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This paper is concerned with the existence and uniqueness of positive solutions for a Volterra nonlinear fractional system of integral
equations. Our analysis relies on a fixed point theorem of a sum operator. The conditions for the existence and uniqueness of a
positive solution to the system are established. Moreover, an iterative scheme is constructed for approximating the solution. The
case of quadratic system of fractional integral equations is also considered.

1. Introduction

Fractional calculus has been used for the study of problems in
various fields of sciences, such as Abel integral equation and
viscoelasticity, analysis of feedback amplifiers, capacitor the-
ory, fractances, generalized voltage dividers, and engineering
and biological sciences. In [1], Kilbas et al. give a survey of
research in fractional calculus and its applications in math-
ematical analysis such as ODEs, PDEs, convolution integral
equations, and theory of generating equations. Particularly,
fractional differential equations have successful applications
in nonlinear oscillation analysis of earthquakes, seepage flow
in porousmedia [2], and fluid dynamicmodels for traffic flow
[3], as the fractional derivatives can eliminate the deficiency
of continuum traffic flow.

Open problems in this field are finding easy and effective
methods for solving the equations. In recent years, many
techniques of functional analysis, such as the fixed point
theory, the Banach contraction principle, and the Leray-
Schauder theory, are applied for solving the nonlinear frac-
tional differential equations [4–11]. Iterative techniques [12–
14] and the upper and lower solution method [15, 16] are also
introduced to investigate the existence and uniqueness of the

solutions to nonlinear fractional order differential equations
with various boundary conditions.

Recently, prompted by the applications in physics, the
following nonlinear quadratic system of integral equations
and its generalizations have provoked some interest:

1 = 𝜑
𝑖 (𝑡) + 𝜆𝑖𝜑𝑖 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝜑
𝑖 (𝑠) 𝑑𝑠,

𝛼
𝑖
∈ (0, 1) , 𝑖 = 1, 2, . . . , 𝑛.

(1)

Salem [17] applied Krasnoselskii’s fixed point theorem to
obtain the existence of solutions for the system:

𝑥
𝑖 (𝑡) = 𝜑𝑖 (𝑡) + 𝜆𝑖𝐼

𝛼𝑖
[𝑓
𝑖 (𝑥 (𝑡)) + 𝑔𝑖 (𝑥 (𝑡))] ,

𝑡 ∈ [0, 1] , 𝛼𝑖 ∈ (0, 1) , 1 ≤ 𝑖 ≤ 𝑛,

(2)

under the assumptions that 𝑓
𝑖
: [0,∞)

𝑛
→ [0,∞) is con-

tinuous nondecreasing for all variables, and 𝑔
𝑖
: [0,∞)

𝑛
→

[0,∞) is continuous nonincreasing for all variables, where
[0,∞)

𝑛 denotes the 𝑛-products [0,∞) × [0,∞) ⋅ ⋅ ⋅ × [0,∞)

and 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
). For the physical point of view, only
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positive solutions are interesting. A simple form of the system
(2):

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑓 (𝑥 (𝑠)) 𝑑𝑠, (3)

has been studied in [18, 19].
The aim of this paper is to study the existence and unique-

ness of positive solutions for the following Volterra nonlinear
fractional system of integral equations:

𝑥
𝑖 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼)
[𝑓
𝑖 (𝑠, 𝑥 (𝑠)) + 𝑔𝑖 (𝑠, 𝑥 (𝑠))] 𝑑𝑠,

𝑡 ∈ [0, 1] , 𝛼𝑖 ∈ (0, 1) , 1 ≤ 𝑖 ≤ 𝑛.

(4)

Our main interest is to give some alternative answers to
the main results of papers [17–19]. By using a fixed point
theorem of a sum operator, we not only obtain the existence
and uniqueness of positive solutions for the system (4), but
also construct some sequences for approximating the unique
solution.

2. Basic Definitions and Preliminaries
For the convenience of the reader, we present here some
definitions, lemmas, and basic results that will be used in the
proofs of our main results.

Definition 1 (see [1]). The fractional integral of order 𝛼 > 0 of
a function 𝑓 : (0, +∞) → 𝑅 is given by

𝐼
𝛼

0+
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (5)

provided that the right-hand side is defined pointwisely on
(0, +∞), and Γ(𝛼) denotes the gamma function.

Suppose that 𝐸 is a real Banach space which is partially
ordered by a cone𝑃 ⊂ 𝐸; that is, 𝑥 ≤ 𝑦 if and only if 𝑦−𝑥 ∈ 𝑃.
If 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦, then we denote 𝑥 < 𝑦 or 𝑦 > 𝑥. By
𝜃 we denote the zero element of 𝐸. Recall that a nonempty
closed convex set 𝑃 ⊂ 𝐸 is a cone if it satisfies (i) 𝑥 ∈ 𝑃,
𝜆 ≥ 0 ⇒ 𝜆𝑥 ∈ 𝑃; (ii) 𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃.

Let 𝑃∘ = {𝑥 ∈ 𝑃 | 𝑥 is an interior point of 𝑃}, and then
a cone 𝑃 is said to be solid if 𝑃∘ is nonempty. Moreover, 𝑃 is
called normal if there exists a constant 𝑁 > 0 such that, for
all 𝑥, 𝑦 ∈ 𝐸, 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖; in this case
𝑁 is called the normality constant of 𝑃. If 𝑥

1
, 𝑥
2
∈ 𝐸, the set

[𝑥
1
, 𝑥
2
] = {𝑥 ∈ 𝐸 | 𝑥

1
≤ 𝑥 ≤ 𝑥

2
} is called the order interval

between 𝑥
1
and 𝑥

2
. We say that an operator 𝐴 : 𝐸 → 𝐸 is

increasing (decreasing) if 𝑥 ≤ 𝑦 implies 𝐴𝑥 ≤ 𝐴𝑦(𝐴𝑥 ≥ 𝐴𝑦).
For all 𝑥, 𝑦 ∈ 𝐸, the notation 𝑥 ∼ 𝑦 means that there exist
𝜆 > 0 and 𝜇 > 0 such that 𝜆𝑥 ≤ 𝑦 ≤ 𝜇𝑥. Clearly, ∼ is an
equivalence relation. Given ℎ > 𝜃 (i.e., ℎ ≥ 𝜃 and ℎ ̸= 𝜃 ), we
denote by 𝑃

ℎ
the set 𝑃

ℎ
= {𝑥 ∈ 𝐸 | 𝑥 ∼ ℎ}. It is easy to see that

𝑃
ℎ
⊂ 𝑃.

Definition 2. Let 𝐷 = 𝑃 or 𝐷 = 𝑃
∘ and 𝛾 be a real number

with 0 ≤ 𝛾 < 1. An operator 𝐴 : 𝑃 → 𝑃 is said to be 𝛾-
concave if it satisfies

𝐴 (𝑡𝑥) ≥ 𝑡
𝛾
𝐴𝑥, ∀𝑡 ∈ (0, 1) , 𝑥 ∈ 𝐷. (6)

Definition 3. An operator 𝐴 : 𝐸 → 𝐸 is said to be homo-
geneous if it satisfies

𝐴 (𝑡𝑥) = 𝑡𝐴𝑥, ∀𝑡 > 0, 𝑥 ∈ 𝐸. (7)

An operator 𝐴 : 𝑃 → 𝑃 is said to be subhomogeneous if it
satisfies

𝐴 (𝑡𝑥) ≥ 𝑡𝐴𝑥, ∀𝑡 ∈ (0, 1) , 𝑥 ∈ 𝑃. (8)

In the recent paper [20], Zhai and Anderson considered
the following sum operator equation:

𝐴𝑥 + 𝐵𝑥 + 𝐶𝑥 = 𝑥, (9)

where 𝐴 is an increasing 𝛾-concave operator, 𝐵 is an increas-
ing subhomogeneous operator, and 𝐶 is a homogeneous
operator. They established the existence and uniqueness of
positive solutions for the above equation, andwhen𝐶 is a null
operator, they present the following interesting result.

Lemma 4 (see [20]). Let 𝑃 be a normal cone in a real Banach
space 𝐸, let 𝐴 : 𝑃 → 𝑃 be an increasing 𝛾-concave operator,
and let 𝐵 : 𝑃 → 𝑃 be an increasing subhomogeneous operator.
Assume that

(1) there is ℎ > 𝜃 such that 𝐴ℎ ∈ 𝑃
ℎ
, 𝐵ℎ ∈ 𝑃

ℎ
;

(2) there exists a constant 𝛿 > 0 such that 𝐴𝑥 ≥ 𝛿𝐵𝑥, for
all 𝑥 ∈ 𝑃.

Then the operator equation 𝐴𝑥 + 𝐵𝑥 = 𝑥, has a unique
solution 𝑥

∗ in 𝑃
ℎ
. Moreover, constructing successively the

sequence 𝑦
𝑛
= 𝐴𝑦
𝑛−1

+𝐵𝑦
𝑛−1

, 𝑛 = 1, 2, . . .. for any initial value
𝑦
0
∈ 𝑃
ℎ
, we have 𝑦

𝑛
→ 𝑥
∗, as 𝑛 → ∞.

3. Main Results

In this section, we apply Lemma 4 to study problem (4), and
we obtain some new results on the existence and uniqueness
of positive solutions.

Now by 𝐶[0, 1], we mean the Banach space of continuous
functions on [0, 1] with the usual max-norm ‖ ⋅ ‖. Also,
recall the Banach space of the cartesian product 𝐸 =:

𝐶[0, 1] × 𝐶[0, 1] × ⋅ ⋅ ⋅ × 𝐶[0, 1] equipped by the norm ‖𝑥‖ =:

max
1≤𝑖≤𝑛

‖𝑥
𝑖
‖. Notice that this space can be equipped with a

partial order:

𝑥, 𝑦 ∈ 𝐸, 𝑥 ≤ 𝑦 ⇐⇒ 𝑥
𝑖 (𝑡) ≤ 𝑦𝑖 (𝑡) ,

𝑡 ∈ [0, 1] , 𝑖 = 1, 2, . . . , 𝑛.

(10)

Set 𝑃 = {𝑥 ∈ 𝐸 | 𝑥(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}, the standard cone. It is
clear that 𝑃 is a normal cone in 𝐸 and the normality constant
is 1. Take ℎ(𝑡) = (ℎ

1
(𝑡), ℎ
2
(𝑡), . . . , ℎ

𝑛
(𝑡)) and ℎ

𝑖
(𝑡) = 𝑡

𝛼𝑖 ,

𝑃
ℎ
= {𝑥 ∈ 𝑃 | 𝑥 ∼ ℎ} . (11)

Theorem 5. Assume that

(S1) for all 𝑖, 𝑓
𝑖
, 𝑔
𝑖
: [0, 1] × [0,∞)

𝑛
→ [0,∞) are contin-

uous and increasing with respect to the arguments 𝑥
𝑖
,

and 𝑔
𝑖
(𝑡, 0, 0, . . . , 0) > 0 for any 𝑡 ∈ [0, 1];
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(S2) for all 𝑖, 𝑔
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝜏𝑥

𝑖
, . . . , 𝑥

𝑛
) ≥ 𝜏𝑔

𝑖
(𝑡, 𝑥
1
, 𝑥
2
,

. . . , 𝑥
𝑖
, . . . , 𝑥

𝑛
) for 𝜏 ∈ (0, 1), 𝑡 ∈ [0, 1], 𝑥

𝑖
∈ [0, +∞)

and there exist constants 𝛾
𝑖
∈ (0, 1) such that

𝑓
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝜏𝑥

𝑖
, . . . , 𝑥

𝑛
) ≥ 𝜏
𝛾
𝑓
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
)

(12)

for 𝜏 ∈ (0, 1), 𝑡 ∈ [0, 1], 𝑥
𝑖
∈ [0, +∞), 𝑖 = 1, 2, . . . , 𝑛;

(S3) there exists 𝛿
𝑖
> 0 such that

𝑓
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
) ≥ 𝛿
𝑖
𝑔
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
) ,

𝑡 ∈ [0, 1] , 𝑥𝑖 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(13)

Then problem (4) has a unique positive solution 𝑥
∗ in 𝑃

ℎ
.

Moreover, for any initial value 𝑥(0) = (𝑥(0)
1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝑛
) ∈ 𝑃
ℎ
,

constructing successively the sequence

𝑥
(𝑚+1)

𝑖
(𝑡)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× [𝑓
𝑖
(𝑠, 𝑥
(𝑚)

1
(𝑠) , 𝑥
(𝑚)

2
(𝑠) , . . . , 𝑥

(𝑚)

𝑖
(𝑠) , . . . , 𝑥

(𝑚)

𝑛
(𝑠))

+ 𝑔
𝑖
(𝑠, 𝑥
(𝑚)

1
(𝑠) , 𝑥
(𝑚)

2
(𝑠) , . . . ,

𝑥
(𝑚)

𝑖
(𝑠) , . . . , 𝑥

(𝑚)

𝑛
(𝑠))] 𝑑𝑠,

𝑚 = 0, 1, . . . ,

(14)

then 𝑥(𝑚) → 𝑥
∗ as𝑚 → ∞.

Proof. To begin with, we define the following operators𝐴, 𝐵 :
𝑃 → 𝐸 by

𝐴𝑥 = (𝐴
1
𝑥
1
, 𝐴
2
𝑥
2
, . . . , 𝐴

𝑛
𝑥
𝑛
) ,

𝐵𝑥 = (𝐵
1
𝑥
1
, 𝐵
2
𝑥
2
, . . . , 𝐵

𝑛
𝑥
𝑛
) ,

(15)

where

𝐴
𝑖
𝑥
𝑖
= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑓
𝑖 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝐵
𝑖
𝑥
𝑖
= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑔
𝑖 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(16)

Thus 𝑥 is the positive solution of problem (4) if and only if
𝑥 = 𝐴𝑥 + 𝐵𝑥. From (𝑆0) and (𝑆1), we know that 𝐴 : 𝑃 →

𝑃, 𝐵 : 𝑃 → 𝑃. In the sequel we check that 𝐴, 𝐵 satisfy all
assumptions of Lemma 4.

Firstly, we prove that𝐴, 𝐵 are two increasing operators. In
fact, by (𝑆0) and (𝑆1), for 𝑥, 𝑦 ∈ 𝑃 with 𝑥 ≥ 𝑦, we know that
𝑥
𝑖
(𝑡) ≥ 𝑦

𝑖
(𝑡), 𝑡 ∈ [0, 1], 𝑖 = 1, 2, . . . , 𝑛, and obtain

𝐴
𝑖
𝑥
𝑖
= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑓
𝑖
(𝑠, 𝑥
1 (𝑠) , 𝑥2 (𝑠) , . . . , 𝑥𝑖 (𝑠) , . . . , 𝑥𝑛 (𝑠)) 𝑑𝑠

≥ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑓
𝑖
(𝑠, 𝑦
1 (𝑠) , 𝑦2 (𝑠) , . . . , 𝑦𝑖 (𝑠) , . . . , 𝑦𝑛 (𝑠)) 𝑑𝑠

= 𝐴
𝑖
𝑦
𝑖
;

(17)

that is, 𝐴𝑥 ≥ 𝐴𝑦. Similarly, 𝐵𝑥 ≥ 𝐵𝑦.
Next we show that 𝐴 is a 𝛾-concave operator and 𝐵 is a

subhomogeneous operator. In fact, for any 𝜏 ∈ (0, 1) and 𝑥 ∈
𝑃, by (𝑆1), we obtain

𝐴
𝑖
(𝜏𝑥
𝑖
) (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑓
𝑖
(𝑠, 𝑥
1 (𝑠) , 𝑥2 (𝑠) , . . . , 𝜏𝑥𝑖 (𝑠) , . . . , 𝑥𝑛 (𝑠)) 𝑑𝑠

≥ 𝜏
𝛾𝑖
∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑓
𝑖
(𝑠, 𝑥
1 (𝑠) , 𝑥2 (𝑠) , . . . , 𝑥𝑖 (𝑠) , . . . , 𝑥𝑛 (𝑠)) 𝑑𝑠

= 𝜏
𝛾𝑖
𝐴
𝑖
𝑥
𝑖 (𝑡) .

(18)

Consequently, 𝐴(𝜏𝑥)(𝑡) ≥ 𝜏𝛾𝐴𝑥, where 𝛾 = max
1≤𝑖≤𝑛

𝛾
𝑖
. Also,

for any 𝜏 ∈ (0, 1) and 𝑥 ∈ 𝑃, by (𝑆0) and (𝑆1), we obtain

𝐵
𝑖
(𝜏𝑥
𝑖
) (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑔
𝑖
(𝑠, 𝑥
1 (𝑠) , 𝑥2 (𝑠) , . . . , 𝜏𝑥𝑖 (𝑠) , . . . , 𝑥𝑛 (𝑠)) 𝑑𝑠

≥ 𝜏∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑔
𝑖
(𝑠, 𝑥
1 (𝑠) , 𝑥2 (𝑠) , . . . , 𝑥𝑖 (𝑠) , . . . , 𝑥𝑛 (𝑠)) 𝑑𝑠

= 𝜏𝐵
𝑖
𝑥
𝑖 (𝑡) ;

(19)

that is, 𝐵(𝜏𝑥) ≥ 𝜏𝐵𝑥 for 𝜏 ∈ (0, 1), 𝑥 ∈ 𝑃. So the operator 𝐵 is
a subhomogeneous operator.

Now we show that 𝐴ℎ ∈ 𝑃
ℎ
, 𝐵ℎ ∈ 𝑃

ℎ
. In fact, by (𝑆3), we

have

𝑓
𝑖 (𝑠, 1, 1, . . . , 1) ≥ 𝑓𝑖 (𝑠, 0, 0, . . . , 0) ≥ 𝛿𝑖𝑔𝑖 (𝑠, 0, 0, . . . , 0) > 0,

(20)



4 Abstract and Applied Analysis

and thus take
𝑀
𝑖
= max
0≤𝑠≤1

𝑓
𝑖 (𝑠, 1, 1, . . . , 1) , 𝑚

𝑖
= min
0≤𝑠≤1

𝑓
𝑖 (𝑠, 0, 0, . . . , 0) ;

(21)

then𝑀
𝑖
, 𝑚
𝑖
> 0. Let

𝜆 = min
1≤𝑖≤𝑛

{
𝑚
𝑖

𝛼
𝑖
Γ (𝛼
𝑖
)
} , 𝜇 = max

1≤𝑖≤𝑛

{
𝑀
𝑖

𝛼
𝑖
Γ (𝛼
𝑖
)
} . (22)

It follows from (𝑆1) that

𝐴
𝑖
ℎ
𝑖 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑓
𝑖
(𝑠, 𝑠
𝛼1
, 𝑠
𝛼2
, . . . , 𝑠

𝛼𝑖
, . . . , 𝑠

𝛼𝑛
) 𝑑𝑠

≥ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑓
𝑖 (𝑠, 0, 0, . . . , 0) 𝑑𝑠

≥ 𝑚
𝑖
∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑑𝑠

=
𝑚
𝑖

𝛼
𝑖
Γ (𝛼
𝑖
)
𝑡
𝛼𝑖
≥ 𝜆𝑡
𝛼𝑖
= 𝜆ℎ
𝑖 (𝑡) ,

𝐴
𝑖
ℎ
𝑖 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑓
𝑖
(𝑠, 𝑠
𝛼1
, 𝑠
𝛼2
, . . . , 𝑠

𝛼𝑖
, . . . , 𝑠

𝛼𝑛
) 𝑑𝑠

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑓
𝑖 (𝑠, 1, 1, . . . , 1) 𝑑𝑠

≤ 𝑀
𝑖
∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

𝑑𝑠

=
𝑀
𝑖

𝛼
𝑖
Γ (𝛼
𝑖
)
𝑡
𝛼𝑖
≤ 𝜇𝑡
𝛼𝑖
= 𝜇ℎ
𝑖 (𝑡) .

(23)

So 𝜆ℎ
𝑖
(𝑡) ≤ 𝐴

𝑖
ℎ
𝑖
(𝑡) ≤ 𝜇ℎ

𝑖
(𝑡), and then 𝜆ℎ(𝑡) ≤ 𝐴ℎ(𝑡) ≤ 𝜇ℎ(𝑡),

hence 𝐴ℎ ∈ 𝑃
ℎ
. Similarly, from 𝑔

𝑖
(𝑠, 0, 0, . . . , 0) > 0 and

(𝑆1)–(𝑆3), we easily prove 𝐵ℎ ∈ 𝑃
ℎ
. Hence the condition (1)

of Lemma 4 is satisfied.
In the following we show that the condition (2) of

Lemma 4 is satisfied. For 𝑥 ∈ 𝑃, from (𝑆3), we have

𝐴
𝑖
𝑥
𝑖 (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑓
𝑖
(𝑠, 𝑥
1 (𝑠) , 𝑥2 (𝑠) , . . . , 𝑥𝑖 (𝑠) , . . . , 𝑥𝑛 (𝑠)) 𝑑𝑠

≥ 𝛿
𝑖
∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑔
𝑖
(𝑠, 𝑥
1 (𝑠) , 𝑥2 (𝑠) , . . . , 𝑥𝑖 (𝑠) , . . . , 𝑥𝑛 (𝑠)) 𝑑𝑠

= 𝛿
𝑖
𝐵
𝑖
𝑥
𝑖 (𝑡) .

(24)

Take
𝛿 = min
1≤𝑖≤𝑛

𝛿
𝑖
, (25)

and then we have 𝐴𝑥 ≥ 𝛿𝐵𝑥, 𝑥 ∈ 𝑃. By Lemma 4, the
operator equation𝐴𝑥+𝐵𝑥 = 𝑥 has a unique solution 𝑥∗ ∈ 𝑃

ℎ
;

of course, 𝑥∗ is also a unique solution of problem (4). In
addition, by (𝑆1) we know that the unique solution is also
positive.

Now for any initial value 𝑥(0) = (𝑥
(0)

1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝑛
) ∈ 𝑃
ℎ
,

let us construct successively the sequence

𝑥
(𝑚)

𝑖
= 𝐴
𝑖
𝑥
(𝑚−1)

𝑖
+ 𝐵
𝑖
𝑥
(𝑚−1)

𝑖
, 𝑚 = 1, 2, . . . , (26)

and we have 𝑥(𝑚)
𝑖

→ 𝑥
∗

𝑖
as 𝑚 → ∞, and then problem (4)

has a unique positive solution 𝑥(𝑚) → 𝑥
∗ in 𝑃

ℎ
; that is, for

any initial value 𝑥(0) = (𝑥(0)
1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝑛
) ∈ 𝑃
ℎ
, constructing

successively the sequence:

𝑥
(𝑚+1)

𝑖
(𝑡)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× [𝑓
𝑖
(𝑠, 𝑥
(𝑚)

1
(𝑠) , 𝑥
(𝑚)

2
(𝑠) , . . . , 𝑥

(𝑚)

𝑖
(𝑠) , . . . , 𝑥

(𝑚)

𝑛
(𝑠))

+ 𝑔
𝑖
(𝑠, 𝑥
(𝑚)

1
(𝑠) , 𝑥
(𝑚)

2
(𝑠) , . . . ,

𝑥
(𝑚)

𝑖
(𝑠) , . . . , 𝑥

(𝑚)

𝑛
(𝑠))] 𝑑𝑠,

𝑚 = 0, 1, . . . ,

(27)

then 𝑥(𝑚) → 𝑥
∗ as𝑚 → ∞.

Corollary 6. Assume that

(A1) for all 𝑖, 𝑓
𝑖
: [0, 1] × [0,∞)

𝑛
→ [0,∞) is continuous

and increasing with respect to the arguments 𝑥
𝑖
, and

𝑓
𝑖
(𝑡, 0, 0, . . . , 0) > 0 for any 𝑡 ∈ [0, 1];

(A2) for all 𝑖, 𝑖 = 1, 2, . . . , 𝑛, there exists constant 𝛾
𝑖
∈ (0, 1)

such that

𝑓
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝜏𝑥

𝑖
, . . . , 𝑥

𝑛
) ≥ 𝜏
𝛾
𝑓
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑖
, . . . , 𝑥

𝑛
)

(28)

for 𝜏 ∈ (0, 1), 𝑡 ∈ [0, 1], 𝑥
𝑖
∈ [0, +∞).

Then the problem

𝑥
𝑖 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼)
𝑓
𝑖 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝑡 ∈ [0, 1] , 𝛼𝑖 ∈ (0, 1) , 1 ≤ 𝑖 ≤ 𝑛,

(29)
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has a unique positive solution𝑥∗ in𝑃
ℎ
.Moreover, for any initial

value 𝑥(0) = (𝑥(0)
1
, 𝑥
(0)

2
, . . . , 𝑥

(0)

𝑛
) ∈ 𝑃
ℎ
, constructing successively

the sequence

𝑥
(𝑚+1)

𝑖
(𝑡)

= ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼
𝑖
)

× 𝑓
𝑖
(𝑠, 𝑥
(𝑚)

1
(𝑠) , 𝑥
(𝑚)

2
(𝑠) , . . . , 𝑥

(𝑚)

𝑖
(𝑠) , . . . , 𝑥

(𝑚)

𝑛
(𝑠)) 𝑑𝑠,

𝑚 = 0, 1, . . . ,

(30)

then 𝑥(𝑚) → 𝑥
∗ as𝑚 → ∞.

Inwhat follows, we establish the existence anduniqueness
of positive solutions for the following system of quadratic
integral equations of the fractional type:

𝜑
𝑖 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼)
𝜑
2

𝑖
(𝑠) 𝑑𝑠 + 1,

𝑡 ∈ [0, 1] , 𝛼𝑖 ∈ (0, 1) , 1 ≤ 𝑖 ≤ 𝑛.

(31)

Corollary 7. The system (31) has a unique positive solution.

Proof. Let 𝑓
𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = (𝑥

𝑖
+ 1)
2, and then 𝑓

𝑖
satisfies

(𝐴1) and (𝐴2) of Corollary 6. Thus let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) be

the unique positive solution of (29), and then we have

𝑥
𝑖 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼)
(𝑥
𝑖 (𝑠) + 1)

2
𝑑𝑠; (32)

that is

𝑥
𝑖 (𝑡) + 1 = ∫

𝑡

0

(𝑡 − 𝑠)
𝛼𝑖−1

Γ (𝛼)
(𝑥
𝑖 (𝑠) + 1)

2
𝑑𝑠 + 1. (33)

Let𝜑
𝑖
= 𝑥
𝑖
+1, and the𝜑 = (𝜑

1
, 𝜑
2
, . . . , 𝜑

𝑛
) is a unique positive

solution of (31).
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