𝑐
𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝑐
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩) .

(19)

By combining (17)–(19), we derive
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ [(1 − 𝛼
𝑛
− 𝛽
𝑛
) + 𝛼
𝑛
𝛿]

× [[(1 − 𝑎
𝑛
− 𝑏
𝑛
) + 𝑎
𝑛
𝛿]

× [[1 − 𝑐
𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑐𝑛𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)]
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+ 𝑏
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (𝑏𝑛 + 𝑎𝑛) 𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)]

+ 𝛽
𝑛
𝛿 [[1 − 𝑐

𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝑐𝑛𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)]

+ [𝛽
𝑛
+ 𝛼
𝑛
] 𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩) .

(20)

Since 𝜑(‖𝑥∗ − 𝑇𝑥∗‖) = 0, (20) becomes

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ [[1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿]

× [[1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿] [1 − 𝑐

𝑛
(1 − 𝛿)] + 𝑏

𝑛
𝛿]

+ 𝛽
𝑛
𝛿 [1 − 𝑐

𝑛
(1 − 𝛿)]]

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ ([1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿]

× [1 − (𝑎
𝑛
+ 𝑏
𝑛
) (1 − 𝛿)] + 𝛽

𝑛
𝛿)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 − (𝛼
𝑛
+ 𝛽
𝑛
) (1 − 𝛿))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(21)

By continuing the above processes, we obtain the following
estimates
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤ (1 − (𝛼
𝑛
+ 𝛽
𝑛
) (1 − 𝛿))

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ (1 − (𝛼

𝑛−1
+ 𝛽
𝑛−1

) (1 − 𝛿))
󵄩󵄩󵄩󵄩𝑥𝑛−1 − 𝑥

∗󵄩󵄩󵄩󵄩

...

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤ (1 − (𝛼

0
+ 𝛽
0
) (1 − 𝛿))

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

(22)

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

𝑛

∏
𝑖=0

[1 − (𝛼
𝑖
+ 𝛽
𝑖
) (1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩 𝑒
(−(1−𝛿)∑

𝑛

𝑖=0
(𝛼
𝑖
+𝛽
𝑖
)),

(23)

for all 𝑛 ∈ N. Since 0 < 𝛿 < 1, 𝛼
𝑛
, 𝛽
𝑛
∈ [0, 1] and ∑∞

𝑛=0
(𝛼
𝑛
+

𝛽
𝑛
) = ∞, we have

lim
𝑛→∞

sup 󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

sup (󵄩󵄩󵄩󵄩𝑥0 − 𝑥
∗󵄩󵄩󵄩󵄩 𝑒
(−(1−𝛿)∑

𝑛

𝑖=0
(𝛼
𝑖
+𝛽
𝑖
))) = 0.

(24)

Therefore lim
𝑛→∞

‖𝑥
𝑛
−𝑥∗‖ = 0; that is, 𝑥

𝑛
→ 𝑥∗ ∈ 𝐹

𝑇
for

all 𝑛 ∈ N.

Theorem 3 allows us to give the following example which
compares the rates of convergence between the new iteration
method (11) and the iteration method (7) for contractive-like

operators. In the following example, for convenience, we use
sequences (V

𝑛
) and (𝑠

𝑛
) associated with the iterative methods

(11) and (7), respectively.

Example 4 (see [17]). Define amapping𝑇 : [0, 1] → [0, 1] as
𝑇𝑥 = 𝑥/2. Let 𝛼

𝑛
= 𝛽
𝑛
= 𝑎
𝑛
= 𝑏
𝑛
= 𝑐
𝑛
= 0, for 𝑛 = 1, 2, . . . , 24,

and 𝛼
𝑛
= 𝛽
𝑛
= 𝑎
𝑛
= 𝑏
𝑛
= 2/√𝑛, 𝑐

𝑛
= 4/√𝑛, for all 𝑛 ≥ 24.

It can be seen easily that themapping𝑇 satisfies condition
(13)with the unique fixed point 0 ∈ 𝐹

𝑇
. Furthermore, it is easy

to see that Example 4 satisfies all the conditions ofTheorem 3.

Indeed, let 𝑥
0

̸= 0 be initial point for iterativemethods (11)
and (7). By using iterative methods (11) and (7), we have

V
𝑛
= (1 −

2

√𝑛
−

2

√𝑛
)

× ((1 −
2

√𝑛
−

2

√𝑛
) ((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛
𝑇𝑥
𝑛
)

+
2

√𝑛
𝑇((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛
𝑇𝑥
𝑛
) +

2

√𝑛
𝑇𝑥
𝑛
)

+
2

√𝑛
𝑇((1 −

2

√𝑛
−

2

√𝑛
)((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛
𝑇𝑥
𝑛
)

+
2

√𝑛
𝑇((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛
𝑇𝑥
𝑛
)+

2

√𝑛
𝑇𝑥
𝑛
)

+
2

√𝑛
𝑇((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛
𝑇𝑥
𝑛
)

= (1 −
2

√𝑛
−

2

√𝑛
)

× ((1 −
2

√𝑛
−

2

√𝑛
)((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛

1

2
𝑥
𝑛
)

+
2

√𝑛

1

2
((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛

1

2
𝑥
𝑛
) +

2

√𝑛

1

2
𝑥
𝑛
)

+
2

√𝑛

1

2

× ((1 −
2

√𝑛
−

2

√𝑛
)((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛

1

2
𝑥
𝑛
)

+
2

√𝑛

1

2
((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛

1

2
𝑥
𝑛
) +

2

√𝑛

1

2
𝑥
𝑛
)

+
2

√𝑛

1

2
((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛

1

2
𝑥
𝑛
)
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= (1 −
6

√𝑛
+
16

𝑛
−

18

𝑛√𝑛
)𝑥
𝑛

...

=
𝑛

∏
𝑖=25

(1 −
6

√𝑖
+
16

𝑖
−
18

𝑖√𝑖
) 𝑥
0
,

(25)

𝑠
𝑛
= (1 −

2

√𝑛
−

2

√𝑛
)𝑥
𝑛

+
2

√𝑛

1

2

× ((1 −
2

√𝑛
−

2

√𝑛
)𝑥
𝑛

+
2

√𝑛

1

2
((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛

1

2
𝑥
𝑛
) +

2

√𝑛

1

2
𝑥
𝑛
)

+
2

√𝑛

1

2
((1 −

4

√𝑛
)𝑥
𝑛
+

4

√𝑛

1

2
𝑥
𝑛
)

= (1 −
2

√𝑛
−
4

𝑛
−

2

𝑛√𝑛
)𝑥
𝑛

...

=
𝑛

∏
𝑖=25

(1 −
2

√𝑖
−
4

𝑖
−

2

𝑖√𝑖
) 𝑥
0
.

(26)

Now, let us compare these results as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V
𝑛
− 0

𝑠
𝑛
− 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑖=25

(1 −
4𝑖 − 20√𝑖 + 16

𝑖√𝑖 − 2𝑖 − 4√𝑖 − 2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∏
𝑖=25

(1 −
4 (√𝑖 − 1) (√𝑖 − 4)

(√𝑖 − 4) (𝑖 + 2√𝑖 + 4) + 14
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(27)

Since

0 ≤ lim
𝑛→∞

𝑛

∏
𝑖=25

(1 −
4 (√𝑖 − 1) (√𝑖 − 4)

(√𝑖 − 4) (𝑖 + 2√𝑖 + 4) + 14
)

≤ lim
𝑛→∞

𝑛

∏
𝑖=25

(1 −
1

𝑖
)

= lim
𝑛→∞

24

𝑛
= 0,

(28)

finally we get

lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

V
𝑛
− 0

𝑠
𝑛
− 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (29)

Thus, from Definition 1, we conclude that the iteration
method (11) is faster than the iteration method (7).

Theorem 5. Let 𝐶 be a nonempty closed convex subset of an
arbitrary Banach space𝐸 and𝑇 : 𝐶 → 𝐶 amapping satisfying

(13) with 𝐹
𝑇

̸= ⌀. If 𝑢
1
= 𝑥
1
∈ 𝐶 and 𝛼

𝑛
+ 𝛽
𝑛
≥ 𝐴 > 0 for all

𝑛 ∈ N, then the following statements are equivalent.

(i) Mann iteration (4) converges to fixed point 𝑥∗.

(ii) The new iteration (11) converges to fixed point 𝑥∗.

Proof. (i) ⇒ (ii): Suppose that Mann iteration (4) converges
to fixed point 𝑥∗; that is, 𝑢

𝑛
→ 𝑥∗ as 𝑛 → ∞. We will show

that the new iteration (11) converges to the fixed point 𝑥∗; that
is, 𝑥
𝑛
→ 𝑥∗ as 𝑛 → ∞. Using (4), (11), and (13), we have

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝛼𝑛 − 𝛽𝑛) 𝑢𝑛 + 𝛼𝑛𝑇𝑢𝑛 + 𝛽𝑛𝑇𝑢𝑛

− (1 − 𝛼
𝑛
− 𝛽
𝑛
) 𝑦
𝑛
− 𝛼
𝑛
𝑇𝑦
𝑛
− 𝛽
𝑛
𝑇𝑧
𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑢𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑇𝑢𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩

+ (𝛼
𝑛
+ 𝛽
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛
󵄩󵄩󵄩󵄩) ,

(30)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑢𝑛 − (1 − 𝑎𝑛 − 𝑏𝑛) 𝑧𝑛 − 𝑎𝑛𝑇𝑧𝑛 − 𝑏𝑛𝑇𝑥𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
− 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛 + 𝑇𝑢𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛 + 𝑇𝑢𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
− 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 + 𝑎𝑛
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑢𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛
󵄩󵄩󵄩󵄩 + 𝑏𝑛

󵄩󵄩󵄩󵄩𝑇𝑢𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 + 𝑏𝑛𝛿
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ (𝑎
𝑛
+ 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩

+ (𝑎
𝑛
+ 𝑏
𝑛
) 𝜑 (

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛
󵄩󵄩󵄩󵄩) ,

(31)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧𝑛

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑢𝑛 − (1 − 𝑐𝑛) 𝑥𝑛 − 𝑐𝑛𝑇𝑥𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝑐
𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛 + 𝑇𝑢𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝑐𝑛
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝑐
𝑛

󵄩󵄩󵄩󵄩𝑇𝑢𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝑐
𝑛
(1 − 𝛿))

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝑐𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛
󵄩󵄩󵄩󵄩

+ 𝑐
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛
󵄩󵄩󵄩󵄩) .

(32)
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Substituting (32) in (31), we get

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 ≤ [(1 − 𝑎

𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿) (1 − 𝑐

𝑛
(1 − 𝛿)) + 𝑏

𝑛
𝛿]

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ [(1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿) 𝑐
𝑛
+ (𝑎
𝑛
+ 𝑏
𝑛
)]

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩

+ [(1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿) 𝑐
𝑛
+ (𝑎
𝑛
+ 𝑏
𝑛
)]

× 𝜑 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩) .

(33)

By combining (30), (32), and (33) and using the assumption
𝛼
𝑛
+ 𝛽
𝑛
≥ 𝐴, we have

󵄩󵄩󵄩󵄩𝑢𝑛+1 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 ≤ [1 − 𝐴 (1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+ [(1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿)

× [(1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿) 𝑐
𝑛
+ (𝑎
𝑛
+ 𝑏
𝑛
)]

+𝛽
𝑛
𝛿𝑐
𝑛
]

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩

+ [(1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿)

× [(1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿) 𝑐
𝑛
+ (𝑎
𝑛
+ 𝑏
𝑛
)]

+𝛽
𝑛
𝛿𝑐
𝑛
+ (𝛼
𝑛
+ 𝛽
𝑛
)]

× 𝜑 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩) .

(34)

Denote that

𝑎
𝑛
=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ,

𝜌 = [1 − 𝐴 (1 − 𝛿)] ∈ (0, 1) ,

𝜉
𝑛
= [(1 − 𝛼

𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿)

× [(1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿) 𝑐
𝑛
+ (𝑎
𝑛
+ 𝑏
𝑛
)]

+ 𝛽
𝑛
𝛿𝑐
𝑛
]

×
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩

+ [(1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿)

× [(1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿) 𝑐
𝑛
+ (𝑎
𝑛
+ 𝑏
𝑛
)]

+ 𝛽
𝑛
𝛿𝑐
𝑛
+ (𝛼
𝑛
+ 𝛽
𝑛
)]

× 𝜑 (
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩) .

(35)

Since lim
𝑛→∞

‖𝑢
𝑛
−𝑥∗‖ = 0 and𝑇𝑥∗ = 𝑥∗ ∈ 𝐹

𝑇
̸= ⌀, it follows

from (13) that lim
𝑛→∞

‖𝑢
𝑛
−𝑇𝑢
𝑛
‖ = 0. Hence by Lemma 2 we

see that
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞. (36)

Also, from triangle inequality we have
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑢
𝑛

󵄩󵄩󵄩󵄩 (37)

and this leads to 𝑥
𝑛
→ 𝑥∗ as 𝑛 → ∞.

(ii) ⇒ (i) : Now, suppose that 𝑥
𝑛
→ 𝑥∗ as 𝑛 → ∞. We

will show that 𝑢
𝑛
→ 𝑥∗ as 𝑛 → ∞. Using (4), (11), and (13),

the following estimates can be obtained:
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛 − 𝛽𝑛) 𝑦𝑛 + 𝛼𝑛𝑇𝑦𝑛 + 𝛽𝑛𝑇𝑧𝑛

− (1 − 𝛼
𝑛
− 𝛽
𝑛
) 𝑢
𝑛
− 𝛼
𝑛
𝑇𝑢
𝑛
− 𝛽
𝑛
𝑇𝑢
𝑛

󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑇𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝛽
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑇𝑢𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩)

+ 𝛽
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝛽𝑛𝜑 (
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛

󵄩󵄩󵄩󵄩) ,

(38)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 ≤ (1 − 𝑎
𝑛
− 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 + 𝑎𝑛

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 + 𝑏𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

= (1 − 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝑏𝑛
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 + 𝑏𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ,

(39)

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩(1 − 𝑐𝑛) 𝑥𝑛 + 𝑐𝑛𝑇𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

≤ (1 − 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝑐𝑛
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝑐
𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 + 𝑐𝑛
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 .

(40)

By substituting (40) in (39), we obtain
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ [(1 − 𝑏
𝑛
) 𝑐
𝑛
+ 𝑏
𝑛
]
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩 .

(41)

Again by substituting (40) and (41) in (38) and using the
assumption 𝛼

𝑛
+ 𝛽
𝑛
≥ 𝐴, we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑢𝑛+1
󵄩󵄩󵄩󵄩

≤ (1 − 𝐴 (1 − 𝛿))
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩

+ [(1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿) [(1 − 𝑏

𝑛
) 𝑐
𝑛
+ 𝑏
𝑛
] + 𝛽
𝑛
𝑐
𝑛
𝛿]

×
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿) 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩) + 𝛽𝑛𝜑 (

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩) .

(42)
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Now define
𝑎
𝑛
=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ,

𝜌 = [1 − 𝐴 (1 − 𝛿)] ∈ (0, 1) ,

𝜉
𝑛
= [(1 − 𝛼

𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿) [(1 − 𝑏

𝑛
) 𝑐
𝑛
+ 𝑏
𝑛
] + 𝛽
𝑛
𝑐
𝑛
𝛿]

×
󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩

+ (1 − 𝛼
𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿) 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑧𝑛
󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩) + 𝛽𝑛𝜑 (

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩) .

(43)

Since 𝑥
𝑛
→ 𝑥∗ as 𝑛 → ∞ and 𝑇𝑥∗ = 𝑥∗ ∈ 𝐹

𝑇
, it follows

from (13) that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑦

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛿
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑦
𝑛

󵄩󵄩󵄩󵄩 + 𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

≤ (1 + 𝛿) (1 − 𝑎
𝑛
− 𝑏
𝑛
)
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ (1 + 𝛿) 𝑎
𝑛

󵄩󵄩󵄩󵄩𝑇𝑧𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

+ (1 + 𝛿) 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

≤ (1 + 𝛿) (1 − 𝑎
𝑛
− 𝑏
𝑛
)
󵄩󵄩󵄩󵄩(1 − 𝑐𝑛) 𝑥𝑛 + 𝑐𝑛𝑇𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ (1 + 𝛿) 𝑎
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 + 𝛿) 𝑎𝑛𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

+ (1 + 𝛿) 𝑏
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 + 𝛿) 𝑏𝑛𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

+ 𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

≤ [ (1 + 𝛿) (1 − 𝑎
𝑛
− 𝑏
𝑛
) (1 − 𝑐

𝑛
)

+ (1 + 𝛿) (1 − 𝑎
𝑛
− 𝑏
𝑛
) 𝑐
𝑛
𝛿 + (1 + 𝛿) 𝑎

𝑛
𝛿 (1 − 𝑐

𝑛
)

+ (1 + 𝛿) 𝑎
𝑛
𝛿2𝑐
𝑛
+ (1 + 𝛿) 𝑏

𝑛
𝛿]

×
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞.

(44)

Since the function 𝜑 is continuous, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛
󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑇𝑥𝑛
󵄩󵄩󵄩󵄩

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛
󵄩󵄩󵄩󵄩

= lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑇𝑦𝑛

󵄩󵄩󵄩󵄩)

= lim
𝑛→∞

𝜑 (
󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑇𝑧𝑛

󵄩󵄩󵄩󵄩) = 0.

(45)

Thus Lemma 2 and (42) give ‖𝑥
𝑛
− 𝑢
𝑛
‖ → 0 as 𝑛 → ∞.

Also, from triangle inequality we have
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 󳨀→ 0 (46)

and this yields 𝑢
𝑛
→ 𝑥∗ as 𝑛 → ∞.

With regard to ([5], Corollary 2) and Theorem 5, we can
without hesitation give the following corollary.

Corollary 6. Let 𝐶 be a nonempty closed convex subset of an
arbitrary Banach space𝐸 and𝑇 : 𝐶 → 𝐶 amapping satisfying
(13)with 𝐹

𝑇
̸= ⌀. If the initial point is the same for all iterations

and 𝛼
𝑛
+ 𝛽
𝑛
≥ 𝐴 > 0, for all 𝑛 ∈ N, then the following

expressions are equivalent.

(1) The Picard iteration (1) converges to the fixed point
𝑥∗ of 𝑇.

(2) The Krasnoselskij iteration [40] converges to the fixed
point 𝑥∗ of 𝑇.

(3) The Mann iteration (4) converges to the fixed point
𝑥∗ of 𝑇.

(4) The Ishikawa iteration (5) converges to the fixed point
𝑥∗ of 𝑇.

(5) The Noor iteration (6) converges to the fixed point
𝑥∗ of 𝑇.

(6) The S-iteration (8) converges to the fixed point 𝑥∗ of 𝑇.

(7) The two-step Mann iteration (9) converges to the fixed
point 𝑥∗ of 𝑇.

(8) The SP iteration (10) converges to the fixed point
𝑥∗ of 𝑇.

(9) Themultistep iteration [14] converges to the fixed point
𝑥∗ of 𝑇.

(10) The new multistep iteration [41] converges to the fixed
point 𝑥∗ of 𝑇.

(11) The new iteration (11) converges to the fixed point
𝑥∗ of 𝑇.

Theorem 7. Let (𝐸, ‖ ⋅ ‖) be an arbitrary Banach space, 𝑇 :
𝐸 → 𝐸 a self-map of 𝐸 satisfying (13)with 𝐹

𝑇
̸= ⌀, and 𝑥∗ the

unique fixed point of𝑇. For 𝑥
0
∈ 𝐸, let (𝑥

𝑛
) be the new iteration

method defined by (11)with real sequences (𝑎
𝑛
), (𝑏
𝑛
), (𝑐
𝑛
), (𝛼
𝑛
),

(𝛽
𝑛
) ⊂ [0, 1] satisfying 0 < 𝐴 ≤ 𝛼

𝑛
+ 𝛽
𝑛
, for all 𝑛 ∈ N. Then

the new iteration method (11) is 𝑇-stable.

Proof. Let (𝑦
𝑛
) be an arbitrary sequence in 𝐸. Define

𝜀
𝑛
=
󵄩󵄩󵄩󵄩𝑦𝑛+1 − (1 − 𝛼𝑛 − 𝛽𝑛) 𝑢𝑛 − 𝛼𝑛𝑇𝑢𝑛 − 𝛽𝑛𝑇V𝑛

󵄩󵄩󵄩󵄩 , (47)

for all 𝑛 ∈ N, where 𝑢
𝑛
= (1 − 𝑎

𝑛
− 𝑏
𝑛
)V
𝑛
+ 𝑎
𝑛
𝑇V
𝑛
+ 𝑏
𝑛
𝑇𝑦
𝑛
and

V
𝑛
= (1 − 𝑐

𝑛
)𝑦
𝑛
+ 𝑐
𝑛
𝑇𝑦
𝑛
. Suppose that 𝑥

𝑛
→ 𝑥∗ as 𝑛 → ∞
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and lim
𝑛→∞

𝜖
𝑛
= 0. Then, we prove that lim

𝑛→∞
𝑦
𝑛
= 𝑥∗.

From condition (13), we have the following estimates:

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑦𝑛+1 − (1 − 𝛼𝑛 − 𝛽𝑛) 𝑢𝑛 − 𝛼𝑛𝑇𝑢𝑛 − 𝛽𝑛𝑇V𝑛
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛 − 𝛽𝑛) 𝑢𝑛 + 𝛼𝑛𝑇𝑢𝑛 + 𝛽𝑛𝑇V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+
󵄩󵄩󵄩󵄩(1 − 𝛼𝑛 − 𝛽𝑛) 𝑢𝑛 + 𝛼𝑛𝑇𝑢𝑛 + 𝛽𝑛𝑇V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ (1 − 𝛼

𝑛
− 𝛽
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝛽𝑛𝛿
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩) + 𝛽𝑛𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

= 𝜀
𝑛
+ [1 − 𝛼

𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿]
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
𝛿
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ,

(48)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(1 − 𝑎𝑛 − 𝑏𝑛) V𝑛 + 𝑎𝑛𝑇V𝑛 + 𝑏𝑛𝑇𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 − 𝑎
𝑛
− 𝑏
𝑛
)
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑎𝑛
󵄩󵄩󵄩󵄩𝑇V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝑏
𝑛

󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ [1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿]
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝑎
𝑛
𝜑 (

󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩) + 𝑏𝑛
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ [1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿]
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝑏
𝑛
𝛿
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + (𝑏𝑛 + 𝑎𝑛) 𝜑 (
󵄩󵄩󵄩󵄩𝑥
∗ − 𝑇𝑥∗

󵄩󵄩󵄩󵄩)

= [1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿]
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑏𝑛𝛿
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ,

(49)
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(1 − 𝑐𝑛) 𝑦𝑛 + 𝑐𝑛𝑇𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ (1 − 𝑐
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 + 𝑐𝑛
󵄩󵄩󵄩󵄩𝑇𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ [1 − 𝑐
𝑛
(1 − 𝛿)]

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(50)

Substituting (49) and (50) in (48) and using the assumption
𝛼
𝑛
+ 𝛽
𝑛
≥ 𝐴 > 0, for all 𝑛 ∈ N, we obtain

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ [[1 − 𝛼

𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿]

× [[1 − 𝑎
𝑛
− 𝑏
𝑛
+ 𝑎
𝑛
𝛿] [1 − 𝑐

𝑛
(1 − 𝛿)] + 𝑏

𝑛
𝛿]

+ 𝛽
𝑛
𝛿 [1 − 𝑐

𝑛
(1 − 𝛿)]]

×
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+([1 − 𝛼

𝑛
− 𝛽
𝑛
+ 𝛼
𝑛
𝛿] [1−(𝑎

𝑛
+ 𝑏
𝑛
) (1 − 𝛿)] + 𝛽

𝑛
𝛿)

×
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ (1 − (𝛼

𝑛
+ 𝛽
𝑛
) (1 − 𝛿))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝜀
𝑛
+ (1 − 𝐴 (1 − 𝛿))

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 .

(51)

Thus an application of Lemma 2 to (51) yields lim
𝑛→∞

𝑦
𝑛
=

𝑥∗.
Conversely, assume that lim

𝑛→∞
𝑦
𝑛

= 𝑥∗. We now
show that lim

𝑛→∞
𝜀
𝑛
= 0. From condition (13) and triangle

inequality we have

𝜀
𝑛
=
󵄩󵄩󵄩󵄩𝑦𝑛+1 − (1 − 𝛼𝑛 − 𝛽𝑛) 𝑢𝑛 − 𝛼𝑛𝑇𝑢𝑛 − 𝛽𝑛𝑇V𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩+
󵄩󵄩󵄩󵄩𝑥
∗ −(1 − 𝛼

𝑛
− 𝛽
𝑛
) 𝑢
𝑛
− 𝛼
𝑛
𝑇𝑢
𝑛
− 𝛽
𝑛
𝑇V
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑛 − 𝛽𝑛)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑇𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 + 𝛽𝑛

󵄩󵄩󵄩󵄩𝑇V𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 + [1 − 𝛼𝑛 − 𝛽𝑛 + 𝛼𝑛𝛿]
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

+ 𝛽
𝑛
𝛿
󵄩󵄩󵄩󵄩V𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩 + (1 − (𝛼𝑛 + 𝛽𝑛) (1 − 𝛿))
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(52)

Since 𝛿 ∈ [0, 1) and 𝛼
𝑛
+ 𝛽
𝑛
∈ [0, 1], for all 𝑛 ∈ N,

0 < 1 − (𝛼
𝑛
+ 𝛽
𝑛
) (1 − 𝛿) < 1. (53)

By taking the limit as 𝑛 → ∞ of both sides of (52) and
using the assumption lim

𝑛→∞
‖𝑦
𝑛
− 𝑥∗‖ = 0, we have

lim
𝑛→∞

𝜀
𝑛
= 0.
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