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This work is concerned with a mixed boundary value problem for the semilinear parabolic equation with a memory term and
generalized Lewis functions which depends on both spacial variable and time. Under suitable conditions, we prove the existence
and uniqueness of global solutions and the energy functional decaying exponentially or polynomially to zero as the time goes to
infinity by introducing brief Lyapunov function and precise priori estimates.

1. Introduction

In this paper, we are concerned with the global existence and
uniform energy decay rates for the nonlocal semilinear heat
equationwith amemory termand generalized Lewis function

𝐴 (𝑥, 𝑡) 𝑢
𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) div [𝑎 (𝑥) ∇𝑢 (𝑠)] 𝑑𝑠 = 0,

(𝑥, 𝑡) ∈ Ω × (0,∞) ,

(1)

subjected to mixed boundary and initial conditions

−
𝜕𝑢

𝜕]
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) [𝑎 (𝑥) ∇𝑢 (𝑠) ⋅ ]] 𝑑𝑠 = 𝑓 (𝑢) ,

(𝑥, 𝑡) ∈ Γ
0
× (0,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Γ
1
× [0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω,

(2)

where Ω ⊂ R𝑛 (𝑛 ≥ 1) is a bounded domain with sufficient
smooth boundary 𝜕Ω, such that 𝜕Ω = Γ

0
∪Γ
1
, Γ
0
∩Γ
1
= 0, and

Γ
0
, Γ
1
have positive measures, ] is the unit outward normal on

𝜕Ω,𝐴(𝑥, 𝑡) is a generalized Lewis function (when𝐴(𝑥, 𝑡) = 𝐶,
𝐶 is a positive constant, and 𝐴(𝑥, 𝑡) is called Lewis function;
see [1]) which satisfies

(i) positive function 𝐴(𝑥, 𝑡) ∈ 𝑊
1,∞

(0,∞; 𝐿
∞
(Ω)) and

𝐴
𝑡
(𝑥, 𝑡) ≤ 0 a.e. for 𝑡 ≥ 0.

Equation (1) arises naturally from a variety of mathemati-
cal models in engineering and physical science. For example,
in the study of heat conduction inmaterials withmemory, the
classical Fourier’s law of heat flux is replaced by the following
form:

𝑞 = −𝑑∇𝑢 − ∫

𝑡

−∞

∇ [𝑘 (𝑥, 𝑡) 𝑢 (𝑥, 𝜏)] 𝑑𝜏, (3)

where 𝑢, 𝑑, and the integral term represent temperature,
diffusion coefficient, and the effect of memory term in the
material, respectively. The study of this type of equations
has drawn a considerable attention; see [2–6]. From the
mathematical point of view, one would expect the integral
term in the equation to be dominated by the leading term.
So the theory of parabolic equations can be applied to this
type of equations.

Recently, many works were dedicated to studying the
global existence, blow-up solutions, and asymptotic proper-
ties of the initial boundary value problem for the parabolic
equation with memory term. In the absence of the memory
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term (𝑔 ≡ 0), for the quasilinear parabolic equations with
absorption term

𝑢
𝑡
= div (|∇𝑢|𝑝−2∇𝑢) − 𝑓 (𝑢) , (𝑥, 𝑡) ∈ Ω × (0,∞) , (4)

where Ω ⊂ R𝑛 (𝑛 ≥ 1) is a bounded domain with smooth
boundary and 𝑝 ≥ 2, there are many results about the
global existence and finite time blow-up of solutions for the
homogeneous Dirichlet boundary value problems; see [7–
11].The conclusions in Levine [7], Kalantarov, Ladyzhenskaya
[8], and Levine et al. [9] showed that global and nonglobal
existence depends on the nonlinearity of 𝑓, 𝑝, the dimension
𝑛, and the initial data. For the research on global existence and
asymptotic properties of the solution, we refer the readers to
[10, 11]. Pucci and Serrin [10] studied the following equation
with the homogeneous Dirichlet boundary conditions:

𝐴 (𝑡)
𝑢𝑡



𝑚−2

𝑢
𝑡
= Δ𝑢 − 𝑓 (𝑥, 𝑢) , (𝑥, 𝑡) ∈ Ω × (0,∞) , (5)

where 𝑚 > 1 and the strong solution tends to 0 when 𝑡 →

∞ under the condition (𝑓(𝑥, 𝑢), 𝑢) > 0 but did not give
the decay rate. Berrimi and Messaoudi [11] proved that if a
bounded square matrix 𝐴(𝑡) ∈ 𝐶(R+) satisfying

(𝐴 (𝑡) V, V) ≥ 𝑐
0
|V|2, 𝑡 ∈ R

+
, V ∈ R

𝑛
, (6)

then the solution with small initial energy decays exponen-
tially for𝑚 = 2 and polynomially for𝑚 > 2.

When there is a memory term (𝑔 ̸≡ 0), Messaoudi
[12] studied the semilinear heat equation with a power form
source term

𝑢
𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) Δ𝑢 (𝑥, 𝑠) 𝑑𝑠 = |𝑢|
𝑝−2

𝑢,

(𝑥, 𝑡) ∈ Ω × (0,∞) ,

(7)

where the relaxation function 𝑔 : R+ → R+ is a bounded
𝐶
1 function and 𝑝 > 2; he proved the existence of blow-up

solution with positive initial energy and the homogeneous
Dirichlet boundary condition by convexity method. Later,
Fang and Sun [13] improved the results of [12] with when
|𝑢|
𝑝−2

𝑢 be replaced by fully nonlinear source term 𝑓(𝑢). For
the study of general energy decay for the quasilinear parabolic
system with a memory term, we see [14].

In the works mentioned above, there are few about the
global existence and uniform energy decay rates of solution
for parabolic equation with mixed boundary conditions.
Motivated by it, we intend to study global existence and
uniqueness of solutions for the mixed initial boundary value
problem (1)-(2) with a memory term and generalized Lewis
function by the Galerkin method and also give the estimates
of uniform energy decay rates.

Themain innovations of this paper are: (1) that themodel
is representative, considering the mixed boundary value
problem with a generalized Lewis function and time integral
boundary conditions, and 𝑓, 𝑔 are weak; (2) we give the
reason and process of the definition of the energy functional;
(3)we prove the energy decays exponentially or polynomially
to zero as the time goes to infinity by introducing brief
Lyapunov function and precise priori estimates.

The present work is organized as follows. In Section 2, we
present the assumptions, lemmas, and energy functional for
ourwork. In Section 3, we prove the existence and uniqueness
of the global solution; Section 4 is devoted to proving the
energy decay results.

2. Preliminaries

In the sequel we state the general hypotheses on the relaxation
function 𝑔, coefficient 𝑎, nonlinearity 𝑓, and initial value 𝑢

0
.

(H1) 𝑔 : R+ → R+, 𝑔(0) > 0 and 𝑔 is a non-
decreasing differentiable function.

(H2) 𝑎 : Ω → R+ is a nonnegative bounded function
and 𝑎(𝑥) ≥ 𝑎

0
> 0 with

1 − ‖𝑎‖
𝐿
∞ ∫

∞

0

𝑔 (𝑠) 𝑑𝑠 = 𝑙 > 0. (8)

(H3) The function 𝑓 : R → R is Lipschitz contin-
uous and satisfies

𝑓 (𝑠) 𝑠 ≥ 2𝐹 (𝑠) ≥ 0, 𝑠 ∈ R, (9)

where 𝐹(𝑢) := ∫
𝑢

0
𝑓(𝑠)𝑑𝑠.

(H4) (Compatibility Condition) The initial value
satisfies

𝑢
0
∈ 𝑉 ∩ 𝐻

2
(Ω) , −

𝜕𝑢
0

𝜕]
= 𝑓 (𝑢

0
) . (10)

Remark 1. The condition 1 − ‖𝑎‖
𝐿
∞ ∫
∞

0
𝑔(𝑠)𝑑𝑠 = 𝑙 > 0 is

necessary to guarantee the parabolicity of the problem (1)-(2).

Throughout this paper, we define that

𝑉 = {𝑢 | 𝑢 ∈ 𝐻
1
(Ω) , 𝑢 = 0 on Γ

1
} , (11)

and the following scalar products

(𝑢, V) = ∫
Ω

𝑢 (𝑥) V (𝑥) 𝑑𝑥, (𝑢, V)
Γ
0

= ∫
Γ
0

𝑢 (𝑥) V (𝑥) 𝑑Γ,

(12)

and norms

‖𝑢‖
𝐿
𝑝
(Ω)

= (∫
Ω

|𝑢|
𝑝
𝑑𝑥)

1/𝑝

, ‖𝑢‖
𝐿
𝑝
(Γ
0
)
= (∫
Γ
0

|𝑢|
𝑝
𝑑Γ)

1/𝑝

.

(13)

To simplify the notations, we denote ‖𝑢‖
𝐿
𝑝
(Ω)

and ‖𝑢‖
𝐿
𝑝
(Γ
0
)

by ‖𝑢‖
𝑝
and ‖𝑢‖

𝑝,Γ
0

, respectively.
Next, we give some important lemmas which will be used

in the proof of our main results.
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Lemma 2. For any 𝑔, 𝑢 ∈ 𝐶
1
[0, +∞), we have

∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑥) ∇𝑢 (𝑠) ∇𝑢

(𝑡) 𝑑𝑠 𝑑𝑥

= −
1

2
∫
Ω

[𝑔 (𝑡)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

− (𝑔

∘ ∇𝑢)] 𝑑𝑥

−
1

2

𝑑

𝑑𝑡
∫
Ω

[(𝑔 ∘ ∇𝑢) − ∫

𝑡

0

𝑔 (𝑠)

×

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑠] 𝑑𝑥,

(14)

where (𝑔 ∘ ∇𝑢) = ∫
𝑡

0
𝑔(𝑡 − 𝑠)|√𝑎(𝑥)(∇𝑢(𝑡) − ∇𝑢(𝑠))|

2
𝑑𝑠.

Proof. Differentiating ∫
Ω
(𝑔 ∘ ∇𝑢)𝑑𝑥 with respect to 𝑡 and

noting ∫𝑡
0
𝑔(𝑡 − 𝑠)𝑑𝑠 = ∫

𝑡

0
𝑔(𝑠)𝑑𝑠 yield

𝑑

𝑑𝑡
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥 =
𝑑

𝑑𝑡

× ∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠)

×

√𝑎 (𝑥)

× (∇𝑢 (𝑡) − ∇𝑢 (𝑠))


2

𝑑𝑠 𝑑𝑥

= ∫
Ω

∫

𝑡

0

𝑔

(𝑡 − 𝑠)

×

√𝑎 (𝑥) (∇𝑢 (𝑡) − ∇𝑢 (𝑠))



2

𝑑𝑠 𝑑𝑥

+ 2∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑥)

× [(∇𝑢 (𝑡) − ∇𝑢 (𝑠))]

× ∇𝑢

(𝑡) 𝑑𝑠 𝑑𝑥

= ∫
Ω

[𝑔

(𝑡 − 𝑠) ∘ ∇𝑢] 𝑑𝑥

+ 2∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑥) ∇𝑢 (𝑡)

× ∇𝑢

(𝑡) 𝑑𝑠 𝑑𝑥

− 2∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑥) ∇𝑢 (𝑠)

× ∇𝑢

(𝑡) 𝑑𝑠 𝑑𝑥

= ∫
Ω

[𝑔

(𝑡 − 𝑠) ∘ ∇𝑢] 𝑑𝑥

+
𝑑

𝑑𝑡
∫
Ω

∫

𝑡

0

𝑔 (𝑠)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑠 𝑑𝑥

− ∫
Ω

𝑔 (𝑡)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥

− 2∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑥) ∇𝑢 (𝑠)

× ∇𝑢

(𝑡) 𝑑𝑠 𝑑𝑥,

(15)

which implies

∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑎 (𝑥) ∇𝑢 (𝑠) ∇𝑢

(𝑡) 𝑑𝑠 𝑑𝑥

= −
1

2
∫
Ω

[𝑔 (𝑡)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

− (𝑔

∘ ∇𝑢)] 𝑑𝑥

−
1

2

𝑑

𝑑𝑡
∫
Ω

[(𝑔 ∘ ∇𝑢) − ∫

𝑡

0

𝑔 (𝑠)

×

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑠] 𝑑𝑥.

(16)

This completes the proof.

In order to define the energy functional 𝐸(𝑡) of the prob-
lem (1)-(2), we give the following computation. Multiplying
(1) by 𝑢

𝑡
, integrating over Ω, and using Green’s formula, we

get from Lemma 2 that

0 = ∫
Ω

𝐴 (𝑥, 𝑡) 𝑢
𝑡
𝑢
𝑡
𝑑𝑥 − ∫

Ω

Δ𝑢𝑢
𝑡
𝑑𝑥

+ ∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) div [𝑎 (𝑥) ∇𝑢 (𝑠)] 𝑢
𝑡
𝑑𝑠 𝑑𝑥

= ∫
Ω

𝐴 (𝑥, 𝑡)
𝑢𝑡



2

𝑑𝑥 + ∫
Ω

∇𝑢∇𝑢
𝑡
𝑑𝑥

− ∫
Ω

∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝑢

(𝑡) 𝑑𝑠 𝑑𝑥

+ ∫
Γ
0

𝑓 (𝑢) 𝑢
𝑡
𝑑Γ

= ∫
Ω

𝐴 (𝑥, 𝑡)
𝑢𝑡



2

𝑑𝑥

+
1

2

𝑑

𝑑𝑡
(∫
Ω

|∇𝑢|
2
𝑑𝑥 − ∫

Ω

∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥

+∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥) +
𝑑

𝑑𝑡
∫
Γ
0

𝐹 (𝑢) 𝑑Γ
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+
1

2
∫
Ω

[𝑔 (𝑡)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

− (𝑔

∘ ∇𝑢)] 𝑑𝑥

=
𝑑

𝑑𝑡
(
1

2
𝑘 (𝑥, 𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥 + ∫
Γ
0

𝐹 (𝑢) 𝑑Γ)

+ ∫
Ω

𝐴 (𝑥, 𝑡)
𝑢𝑡



2

𝑑𝑥

+
1

2
∫
Ω

𝑔 (𝑡)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥

−
1

2
∫
Ω

(𝑔

∘ ∇𝑢) 𝑑𝑥,

(17)

where 𝑘(𝑥, 𝑡) = 1−𝑎(𝑥) ∫
𝑡

0
𝑔(𝑠)𝑑𝑠 > 1−‖𝑎(𝑥)‖

𝐿
∞ ∫
∞

0
𝑔(𝑠)𝑑𝑠 >

0.
The above computation inspires us to define the energy

functional 𝐸(𝑡) of the problem (1)-(2) as

𝐸 (𝑡) =
1

2
𝑘 (𝑥, 𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥 + ∫
Γ
0

𝐹 (𝑢) 𝑑Γ.

(18)

We have the following properties about 𝐸(𝑡).

Lemma 3. The energy 𝐸(𝑡) is nonnegative and

𝑑

𝑑𝑡
𝐸 (𝑡) =

1

2
∫
Ω

[(𝑔

∘ ∇𝑢) 𝑑𝑥 − 𝑔 (𝑡)


√𝑎 (𝑥)∇𝑢 (𝑡)



2

] 𝑑𝑥

− 𝐴 (𝑥, 𝑡)
𝑢𝑡



2

𝑑𝑥 ≤ 0.

(19)

To show the uniform decay of the solution, we introduce
a functional

𝜑 (𝑡) =
1

2
∫
Ω

𝐴 (𝑥, 𝑡) |𝑢 (𝑥, 𝑡)|
2
𝑑𝑥. (20)

Here, we need to point out that 𝐶 denotes a positive constant
not necessarily the same at different occurrences.

Lemma 4. There exists a positive constant 𝐶 such that
𝜑 (𝑡)

 ≤ 𝐶𝐸 (𝑡) , 𝑡 ≥ 0. (21)

Proof. By Poincaré inequality, we have

𝜑 (𝑡)
 =



1

2
∫
Ω

𝐴 (𝑥, 𝑡) |𝑢 (𝑥, 𝑡)|
2
𝑑𝑥



≤
𝜆𝐶

2
∫
Ω

|∇𝑢|
2
𝑑𝑥 ≤ 𝐶𝐸 (𝑡) ,

(22)

where 𝜆 is a positive constant.

Lemma 5. There exist two positive constants 𝑘
1
and 𝑘

2
, such

that for some 𝑇 > 0, we have

𝑑

𝑑𝑡
𝜑 (𝑡) ≤ −𝑘

1
𝐸 (𝑡) + 𝑘

2
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥, ∀𝑡 ≥ 𝑇. (23)

Proof. Multiplying (1) by 𝑢(𝑡), integrating over Ω, and using
Green’s formula, we get

0 = ∫
Ω

𝐴 (𝑥, 𝑡) 𝑢
𝑡
𝑢 (𝑡) 𝑑𝑥 − ∫

Ω

Δ𝑢 (𝑡) 𝑑𝑥

+ ∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) div [𝑎 (𝑥) ∇𝑢 (𝑠)] 𝑢 (𝑡) 𝑑𝑠 𝑑𝑥

= ∫
Ω

𝐴 (𝑥, 𝑡) 𝑢
𝑡
𝑢 (𝑡) 𝑑𝑥 + ∫

Ω

|∇𝑢|
2
𝑑𝑥

− ∫
Ω

∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝑢 (𝑡) 𝑑𝑠 𝑑𝑥

+ ∫
Γ
0

𝑓 (𝑢) 𝑢 (𝑡) 𝑑Γ.

(24)

Differentiating 𝜑(𝑡), we get

𝑑

𝑑𝑡
𝜑 (𝑡) =

1

2
∫
Ω

𝐴
𝑡
(𝑥, 𝑡) |𝑢 (𝑡)|

2
𝑑𝑥

+ ∫
Ω

𝐴 (𝑥, 𝑡) 𝑢
𝑡
𝑢 (𝑡) 𝑑𝑥

=
1

2
∫
Ω

𝐴
𝑡
(𝑥, 𝑡) |𝑢 (𝑡)|

2
𝑑𝑥 − ∫

Ω

|∇𝑢|
2
𝑑𝑥

+ ∫
Ω

∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝑢 (𝑡) 𝑑𝑠 𝑑𝑥

− ∫
Γ
0

𝑓 (𝑢) 𝑢 𝑑Γ

=
1

2
∫
Ω

𝐴
𝑡
(𝑥, 𝑡) |𝑢 (𝑡)|

2
𝑑𝑥 − 2𝐸 (𝑡)

+ 𝑘 (𝑥, 𝑡) ∫
Ω

|∇𝑢|
2
𝑑𝑥 + ∫

Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥

+ 2∫
Γ
0

𝐹 (𝑢) 𝑑Γ − ∫
Ω

|∇𝑢|
2
𝑑𝑥

+ ∫
Ω

∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝑢 (𝑡) 𝑑𝑠 𝑑𝑥
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− ∫
Γ
0

𝑓 (𝑢) 𝑢 𝑑Γ

=
1

2
∫
Ω

𝐴
𝑡
(𝑥, 𝑡) |𝑢 (𝑡)|

2
𝑑𝑥 − 2𝐸 (𝑡)

− (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)∫
Ω


√𝑎 (𝑥)∇𝑢



2

𝑑𝑥

+ ∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥 + 2∫
Γ
0

𝐹 (𝑢) 𝑑Γ

+ ∫
Ω

∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝑢 (𝑡) 𝑑𝑠 𝑑𝑥

− ∫
Γ
0

𝑓 (𝑢) 𝑢 𝑑Γ.

(25)

Next, estimating some items of (25), combined with the
definition of 𝐸(𝑡), we get 2𝐸(𝑡) ≥ ∫

Ω
𝑘(𝑥, 𝑡)|∇𝑢|

2
𝑑𝑥; that is,

∫
Ω

|∇𝑢|
2
𝑑𝑥 ≤ 2𝐸 (𝑡) + (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)∫
Ω


√𝑎 (𝑥)∇𝑢



2

𝑑𝑥.

(26)

By (H3), Cauchy inequality, and Hölder inequality, we have
that



∫
Ω

∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) ∇𝑢 (𝑠) ∇𝑢 (𝑡) 𝑑𝑠 𝑑𝑥



≤



∫
Ω

∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠 𝑑𝑥



+



∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑠 𝑑𝑥



≤
1

2𝜂
∫
Ω

(∫

𝑡

0

𝑔
1/2

(𝑡 − 𝑠) 𝑔
1/2

(𝑡 − 𝑠)√𝑎 (𝑥)

× [∇𝑢 (𝑠) − ∇𝑢 (𝑡)] 𝑑𝑠)

2

𝑑𝑥

+ 𝜂∫
Ω


√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥 + (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

× ∫
Ω


√𝑎 (𝑥)∇𝑢



2

𝑑𝑥

≤
1

2𝜂
∫
Ω

(∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑑𝑠 ∫

𝑡

0

𝑔 (𝑡 − 𝑠)

×

√𝑎 (𝑥) (∇𝑢 (𝑠) − ∇𝑢 (𝑡))



2

𝑑𝑠) 𝑑𝑥

+ 𝜂∫
Ω


√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥

+ (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)∫
Ω


√𝑎 (𝑥)∇𝑢



2

𝑑𝑥

≤ 𝜂‖𝑎‖
𝐿
∞ ∫
Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥

+

𝑔
𝐿1

2𝜂
∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠) 𝑑𝑠

×

√𝑎 (𝑥) (∇𝑢 (𝑠) − ∇𝑢 (𝑡))



2

𝑑𝑠 𝑑𝑥

+ ‖𝑎‖
𝐿
∞

𝑔
𝐿1

∫
Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥

≤ ‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

) ∫
Ω

|∇𝑢 (𝑡)|
2
𝑑𝑥

+

𝑔
𝐿1

2𝜂
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥

≤ 2‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

) 𝐸 (𝑡)

+

𝑔
𝐿1

2𝜂
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥

+ ‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

) (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

× ∫
Ω


√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥.

(27)

Combining this with (H2), (H3), (25), (27), and Lemma 4, we
get

𝑑

𝑑𝑡
𝜑 (𝑡) ≤ − [2 − 2‖𝑎‖

𝐿
∞ (𝜂 +

𝑔
𝐿1

)] 𝐸 (𝑡)

+ (1 +

𝑔
𝐿1

2𝜂
)∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥 − ∫
Γ
0

𝑓 (𝑢) 𝑢 𝑑Γ

− [1 − ‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

)] (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

× ∫
Ω


√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥 + 2∫
Γ
0

𝐹 (𝑢) 𝑑Γ

≤ − [2 − 2‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

)] 𝐸 (𝑡)

+ (1 +

𝑔
𝐿1

2𝜂
)∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥

− [1 − ‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

)] (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

× ∫
Ω


√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥.

(28)
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For convenience, we take

𝜃
1
(𝜂) = 2 − 2‖𝑎‖

𝐿
∞ (𝜂 +

𝑔
𝐿1

) ,

𝜃
2
(𝜂) = 1 +

𝑔
𝐿1

2𝜂
,

𝜃
3
(𝜂) = [1 − ‖𝑎‖

𝐿
∞ (𝜂 +

𝑔
𝐿1

)] (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) .

(29)

Clearly, 𝜃
2
(𝜂) > 0, for 𝜂 > 0. We have to take appropriate 𝜂 to

ensure that 𝜃
1
(𝜂) > 0 and 𝜃

3
(𝜂) > 0. First, if 𝜃

1
(𝜂) > 0, that is,

2 − 2‖𝑎‖
𝐿
∞(𝜂 + ‖𝑔‖

𝐿
1) > 0, we can get 𝜂 < 1/‖𝑎‖

𝐿
∞ − ‖𝑔‖

𝐿
1 .

Next, if 𝜃
3
(𝜂) > 0, that is, [1 − ‖𝑎‖

𝐿
∞(𝜂‖𝑔‖

𝐿
1)](∫
𝑡

0
𝑔(𝑠)𝑑𝑠) > 0,

noting that ∫𝑡
0
𝑔(𝑠)𝑑𝑠 ≤ ‖𝑔‖

𝐿
1 and ∫

𝑡

0
𝑔(𝑠)𝑑𝑠 ≥ ∫

𝑇

0
𝑔(𝑠)𝑑𝑠 :=

𝑔
0
> 0 for 𝑡 ≥ 𝑇 > 0, we get

0 < [1 − ‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

)] (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

= ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠 − ‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

) (∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

≤
𝑔

𝐿1
− 𝑔
0
‖𝑎‖
𝐿
∞ (𝜂 +

𝑔
𝐿1

)

=
𝑔

𝐿1
− 𝑔
0
‖𝑎‖
𝐿
∞

𝑔
𝐿1

− 𝑔
0
‖𝑎‖
𝐿
∞𝜂,

(30)

so we can take

𝜂 <

𝑔
𝐿1

− 𝑔
0
‖𝑎‖
𝐿
∞

𝑔
𝐿1

𝑔
0
‖𝑎‖
𝐿
∞

. (31)

For some 𝑇 > 0, we take positive constant 𝜂
0
such that

𝜂
0
=

1

2
min{ 1

‖𝑎‖
𝐿
∞

−
𝑔

𝐿1
,

𝑔
𝐿1

− 𝑔
0
‖𝑎‖
𝐿
∞

𝑔
𝐿1

𝑔
0
‖𝑎‖
𝐿
∞

} ,

∀𝑡 ≥ 𝑇;

(32)

then we have 𝑘
1
= 𝜃
1
(𝜂
0
) > 0, 𝑘

2
= 𝜃
2
(𝜂
0
) > 0 for 𝑡 ≥ 𝑇, and

𝑑

𝑑𝑡
𝜑 (𝑡) ≤ −𝑘

1
𝐸 (𝑡) + 𝑘

2
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥. (33)

This completes the proof.

3. Global Existence and Uniqueness

In this section, we show the existence and uniqueness of the
global solution to problem (1)-(2) by the Galerkin method,
contraction mapping principle, and contradiction argument.

Theorem 6. Assume that (H1)-(H4) holds; there exists a
unique global solution of the problem (1)-(2).

Proof

Step 1. We consider the following auxiliary problem for a
given V:

𝐴 (𝑥, 𝑡) 𝑢
𝑡
− Δ𝑢 + ∫

𝑡

0

𝑔 (𝑡 − 𝑠) div [𝑎 (𝑥) ∇𝑢 (𝑠)] 𝑑𝑠 = 0,

(𝑥, 𝑡) ∈ Ω × (0,∞) ,

−
𝜕𝑢

𝜕]
+ ∫

𝑡

0

𝑔 (𝑡 − 𝑠) [𝑎 (𝑥) ∇𝑢 (𝑠) ⋅ ]] 𝑑𝑠 = 𝑓 (V) ,

(𝑥, 𝑡) ∈ Γ
0
× [0,∞) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Γ
1
× (0,∞) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω,

(34)

where 𝑢 is the solution that we required. Giving some 𝑇 > 0,
we will consider the solution of the problem (34) in the space
𝑆 = 𝐶([0, 𝑇]; 𝑉) ∩ 𝐶

1
([0, 𝑇]; 𝐿

1
(Ω)) and define the norm as

‖𝑢‖
2

𝑆
= max

𝑡∈[0,𝑇]
‖∇𝑢‖
2

2
.

Step 2.Wewill show that with the hypotheses (H1)–(H4), for
𝑇 > 0, ] ∈ 𝑆, there exists a unique 𝑢 ∈ 𝑆 which satisfies (34).

Choose the basis {𝑤
𝑗
}
𝑗≥1

in 𝑉 ∩ 𝐻
2
(Ω), which are

orthonormal in 𝐿
2
(Ω) and let 𝑉

𝑚
= span{𝑤

1
, . . . , 𝑤

𝑚
} be the

subspace of 𝑉 ∩ 𝐻
2
(Ω) generated by the first 𝑚 vectors. For

any𝑚 ∈ 𝑁, define

𝑢
𝑚
(𝑡) =

𝑚

∑

𝑗=1

𝜁
𝑗𝑚
𝑤
𝑗
, (35)

where 𝑢
𝑚
(𝑡) satisfies the following equation:

(𝐴 (𝑥, 𝑡) 𝑢


𝑚
, 𝑤) + (∇𝑢

𝑚
, ∇𝑤)

− ∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) (∇𝑢
𝑚
(𝑠) , ∇𝑤) 𝑑𝑠

+ (𝑓 (V) , 𝑤)
Γ
0

= 0,

(36)

with the initial condition

𝑢
𝑚
(0) = 𝑢

0𝑚
=

𝑚

∑

𝑗=1

(𝑢
𝑚
(0) , 𝑤

𝑗
)𝑤
𝑗
, (37)

for any 𝑤 ∈ 𝑉. By standard nonlinear ODE theory, we know
that the problem (36) has a unique solution on some interval
[0, 𝑇
𝑚
]. The extension of the solution to the whole interval

[0, 𝑇) is a consequence of the first estimate, which we are
going to prove below. Taking 𝑤 = 𝑢



𝑚
(𝑡), we get

(𝐴 (𝑥, 𝑡) 𝑢


𝑚
, 𝑢


𝑚
) + (∇𝑢

𝑚
, ∇𝑢


𝑚
)

− ∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) (∇𝑢
𝑚
(𝑠) , ∇𝑢



𝑚
(𝑡)) 𝑑𝑠

+ (𝑓 (V) , 𝑢
𝑚
(𝑡))
Γ
0

= 0;

(38)
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that is,

∫
Ω

𝐴 (𝑥, 𝑡)

𝑢


𝑚
(𝑡)



2

𝑑𝑥 +
𝑑

𝑑𝑡
[
1

2

∇𝑢𝑚 (𝑡)


2

2
]

+
1

2
∫
Ω

[𝑎 (𝑥) 𝑔 (𝑡)
∇𝑢𝑚 (𝑡)



2

− (𝑔

∘ ∇𝑢
𝑚
(𝑡))] 𝑑𝑥

+
1

2

𝑑

𝑑𝑡
∫
Ω

[ (𝑔 ∘ ∇𝑢
𝑚
(𝑡))

−∫

𝑡

0

𝑔 (𝑠)

√𝑎 (𝑥)∇𝑢

𝑚
(𝑡)



2

𝑑𝑠] 𝑑𝑥

+ (𝑓 (V) , 𝑢
𝑚
(𝑡))
Γ
0

= 0,

(39)

then, we have

∫
Ω

𝐴 (𝑥, 𝑡)

𝑢


𝑚
(𝑡)



2

𝑑𝑥

+
𝑑

𝑑𝑡
[
1

2
(1 − 𝑎 (𝑥) ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)
∇𝑢𝑚 (𝑡)



2

2
]

+
1

2

𝑑

𝑑𝑡
∫
Ω

(𝑔 ∘ ∇𝑢
𝑚
(𝑡)) (𝑡) 𝑑𝑥

+
1

2
𝑔 (𝑡)


√𝑎 (𝑥)∇𝑢

𝑚
(𝑡)



2

2

−
1

2
∫
Ω

(𝑔

∘ ∇𝑢
𝑚
(𝑡)) (𝑡) 𝑑𝑥 + (𝑓 (V) , 𝑢

𝑚
(𝑡))
Γ
0

= 0.

(40)

Integrating (40) over (0, 𝑡), 𝑡 ∈ [0, 𝑇
𝑚
], we get

∫

𝑡

0

∫
Ω

𝐴 (𝑥, 𝑡)

𝑢


𝑚
(𝑡)



2

𝑑𝑥 𝑑𝑡

+
1

2
(1 − 𝑎 (𝑥) ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)
∇𝑢𝑚(𝑡)



2

2

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑢
𝑚
) (𝑡) 𝑑𝑥 −

1

2

∇𝑢𝑚(0)


2

2

+ ∫

𝑡

0

𝑔 (𝑠)

√𝑎(𝑥)∇𝑢

𝑚
(𝑠)



2

2
𝑑𝑠

−
1

2
∫

𝑡

0

∫
Ω

(𝑔

∘ ∇𝑢
𝑚
) (𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑡

0

∫
Γ
0

𝑓 (V) 𝑢
𝑚
(𝑡) 𝑑Γ 𝑑𝑡 = 0.

(41)

Next, estimating some items of (41), by (H1), we obtain

∫
Ω

(𝑔 ∘ ∇𝑢
𝑚
) (𝑡) 𝑑𝑥 − ∫

𝑡

0

∫
Ω

(𝑔

∘ ∇𝑢
𝑚
) (𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

𝑡

0

𝑔 (𝑠)

√𝑎(𝑥)∇𝑢

𝑚
(𝑠)



2

2
𝑑𝑠 ≥ 0.

(42)

By the Hölder inequality, 𝑝/(𝑝 + 1) + 1/(𝑝 + 1) = 1 and
𝐻
1

0
(Ω) → 𝐿

𝑝+1
(Ω), 𝐻1

0
(Γ
0
) → 𝐿

2𝑝
(Γ
0
), we have

∫

𝑡

0

∫
Γ
0

𝑓 (V) 𝑢
𝑚
(𝑡) 𝑑Γ 𝑑𝑡 ≤ ∫

𝑡

0

𝑓(V)


𝑝

𝑝+1,Γ
0


𝑢


𝑚
(𝑡)

𝑝+1,Γ
0

𝑑𝑡

≤
1

4𝜂
∫

𝑡

0

𝑓(V)


𝑝

𝑝+1,Γ
0

𝑑𝑡 + 𝜂∫

𝑡

0


∇𝑢


𝑚
(𝑡)



2

2
𝑑𝑡

≤ 𝜂∫

𝑡

0


∇𝑢


𝑚
(𝑡)



2

2
𝑑𝑡 + 𝐶 (𝑇) .

(43)

By assumption of the boundedness of 𝐴(𝑥, 𝑡) and Sobolev
embedding inequality, we get

∫

𝑡

0

∫
Ω

𝐴 (𝑥, 𝑡)

𝑢


𝑚
(𝑡)



2

𝑑𝑥 𝑑𝑡 ≤ 𝐶 (𝑇) + 𝐶
𝛿
∫

𝑡

0


𝑢


𝑚
(𝑡)



2

2
𝑑𝑡.

(44)

Substituting the estimates (42)–(44) into (41), we obtain

𝐶
𝛿
∫

𝑡

0


𝑢


𝑚
(𝑡)



2

2
𝑑𝑡 +

1

2
𝑘 (𝑥, 𝑡)

∇𝑢𝑚 (𝑡)


2

2

+ 𝜂∫

𝑡

0


𝑢


𝑚
(𝑡)



2

2
𝑑𝑡 ≤ 𝐶 (𝑇) .

(45)

Hence, there exists a subsequence of {𝑢
𝑚
}, which will be still

denoted by {𝑢
𝑚
}, such that

𝑢


𝑚
⇀ 𝑢 weak-star in 𝐿

∞
([0, 𝑇]; 𝑉),

𝑢


𝑚
⇀ 𝑢
 weak-star in 𝐿

∞
([0, 𝑇]; 𝐿

1
(Ω)),

𝑢


𝑚
⇀𝑢
 weak-star in𝐿2([0, 𝑇)×𝐻1

0
(Ω))∩𝐿

𝑚+2
([0, 𝑇]×

Γ
0
).

Noting that𝑢 ∈ 𝐻
1
([0, 𝑇]; 𝑉), we can get𝑢 ∈ 𝐶([0, 𝑇]; 𝑉).

The existence of solution 𝑢 is proved.
Next, we will prove the uniqueness of the solution 𝑢 of

(34) by contradiction argument. Let 𝑢
1
, 𝑢
2
be two solutions

of problem (34) with the same initial values. Letting that𝑈 =

𝑢 − 𝑢
− and taking 𝑈 into (41), we have

∫

𝑡

0

∫
Ω

𝐴 (𝑥, 𝑡)
𝑈𝑡 (𝑡)



2

𝑑𝑥 𝑑𝑡

+
1

2
(1 − 𝑎 (𝑥) ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) ‖∇𝑈(𝑡)‖
2

2

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑈) (𝑡) 𝑑𝑥

+
1

2
∫

𝑡

0

𝑔 (𝑠)

√𝑎 (𝑥)∇𝑈(𝑠)



2

2
𝑑𝑠

+ {−
1

2
∫
Ω

∫

𝑡

0

(𝑔

∘ ∇𝑈) (𝑠) 𝑑𝑠 𝑑𝑥} = 0.

(46)

By (H1)–(H3), each term of the left-hand side is nonnegative;
then 𝑢 = 𝑢

− follows immediately.

Step 3 (local existence and uniqueness). In this step, we will
derive existence and uniqueness of local solution to problem
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(1)-(2) for appropriate small time 𝑇 by using contraction
mapping theorem. That is,

(𝐴 (𝑥, 𝑡) 𝑢
𝑡
, 𝜔) + (∇𝑢, ∇𝜔)

− ∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) (∇𝑢 (𝑠) , ∇𝜔) 𝑑𝑠

+ (𝑓 (𝑢) , 𝜔)
Γ
0

= 0,

(47)

such that

𝑢 ∈ 𝐶 ([0, 𝑇] ; 𝑉) ∩ 𝐶
1
([0, 𝑇] ; 𝐿

1
(Ω)) . (48)

For 𝑅 > 0, 𝑇 > 0, we define

𝐵
𝑅
= {𝑢 ∈ 𝑆 : 𝑢 (0) = 0, ‖𝑢‖

𝑠
≤ 𝑅} . (49)

𝐵
𝑅
is nonempty for taking 𝑅 sufficiently large. We define a

mapping 𝐹 : 𝑢 = 𝐹(V) from 𝐵
𝑅
to 𝑆.

Firstly, wewill prove that𝐹 is a contractionmapping from
𝐵
𝑅
to itself. From Lemma 2, we know that for any fixed V ∈

𝐵
𝑅
, the solution satisfies the following equation:

∫

𝑡

0

∫
Ω

𝐴 (𝑥, 𝑡)
𝑢𝑡



2

𝑑𝑥 𝑑𝑡 +
1

2
(1 − 𝑎 (𝑥) ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) ‖∇𝑢‖
2

2

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑢) (𝑡) 𝑑𝑥 −
1

2
‖∇𝑢 (0)‖

2

2

+
1

2
∫

𝑡

0

𝑔 (𝑠)

√𝑎 (𝑥)∇𝑢 (𝑠)



2

2
𝑑𝑠

−
1

2
∫
Ω

∫

𝑡

0

(𝑔

∘ ∇𝑢) (𝑠) 𝑑𝑠 𝑑𝑥

+ ∫

𝑡

0

∫
Γ
0

𝑓 (V) 𝑢
𝑡
(𝑡) 𝑑Γ 𝑑𝑡 = 0.

(50)

Similar to the estimates of (42) and (43), we obtain

𝐶
𝛿
∫

𝑡

0

𝑢𝑡 (𝑡)


2

2
𝑑𝑡 +

1

2
𝑘 (𝑥, 𝑡) ‖∇𝑢‖

2

2

+ 𝜂∫

𝑡

0


∇𝑢

(𝑡)



2

2
𝑑𝑡

≤
1

4𝜂
𝑇‖∇V‖

2𝑝

2
≤

1

4𝜂
𝑇𝑅
2𝑝
;

(51)

selecting 𝑇 sufficiently small, then we have

‖𝑢 (𝑠)‖
2

𝑆
≤ 𝑅
2
, (52)

for taking 𝑇 sufficiently small, so 𝐹 is a mapping from 𝐵
𝑅
to

itself.

Secondly, we will prove that 𝐹 is a contraction mapping.
Let𝑈 = 𝑢 − 𝑢

−, 𝑉 = V − V−, where 𝐹(V) = 𝑢, 𝐹(V−) = 𝑢
−; then

for any 𝑤 ∈ 𝑉, we have

(𝐴 (𝑥, 𝑡) 𝑈
𝑡
, 𝑤) + (∇𝑈, ∇𝑤)

− ∫

𝑡

0

𝑎 (𝑥) 𝑔 (𝑡 − 𝑠) (∇𝑈(𝑠) , ∇𝑤) 𝑑𝑠

+ ∫
Γ
0

(𝑓(V) − 𝑓(V−)) 𝑤 𝑑Γ = 0.

(53)

Taking 𝑤 = 𝑈
𝑡
and integrating over (0, 𝑡], we get

∫

𝑡

0

∫
Ω

𝐴 (𝑥, 𝑡)
𝑈𝑡



2

𝑑𝑥 𝑑𝑡 +
1

2
(1 − 𝑎 (𝑥) ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) ‖∇𝑈‖
2

2

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑈) (𝑡) 𝑑𝑥

+
1

2
∫

𝑡

0

𝑔 (𝑠)

√𝑎 (𝑥)∇𝑈 (𝑠)



2

2
𝑑𝑠

−
1

2
∫
Ω

∫

𝑡

0

(𝑔

∘ ∇𝑢) (𝑠) 𝑑𝑠 𝑑𝑥

+ ∫

𝑡

0

∫
Γ
0

(𝑓(V) − 𝑓(V−) 𝑈
𝑡
(𝑡) 𝑑Γ 𝑑𝑡 = 0.

(54)

By (H3), we obtain

∫
Γ
0

(𝑓(V) − 𝑓 (V−) 𝑈
𝑡
(𝑡) 𝑑Γ ≤ 𝐶

1
∫
Γ
0

V − V−
𝑈𝑡 (𝑡)

 𝑑Γ

≤ 𝐶
2

𝑈𝑡 (𝑡)
2

∇𝑉
−
(𝑡)

2,Γ
0

≤ 𝐶
3

𝑈𝑡 (𝑡)
2

∇𝑉
−
(𝑡)

2,Γ
0

,

(55)

where 𝜉 is located between V and V−. Combining of (42), (55),
and (54) yields

∫

𝑡

0

∫
Ω

𝐴 (𝑥, 𝑡)
𝑈𝑡 (𝑡)



2

𝑑𝑥 𝑑𝑡 +
1

2
(1 − 𝑎 (𝑥) ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠)

× ‖∇𝑈‖
2

2
≤ 𝐶
3
∫

𝑡

0

𝑈𝑡 (𝑡)
2

∇𝑉
−
(𝑡)

2,Γ
0

;

(56)

that is

‖𝑈‖
𝑆
≤ 𝐶
4
𝑇𝑅
𝑝𝑉
−𝑆

. (57)

Taking 𝑇 sufficiently small such that 𝐶
4
𝑇𝑅
𝑝

< 1, 𝐹 is a
contraction mapping.

Step 4.We show that if 𝑇max = sup{𝑇 > 0 : 𝑢 = 𝑢(𝑡) exists on
[0, 𝑇]} < ∞, then lim

𝑡→𝑇
−

max
‖𝑢‖
2

𝑆
= ∞.

We will use a standard continuation argument to prove it.
Indeed, by contradiction argument, suppose that 𝑇max < ∞

and lim
𝑡→𝑇

−

max
‖𝑢‖
2

𝑆
< ∞; then there exists a sequence {𝑡

𝑛
, 𝑛 =
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1, 2, . . .} and a constant 𝐾 > 0, such that 𝑡
𝑛
→ 𝑇max as 𝑛 →

+∞ and ‖𝑢(𝑡
𝑛
)‖
2

𝑆
≤ 𝐾, 𝑛 = 1, 2, . . .. As we have already shown

previously, for each 𝑛 ∈ 𝑁 there exists a unique solution of
the problem (1)–(2) with initial data 𝑢(𝑡

𝑛
) on [𝑡

𝑛
, 𝑡
𝑛
+ 𝑇
∗
],

where 𝑇∗ > 0 depends on 𝐾 and is independent of 𝑛 ∈ 𝑁.
Thus, for 𝑛 ∈ 𝑁 large enough, we can get 𝑇max < 𝑡

𝑛
+𝑇
∗. This

contradicts the maximality of 𝑇max.

Step 5. In the final step, we only need to prove the existence of
the global solution. By (H3) and Poincaré inequality, we have

𝐸 (0) ≥ 𝐸 (𝑡) =
1

2
𝑘 (𝑥, 𝑡) ∫

Ω

|∇𝑢|
2
𝑑𝑥

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑢) (𝑡) 𝑑𝑥 + ∫
Γ
0

𝐹 (𝑢) 𝑑Γ

≥
1

2
(1 − 𝑎 (𝑥) ∫

𝑡

0

𝑔 (𝑠) 𝑑𝑠) ‖∇𝑢‖
2

2

+
1

2
∫
Ω

(𝑔 ∘ ∇𝑢) (𝑡) 𝑑𝑥

≥ 𝐶‖𝑢‖
2

𝑆
, ∀𝑡 ≥ 0.

(58)

It is easy to see that 𝑇max = ∞. This completes the proof.

4. Uniform Energy Decay Rates

In this section, we establish the estimate of uniform energy
decay rates and make use of the above assumptions and
preliminaries to prove the results.

Theorem 7. Assume that (H1)–(H4) hold and there exists a
positive constant 𝑐 > 0 such that 𝑔(𝑡) ≤ −𝑐𝑔(𝑡). If 𝑢

0
∈ 𝐻
1
(Ω),

then for some 𝑇 > 0, there exists a positive constant 𝐶
0
such

that the solution of (1)-(2) satisfies

𝐸 (𝑡) ≤ 4𝐸 (0) 𝑒
−𝑐
0
𝑡
, ∀𝑡 ≥ 𝑇. (59)

Proof. Let 𝛾 > 0 be a positive constant. We introduce

𝜓 (𝑡) = 𝛾𝐸 (𝑡) + 𝜑 (𝑡) ; (60)

since |𝜑(𝑡)| ≤ 𝐶𝐸(𝑡), we get

𝛾

2
𝐸 (𝑡) ≤ 𝜓 (𝑡) ≤ 2𝛾𝐸 (𝑡) , ∀𝑡 ≥ 0, (61)

by taking 𝛾 large enough. From (18) and the assumption of
𝑔

(𝑡) ≤ −𝑐𝑔(𝑡), applying Lemma 3 and taking 𝛾 large enough

and 𝑡 ≥ 𝑇, we obtain that

𝑑

𝑑𝑡
𝜓 (𝑡) = 𝛾

𝑑

𝑑𝑡
𝐸 (𝑡) +

𝑑

𝑑𝑡
𝜑 (𝑡)

≤ 𝛾 (
1

2
∫
Ω

(𝑔

∘ ∇𝑢 − 𝑔 (𝑡)


√𝑎 (𝑥)∇𝑢



2

) 𝑑𝑥

− ∫
Ω

𝐴 (𝑥, 𝑡)
𝑢𝑡



2

𝑑𝑥 − 𝑘
1
𝐸 (𝑡) + 𝑘

2
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥

≤ −(
𝑐𝛾

2
− 𝑘
2
)∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥

−
𝛾

2
∫
Ω

𝑔 (𝑡)

√𝑎 (𝑥)∇𝑢



2

𝑑𝑥

− 𝛾∫
Ω

𝐴 (𝑡)
𝑢𝑡



2

𝑑𝑥 − 𝑘
1
𝐸 (𝑡)

≤ −𝑘
1
𝐸 (𝑡) ≤ −

𝑘
1

2𝛾
𝜓 (𝑡) ,

(62)

by the Gronwall’s inequality which implies that

𝜓 (𝑡) ≤ 𝜓 (0) 𝑒
−(𝑘
1
/2𝛾)𝑡

, ∀𝑡 ≥ 𝑇. (63)

Using (61), we obtain

𝐸 (𝑡) ≤ 4𝐸 (0) 𝑒
−(𝑘
1
/2𝛾)𝑡

, ∀𝑡 ≥ 𝑇. (64)

This completes the proof.

Theorem 8. Assume that (H1)–(H4) hold, and there exists a
positive constant 𝑐 > 0 such that 𝑔(𝑡) ≤ −𝑐𝑔

1+1/𝑞
(𝑡), 𝑞 > 2.

If 𝑢
0
∈ 𝐻
1
(Ω), then for some 𝑇 > 0 there exists a positive

constant 𝐶
𝜔
, such that the solution of (1)-(2) satisfies

𝐸 (𝑡) ≤
𝐶
𝜔

(1 + 𝑡)
𝑞
, ∀𝑡 ≥ 𝑇. (65)

In order to proveTheorem 8, we first quote the following
lemma.

Lemma 9. Assume that V ∈ 𝐿
∞
(0, 𝑇;𝐻

1
(Ω)) and 𝑔 is a

continuous function. Then there exists a positive constant 𝐶,
such that

∫
Ω

(𝑔 ∘ ∇V) 𝑑𝑥 ≤ 𝐶(𝑡‖V (𝑡)‖2
𝐻
1 + ∫

𝑡

0

‖V (𝑡)‖2
𝐻
1𝑑𝑠)

1/(𝑞+1)

× (∫
Ω

𝑔
1+1/𝑞

∘ ∇V 𝑑𝑥)
𝑞/(𝑞+1)

.

(66)

Moreover,

∫

∞

0

𝑔
1−𝜃

(𝑠) 𝑑𝑠 < ∞, 0 < 𝜃 < 1. (67)
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Then we have

∫
Ω

(𝑔 ∘ ∇V) 𝑑𝑥 ≤ 𝐶(∫

∞

0

𝑔
1−𝜃

(𝑠) 𝑑𝑠‖V‖2
𝐿
∞
(0,𝑇;𝐻

1
(Ω))

)

1/(𝜃𝑞+1)

× (∫
Ω

𝑔
1+1/𝑞

∘ ∇V 𝑑𝑥)
𝜃𝑞/(𝜃𝑞+1)

.

(68)

Proof. Applying the Hölder inequality, we obtain

∫
Ω

(𝑔 ∘ ∇V) 𝑑𝑥 = ∫
Ω

∫

𝑡

0

𝑔 (𝑡 − 𝑠)

×

√𝑎 (𝑥) (∇V (𝑡) − ∇V (𝑠))



2

𝑑𝑠 𝑑𝑥

≤ (∫
Ω

∫

𝑡

0

𝑔 (𝑠)


1−𝜃

|𝜔 (𝑠)| 𝑑𝑠 𝑑𝑥)

1/(𝜃𝑞+1)

× (∫
Ω

∫

𝑡

0

𝑔 (𝑠)


1+1/𝑞

|𝜔 (𝑠)| 𝑑𝑠 𝑑𝑥)

𝜃𝑞/(𝜃𝑞+1)

≤ (∫
Ω

𝑔
1−𝜃

∘ ∇V 𝑑𝑥)
1/(𝜃𝑞+1)

× (∫
Ω

𝑔
1+1/𝑞

∘ ∇V 𝑑𝑥)
𝜃𝑞/(𝜃𝑞+1)

,

(69)

where 𝜔(𝑠) = |√𝑎(𝑥)(∇V(𝑡) − ∇V(𝑠))|2. Noting that
∫
∞

0
𝑔
1−𝜃

(𝑠)𝑑𝑠 < ∞, 0 < 𝜃 < 1, we obtain

∫
Ω

𝑔
1−𝜃

∘ ∇V 𝑑𝑥 = ∫

𝑡

0

𝑔
1−𝜃

(𝑡 − 𝑠)

× ∫
Ω


√𝑎 (𝑥) (∇V (𝑡) − ∇V (𝑠))



2

𝑑𝑥 𝑑𝑠

≤ 𝐶∫

𝑡

0

𝑔
1−𝜃

(𝑠) 𝑑𝑠‖V‖2
𝐿
∞
(0,𝑇;𝐻

1
(Ω))

,

(70)

which implies that

∫
Ω

𝑔 ∘ ∇V𝑑𝑥 ≤ 𝐶(∫

𝑡

0

𝑔
1−𝜃

(𝑠) 𝑑𝑠) ‖V‖2
𝐿
∞(0,𝑇;𝐻1(Ω))

)

1/(𝜃𝑞+1)

× (∫
Ω

𝑔
1+1/𝑞

∘ ∇V 𝑑𝑥)
𝜃𝑞/(𝜃𝑞+1)

.

(71)

If 𝜃 = 1, we have

∫
Ω

𝑔
1−𝜃

∘ ∇V 𝑑𝑥 = ∫
Ω

1 ∘ ∇V 𝑑𝑥

= ∫
Ω

∫

𝑡

0


√𝑎 (𝑥) (∇V (𝑡) − ∇V (𝑠))



2

𝑑𝑠 𝑑𝑥

≤ 𝐶(𝑡∫
Ω

|∇V (𝑡)|2𝑑𝑥

+∫
Ω

∫

𝑡

0

|∇V (𝑠)|2𝑑𝑥 𝑑𝑠) .

(72)

Applying the above inequality and (69), we obtain

∫
Ω

𝑔 ∘ ∇V 𝑑𝑥 ≤ 𝐶(𝑡∫
Ω

|∇V (𝑡)|2𝑑𝑥

+∫
Ω

∫

𝑡

0

|∇V (𝑠)|2𝑑𝑥 𝑑𝑠)

1/(𝑞+1)

× (∫
Ω

𝑔
1+(1/𝑞)

∘ ∇V 𝑑𝑥)
𝑞/(𝑞+1)

≤ 𝐶(𝑡‖V (𝑡)‖2
𝐻
1 + ∫

𝑡

0

‖V (𝑡)‖2
𝐻
1𝑑𝑠)

1/(𝑞+1)

× (∫
Ω

𝑔
1+(1/𝑞)

∘ ∇V 𝑑𝑥)
𝑞/(𝑞+1)

.

(73)

This completes the proof.

Proof of Theorem 8. From the assumption𝑔(𝑡)≤−𝑐𝑔1+1/𝑞(𝑡) ,
we have [𝑔−1/𝑞(𝑡)]



≥ 𝑐/𝑞. Integrating it over [0, 𝑡], we get

𝑔 (𝑡) ≤ 𝐶
1
(1 + 𝑡)

−𝑞
, 𝐶
1
> 0. (74)

Taking 𝜃 = 1/2 in Lemma 9, (1 − 𝜃)𝑞 = 𝑞/2 > 1, then we
obtain

∫

∞

0

𝑔
1−𝜃

(𝑠) 𝑑𝑠 ≤ ∫

∞

0

1

(1 + 𝑠)
𝑞/2

< ∞. (75)

Substituting this estimate into (68), using (18) and Lemma 4,
we have

∫
Ω

𝑔 ∘ ∇𝑢 𝑑𝑥 ≤ 𝐶
2
𝐸(0)
2/𝑞+2

(∫
Ω

𝑔
1+1/𝑞

∘ ∇𝑢 𝑑𝑥)

𝑞/(𝑞+2)

.

(76)

Applying (76), (23), and Lemma 3 and taking 𝑡 ≥ 𝑇, we get

𝑑

𝑑𝑡
𝜑 (𝑡) ≤ −𝑘

1
𝐸 (𝑡) + 𝑘

2
∫
Ω

(𝑔 ∘ ∇𝑢) 𝑑𝑥

≤ −𝑘
1
𝐸 (𝑡) + 𝑘

2
𝐶
2
𝐸(0)
2/(𝑞+2)

×(∫
Ω

𝑔
1+1/𝑞

∘ ∇𝑢𝑑𝑥)

𝑞/(𝑞+2)

.

(77)
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Since |𝜑(𝑡)| ≤ 𝐶𝐸(𝑡), applying the Young’s inequality, from
(19) and (77), we deduce that

𝑑

𝑑𝑡
[𝐸
2/𝑞

𝜑] (𝑡) =
2

𝑞
𝜑 (𝑡) 𝐸

2/𝑞−1
(𝑡)

𝑑

𝑑𝑡
𝐸 (𝑡) + 𝐸

2/𝑞
(𝑡)

𝑑

𝑑𝑡
𝜑 (𝑡)

≤ −
2

𝑞
𝐶𝐸
2/𝑞

(𝑡)
𝑑

𝑑𝑡
𝐸 (𝑡) + 𝐸

2/𝑞
(𝑡)

𝑑

𝑑𝑡
𝜑 (𝑡)

≤ −𝐶
0

𝑑

𝑑𝑡
𝐸
1+2/𝑞

(𝑡) − 𝑘
1
𝐸
1+2/𝑞

(𝑡)

+ 𝑘
2
𝐶
2
𝐸(0)
2/(𝑞+2)

𝐸
2/𝑞

(𝑡)

× (∫
Ω

𝑔
1+1/𝑞

∘ ∇𝑢 𝑑𝑥)

𝑞/(𝑞+2)

≤ −𝐶
0

𝑑

𝑑𝑡
𝐸
1+2/𝑞

(𝑡) − 𝑘
1
𝐸
1+2/𝑞

(𝑡)

+ 𝑘
2
𝐶
2
𝐸(0)
2/𝑞+2

𝜀𝐸
1+2/𝑞

(𝑡)

+ 𝑘
2
𝐶
2
𝐸(0)
2/𝑞+2

𝐶
𝜀
(∫
Ω

𝑔
1+1/𝑞

∘ ∇𝑢 𝑑𝑥) .

(78)

Since 𝑔

(𝑡) ≤ −𝑐𝑔

1+1/𝑞
(𝑡), that is, 𝑔1+(1/𝑞)(𝑡) ≤ −(1/𝑐)𝑔


(𝑡),

then we obtain

∫
Ω

𝑔
1+(1/𝑞)

∘ ∇𝑢 𝑑𝑥 ≤ −
1

𝑐
∫
Ω

𝑔

∘ ∇𝑢 𝑑𝑥. (79)

It follows from Lemma 3 that

∫
Ω

𝑔

∘ ∇𝑢𝑑𝑥 = 2

𝑑

𝑑𝑡
𝐸 (𝑡) +

1

2
∫
Ω

𝑔 (𝑡)

√𝑎 (𝑥)∇𝑢 (𝑡)



2

𝑑𝑥

+ ∫
Ω

𝐴 (𝑥, 𝑡)
𝑢𝑡



2

𝑑𝑥 ≥ 2
𝑑

𝑑𝑡
𝐸 (𝑡) ;

(80)

hence, we get

∫
Ω

𝑔
1+(1/𝑞)

∘ ∇𝑢 𝑑𝑥 ≤ −𝐶
3

𝑑

𝑑𝑡
𝐸 (𝑡) . (81)

Taking 𝜀 sufficiently small, using (78) and (81), we have

𝑑

𝑑𝑡
[𝐸
2/𝑞

𝜑] (𝑡) ≤ −𝐶
0

𝑑

𝑑𝑡
𝐸
1+2/𝑞

(𝑡)

−
𝑘
1

2
𝐸
1+2/𝑞

(𝑡) − 𝐶
4

𝑑

𝑑𝑡
𝐸 (𝑡) ;

(82)

then we obtain

𝑑

𝑑𝑡
[𝐸
2/𝑞

𝜑 + 𝐶
0
𝐸] (𝑡) ≤ −

𝑘
1

2
𝐸
1+(2/𝑞)

(𝑡) − 𝐶
4

𝑑

𝑑𝑡
𝐸 (𝑡) ,

∀𝑡 ≥ 𝑇.

(83)

Let 𝛾 > 0 be a positive constant and define that

𝜓 (𝑡) = 𝛾𝐸 (𝑡) + 𝐸
2/𝑞

(𝑡) [𝜑 (𝑡) + 𝐶
0
𝐸 (𝑡)] . (84)

Since |𝜑(𝑡)| ≤ 𝐶𝐸(𝑡), (𝑑/𝑑𝑡)𝐸(𝑡) ≤ 0, we get

𝛾

2
𝐸 (𝑡) ≤ 𝜓 (𝑡) ≤ 2𝛾𝐸 (𝑡) , ∀𝑡 ≥ 0, (85)

by taking 𝛾 sufficiently large. Using (83) and Lemma 3 and
taking 𝛾 sufficiently large, we obtain

𝑑

𝑑𝑡
𝜓 (𝑡) = 𝛾

𝑑

𝑑𝑡
𝐸 (𝑡) +

𝑑

𝑑𝑡
{𝐸
2/𝑞

(𝑡) [𝜑 (𝑡) + 𝐶
0
𝐸 (𝑡)]}

≤ 𝛾
𝑑

𝑑𝑡
𝐸 (𝑡) − 𝐶

4

𝑑

𝑑𝑡
𝐸 (𝑡) −

𝑘
1

2
𝐸
1+2/𝑞

(𝑡)

= (𝛾 − 𝐶
4
)
𝑑

𝑑𝑡
𝐸 (𝑡) −

𝑘
1

2
𝐸
1+2/𝑞

(𝑡)

≤ −
𝑘
1

2
𝐸
1+(2/𝑞)

(𝑡) , ∀𝑡 ≥ 𝑇.

(86)

From (85) and (86), we have

𝑑

𝑑𝑡
𝜓 (𝑡) ≤ −𝐶

5
𝜓
1+2/𝑞

(𝑡) , ∀𝑡 ≥ 𝑇. (87)

Applying the Gronwall’s inequality, we get

𝜓 (𝑡) ≤
𝐶
6

(1 + 𝑡)
𝑞/2

, ∀𝑡 ≥ 𝑇; (88)

hence

𝐸 (𝑡) ≤
𝐶
7

(1 + 𝑡)
𝑞/2

, ∀𝑡 ≥ 𝑇. (89)

Since 𝑞 > 2, we have

∫

∞

0

𝐸 (𝑠) 𝑑𝑠 ≤ ∫

∞

0

𝐶
7

(1 + 𝑡)
𝑞/2

𝑑𝑠 < ∞,

𝑡𝐸 (𝑡) ≤
𝐶
7
𝑡

(1 + 𝑡)
𝑞/2

< ∞,

(90)

and then we obtain

∫

∞

0

‖𝑢 (𝑠)‖
2

𝐻
1𝑑𝑠 + 𝑡‖𝑢 (𝑡)‖

2

𝐻
1

≤ 𝐶
8
(∫

∞

0

𝐸 (𝑠) 𝑑𝑠 + 𝑡𝐸 (𝑡)) < ∞.

(91)

Using Lemma 9, we get

∫
Ω

𝑔 ∘ ∇𝑢 𝑑𝑥 ≤ 𝐶
9
(∫
Ω

𝑔
1+1/𝑞

∘ ∇𝑢 𝑑𝑥)

𝑞/(𝑞+1)

. (92)

By (92) and replacing the left-hand side term of (78) by
(𝑑/𝑑𝑡)[𝐸

1/𝑞
𝜑](𝑡), we deduce that

𝐸 (𝑡) ≤
𝐶
𝑤

(1 + 𝑡)
𝑞
, ∀𝑡 ≥ 𝑇. (93)

This completes the proof.
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