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Let 𝐹 : R × R → R be a real-valued polynomial function of the form 𝐹(𝑥, 𝑦) = ∑
𝑠

𝑖=0
𝑓
𝑖
(𝑥)𝑦
𝑖, with degree of 𝑦 in 𝐹(𝑥, 𝑦) = 𝑠 ≥

1, 𝑥 ∈ R.An irreducible real-valued polynomial function 𝑝(𝑥) and a nonnegative integer𝑚 are given to find a polynomial function
𝑦(𝑥) ∈ R[𝑥] satisfying the following expression: 𝐹(𝑥, 𝑦(𝑥)) = 𝑐𝑝

𝑚

(𝑥) for some constant 𝑐 ∈ R. The constant 𝑐 is dependent on
the solution 𝑦(𝑥), namely, a quasi-fixed (polynomial) solution of the polynomial-like equation (∗). In this paper, we will provide a
non-NP-complete algorithm to solve all quasi-fixed solutions if the equation (∗) has only a finite number of quasi-fixed solutions.

1. Introduction and Preliminaries

Lenstra [1] found that a polynomial function 𝐹(𝑥, 𝑦) ∈

Q(𝛼)[𝑥, 𝑦](where 𝛼 is an algebraic number) can be solved
to a polynomial function 𝑦 = 𝑦(𝑥) ∈ Q(𝛼)[𝑥] such that
𝐹(𝑥, 𝑦(𝑥)) = 0. It can thus be derived to find a polynomial
𝑦 = 𝑦(𝑥) such that there exists an 𝑥 ∈ Q(𝛼)[𝑥] as a fixed
point of the polynomial function 𝐹(𝑥, 𝑦(𝑥)); that is,

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑥 (1)

has a polynomial solution 𝑦(𝑥) ∈ Q(𝛼)[𝑥].
Furthermore, Tung [2, 3] extended (1) to solve 𝑦(𝑥) for

the following equation:

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑐𝑥
𝑚

, for 𝑥 ∈ K (field) , 𝑚 ∈ N, (2)

where 𝑐 is a real constant depending on the polynomial
solution 𝑦(𝑥) and the given positive integer𝑚 ∈ N.

Recently, Lai and Chen [4] extended the expression (2) to
solve 𝑦(𝑥) to satisfy the polynomial equation as the following
form:

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑐𝑝
𝑚

(𝑥) , 𝑥 ∈ R, (3)

where 𝑝(⋅) is an irreducible polynomial in 𝑥 ∈ R and the
polynomial functions 𝐹(𝑥, 𝑦) : R ×R → R are written by

𝐹 (𝑥, 𝑦)=

𝑠

∑

𝑖=0

𝑓
𝑖
(𝑥) 𝑦
𝑖

,

with degree 𝑦 in 𝐹 (𝑥, 𝑦) denoted by deg
𝑦
𝐹 = 𝑠 > 1.

(4)

Remark 1. Recall that a polynomial function 𝑦 = 𝑦(𝑥)

satisfying (3) is called a quasi-fixed (polynomial) solution
corresponding to the real value 𝑎. This number 𝑎 is called a
quasi-fixed (polynomial) value corresponding to the polyno-
mial solutions 𝑦 = 𝑦(𝑥).

Note that the equationmaynot be solvable; if it is solvable,
the number of all solutions may be infinitely many, or finitely
many quasi-fixed solutions If this equation has infinitely
many quasi-fixed solutions, by [4, Theorem 3.5], we have

(1) 𝑓
𝑠
(𝑥)must be 𝑎𝑝𝑟(𝑥) for some 𝑎 ∈ R, 𝑟 ∈ N,

(2) those solutions must assume a fixed form like

−
𝑓
𝑠−1

(𝑥)

𝑠𝑓
𝑠
(𝑥)

+ 𝜆𝑝
𝑘

(𝑥) for any 𝜆 ∈ R. (5)

Moreover, if this equation has only finitely many quasi-fixed
solutions, by [4, Corollary 3.3], the bound of all solutions is
at most deg

𝑦
𝐹 + 2.
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In this paper, we deal with the case of finitely many solu-
tions and provide a non-NP-complete algorithm to obtain all
representations of quasi-fixed solutions.

Remark 2. An algorithm is called “NP-complete” if the
algorithm is computed in an exponential time of the input
size “n”; that is, the computing time in the algorithm does
not exceed 𝑂(𝑒

𝑛

). Otherwise, the algorithm is called “non-
NP-complete”; that is, the algorithm can be computed in a
polynomial time not exceeding 𝑂(𝑛

𝑘

) for some fixed real
number 𝑘.

The remainder of the paper is organized as follows:
Section 2 introduces an example for the practical algorithm.
Section 3 describes the main algorithm and its processes.
Section 4 proves that the main algorithm is indeed non-NP-
complete. We have given two example problems in Section 5.

2. Relative Algorithm and Some Examples

Let 𝐹(𝑥, 𝑦) ∈ R[𝑥, 𝑦] and an irreducible polynomial function
𝑝(𝑥) ∈ R[𝑥]. To complete our algorithm, we need an
existing algorithm. In [2], Tung has established the following
algorithm.

Algorithm 3 (Tung [5]). Consider the following technique.

Input. Given is a polynomial 𝐹(𝑥, 𝑦) ∈ R[𝑥, 𝑦].

Output. All solutions 𝑦 = 𝑦(𝑥) satisfy

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎, for some 𝑎 ∈ R, (6)

in polynomial time of 𝑤𝜇, where 𝑤 is the computer memory
of all coefficients of 𝐹(𝑥, 𝑦) and 𝜇 = deg

𝑥
𝐹(𝑥, 𝑦) +

deg
𝑦
𝐹(𝑥, 𝑦). Moreover, the number of all solutions is at most

deg
𝑦
𝐹(𝑥, 𝑦).
We provide a simple example to explain our aim for

solving the quasi-fixed polynomial solutions related to
Algorithm 5 (in Section 3) as follows.

Example 4. Let

𝐹 (𝑥, 𝑦) = 𝑝 (𝑥) [𝑦
2

− 𝑝
2

(𝑥) − 4] (7)

and 𝑝(𝑥) = 𝑥
2

+ 𝑥 + 1. Then deg
𝑦
𝐹 = 𝑠 = 2. Solve all quasi-

fixed solutions of

𝐹 (𝑥, 𝑦) = 𝑎𝑝
2

(𝑥) . (8)

By (7) and (8), we obtain

𝑝 (𝑥) [𝑦
2

− 𝑝
2

(𝑥) − 4] = 𝑎𝑝
2

(𝑥) , (9)

divides both sides by 𝑝(𝑥), then it becomes

𝑦
2

− 𝑝
2

(𝑥) − 4 = 𝑎𝑝 (𝑥) . (10)

It follows that

𝑦
2

− 4 = 0 mod 𝑝 (𝑥) , (11)

and we have

𝑦 = {
𝑧𝑝 (𝑥) + 2

𝑧𝑝 (𝑥) − 2
= {

2 (mod 𝑝 (𝑥))

−2 (mod 𝑝 (𝑥)) ,
(12)

with an indeterminate 𝑧. To determine 𝑧, we substitute this 𝑦
(in (12)) into 𝐹(𝑥, 𝑦), then (8) becomes

(𝑃
1
) {

(1) 𝐹 (𝑥, 𝑦) = 𝐹 (𝑥, 𝑧𝑝 (𝑥) + 2) = 𝑎𝑝
2

(𝑥)

(2) 𝐹 (𝑥, 𝑦) = 𝐹 (𝑥, 𝑧𝑝 (𝑥) − 2) = 𝑎𝑝
2

(𝑥) .
(13)

This yields

(𝑃
2
) {

(1) 𝑝
2

(𝑥) [𝑝 (𝑥) 𝑧
2

+ 4𝑧 − 𝑝 (𝑥)] = 𝑎𝑝
2

(𝑥)

(2) 𝑝
2

(𝑥) [𝑝 (𝑥) 𝑧
2

− 4𝑧 − 𝑝 (𝑥)] = 𝑎𝑝
2

(𝑥) .
(14)

Both sides of (14) divide by 𝑝2(𝑥) to become

(𝑃
3
) {

(1) 𝑝 (𝑥) 𝑧
2

+ 4𝑧 − 𝑝 (𝑥) = 𝑎

(2) 𝑝 (𝑥) 𝑧
2

− 4𝑧 − 𝑝 (𝑥) = 𝑎.
(15)

According to Algorithm 3, we obtain 𝑧 = 1 and 𝑧 = −1,
so the solutions (12) of problem (𝑃) are

𝑦 = {
𝑧𝑝 (𝑥) + 2

𝑧𝑝 (𝑥) − 2
= {

𝑝 (𝑥) + 2

𝑝 (𝑥) − 2
or {

−𝑝 (𝑥) + 2

−𝑝 (𝑥) − 2.
(16)

In Section 3, we provide a non-NP-complete algorithm to
satisfy (3).

3. Computing Procedure

In this paper, we may assume that the number of all solutions
of (3) is finite and then constitute an algorithm of the approx-
imate solutions for the quasi-fixed polynomial equation (3) as
follows.

Algorithm 5. Consider the following technique.

Input. Given a polynomial 𝐹(𝑥, 𝑦) ∈ R[𝑥, 𝑦], 𝑝(𝑥) ∈ R[𝑥]

irreducible and𝑚 ∈ N.

Output. All solutions 𝑦 = 𝑦(𝑥) satisfy

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎𝑝
𝑚

(𝑥) for some 𝑎 ∈ R, (17)

by a non-NP-complete algorithm.
The following definitions are given by [6, page 421].

Definition 6. (i) The content of 𝐹(𝑥, 𝑦) in (4), denoted by
cont
𝑦
𝐹, is defined by the greatest common divisor (g.c.d):

gcd (𝑓
𝑠
(𝑥) , 𝑓

𝑠−1
(𝑥) , . . . , 𝑓

0
(𝑥)) = cont

𝑦
𝐹. (18)

(ii)Theprimitive part pp
𝑦
𝐹 of𝐹(𝑥, 𝑦) is𝐹(𝑥, 𝑦)/cont

𝑦
𝐹 ∈

R[𝑥, 𝑦], and 𝐹(𝑥, 𝑦) is primitive if cont
𝑦
𝐹 = 1.

From (i) and (ii), we have

𝐹 (𝑥, 𝑦) = cont
𝑦
𝐹 ⋅ pp

𝑦
𝐹. (19)
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To complete the following algorithm, we need the follow-
ing elementary property.

Lemma 7. Let 𝐹(𝑥, 𝑦) ∈ R[𝑥, 𝑦] and 𝑝(𝑥) be an irreducible
polynomial in R[𝑥]. Consider the module equation

𝐹 (𝑥, 𝑦) = 0 (mod 𝑝 (𝑥)) . (20)

The number of all solutions 𝑦 = 𝑦(𝑥) (mod𝑝(𝑥)) is thus at
most deg

𝑦
𝐹.

Assumption. Throughout this algorithm, for any 𝐹(𝑥, 𝑦) ∈

R[𝑥, 𝑦], one can solve all solutions 𝑦 = 𝑔(𝑥) (mod𝑝(𝑥)) of
the equation

𝐹 (𝑥, 𝑔 (𝑥)) = 0 mod 𝑝 (𝑥) . (21)

The procedure of our main algorithm is described below.

Procedures of Main Algorithm (Algorithm 5)

Step 0. If cont
𝑦
𝐹 | 𝑝
𝑚

(𝑥) and cont
𝑦
𝐹 = 1, then let 𝐹

1
(𝑥, 𝑦) =

𝐹(𝑥, 𝑦) and move to (Step 1, (1.2.2)).

Step 1. For convenience, we let

𝐹 (𝑥, 𝑦) = (cont
𝑦
𝐹)𝐹
1
(𝑥, 𝑦) , (22)

where 𝐹
1
(𝑥, 𝑦) ∈ R[𝑥, 𝑦] is a primitive polynomial.

Step 1.1. If cont
𝑦
𝐹 ∤ 𝑝
𝑚

(𝑥), we would have the problem

𝐹 (𝑥, 𝑦) = 𝑐𝑝
𝑚

(𝑥) , (23)

to deduce that cont
𝑦
𝐹 | 𝑐 ⋅ 𝑝

𝑚

(𝑥). But cont
𝑦
𝐹 ∤ 𝑝

𝑚

(𝑥), then
𝑐 = 0. Consequently, (23) becomes

𝐹 (𝑥, 𝑦) = 0. (24)

We can then solve all solutions 𝑦(𝑥) for 𝐹(𝑥, 𝑦) = 0 to get a
solution set

𝑌
0
= {𝑦 (𝑥) : 𝐹 (𝑥, 𝑦 (𝑥)) = 0} . (25)

Step 1.2. If cont
𝑦
𝐹 | 𝑝

𝑚

(𝑥) and cont
𝑦
𝐹 ̸= 1, then cont

𝑦
𝐹 =

𝑝
ℓ
1(𝑥) with ℓ

1
≤ 𝑚. In this case, (23) becomes

𝐹
1
(𝑥, 𝑦) = 𝑐𝑝

𝑚−ℓ
1
(𝑥) . (26)

Step 1.2.1. In case ℓ
1
= 𝑚, then (26) becomes 𝐹

1
(𝑥, 𝑦) = 𝑐

which can be solved by Algorithm 3 to obtain all solutions
for the equation 𝐹

1
(𝑥, 𝑦) = 𝑐 to get 𝑦 = 𝑦(𝑥) and obtain a set

𝑊
0
= {𝑦 (𝑥) : 𝐹

1
(𝑥, 𝑦 (𝑥)) = 𝑐} . (27)

Step 1.2.2. If ℓ
1
< 𝑚, then𝑚 − ℓ

1
> 0 and we can divide both

sides of (26) by 𝑝(𝑥); consequently,

𝐹
1
(𝑥, 𝑦) = 0 (mod 𝑝 (𝑥)) . (28)

According to Lemma 7, the solution number does not exceed
deg
𝑦
𝐹, thus we may assume that 𝑦 = 𝑎

0
(𝑥) is a solution of

(28) with deg 𝑎
0
(𝑥) < deg𝑝(𝑥); please note that the choice

of 𝑎
0
(𝑥) may be larger than 1 and we may define a solution

set 𝑇
0
(𝐹)which collects such 𝑎

0
(𝑥) by setting as the following

form:

𝑎
0
(𝑥) ∈ 𝑇

0
(𝐹) = {𝑎

0

1
(𝑥) , 𝑎

0

2
(𝑥) , . . . , 𝑎

0

𝑟
0

(𝑥)} . (29)

Consequently, the expression (23) can go to Step 2.

Step 2. For each 𝑎
0
(𝑥) ∈ 𝑇

0
(𝐹) in (Step 1, (1.2.2)), we can

replace 𝑦 by 𝑧𝑝(𝑥) + 𝑎
0
(𝑥) in (23), and then (23) becomes

𝐹 (𝑥, 𝑧𝑝 (𝑥) + 𝑎
0
(𝑥)) = 𝑐𝑝

𝑚

(𝑥) . (30)

We let 𝐻
1
(𝑥, 𝑧) = 𝐹(𝑥, 𝑧𝑝(𝑥) + 𝑎

0
(𝑥)). Thus it follows from

Definition 6(ii) that there exists

𝐹
2
(𝑥, 𝑦) = pp

𝑦
𝐻
1
∈ R [𝑥, 𝑦] (31)

which is a primitive polynomial function so that

𝐻
1
(𝑥, 𝑦) = (cont

𝑦
𝐻
1
) 𝐹
2
(𝑥, 𝑦) . (32)

Equation (30) then becomes

𝐻
1
(𝑥, 𝑦) = 𝑐𝑝

𝑚

(𝑥) . (33)

Next, we will prove that 𝑝(𝑥) | cont
𝑦
𝐻
1
.

Step 2.1. If cont
𝑦
𝐻
1
∤ 𝑝
𝑚

(𝑥), (32) and (33) can be extrapo-
lated as to cont

𝑦
𝐻
1
| 𝑐 ⋅ 𝑝

𝑚

(𝑥). Since cont
𝑦
𝐻
1
∤ 𝑝
𝑚

(𝑥), then
𝑐 = 0. Consequently, (33) becomes

𝐻
1
(𝑥, 𝑦) = 0. (34)

We can then solve all solutions 𝑦(𝑥) for𝐻
1
(𝑥, 𝑦) = 0 to get a

solution set

𝑌
1
= {𝑦 (𝑥) 𝑝 (𝑥)

+ 𝑎
0
(𝑥) : 𝐻

1
(𝑥, 𝑦 (𝑥)) = 0, 𝑎

0
(𝑥) ∈ 𝑇

0
(𝐹)} .

(35)

Step 2.2. If cont
𝑦
𝐻
1
| 𝑝
𝑚

(𝑥), then cont
𝑦
𝐻
1
= 𝑝
ℓ
2(𝑥) with

ℓ
2
≤ 𝑚. In this case, (33) becomes

𝐹
2
(𝑥, 𝑦) = 𝑐𝑝

𝑚−ℓ
2
(𝑥) . (36)

Step 2.2.1. In case ℓ
2
= 𝑚, (36) becomes

𝐹
2
(𝑥, 𝑦) = 𝑐 (37)

which can be solved by Algorithm 3 to get 𝑦 = 𝑦(𝑥) and
obtain a set

𝑊
1
= {𝑦 (𝑥) 𝑝 (𝑥)

+ 𝑎
0
(𝑥) : 𝐹

2
(𝑥, 𝑦 (𝑥)) = 𝑐, 𝑎

0
(𝑥) ∈ 𝑇

0
(𝐹)} .

(38)
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Step 2.2.2. If ℓ
2
< 𝑚, then𝑚 − ℓ

2
< 0 and we can divide both

sides of (36) by 𝑝(𝑥); consequently,

𝐹
2
(𝑥, 𝑦) = 0 (mod 𝑝 (𝑥)) . (39)

By the same reasoning used in [Step 1.2.2], we can solve 𝑦 =

𝑎
1
(𝑥) with deg 𝑎

1
(𝑥) < deg𝑝(𝑥) and obtain the set

𝑎
1
(𝑥) ∈ 𝑉

1
= {𝑎
1

1
(𝑥) , 𝑎

1

2
(𝑥) , . . . , 𝑎

1

𝑟
1

(𝑥)} . (40)

We let

𝑇
1
(𝐹) = {𝑎

1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥) : 𝑎

1
(𝑥) ∈ 𝑉

1
, 𝑎
0
(𝑥) ∈ 𝑇

0
(𝐹)} ,

(41)

Consequently, expression (33) can go to Step 3.

Step 3. For each 𝑎
1
(𝑥)𝑝(𝑥) + 𝑎

0
(𝑥) ∈ 𝑇

1
(𝐹), we can replace 𝑦

by 𝑧𝑝2(𝑥) + 𝑎
1
(𝑥)𝑝(𝑥) + 𝑎

0
(𝑥) in (23). It then becomes

𝐹 (𝑥, 𝑧𝑝
2

(𝑥) + 𝑎
1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥)) = 𝑐𝑝

𝑚

(𝑥) . (42)

Moreover, we let𝐻
2
(𝑥, 𝑧) = 𝐹(𝑥, 𝑧𝑝

2

(𝑥) + 𝑎
1
(𝑥)𝑝(𝑥) + 𝑎

0
(𝑥))

and

𝐻
2
(𝑥, 𝑦) = (cont

𝑦
𝐻
2
) 𝐹
3
(𝑥, 𝑦) (43)

for a primitive polynomial 𝐹
3
(𝑥, 𝑦) = pp

𝑦
𝐻
2
∈ R[𝑥, 𝑦], so

that (42) becomes

𝐻
2
(𝑥, 𝑦) = 𝑐𝑝

𝑚

(𝑥) . (44)

Next, we will prove that 𝑝2(𝑥) | cont
𝑦
𝐻
2
.

Step 3.1. If cont
𝑦
𝐻
2
∤ 𝑝
𝑚

(𝑥), and (43) and (44) are extrapo-
lated, we have

cont
𝑦
𝐻
2
| 𝑐 ⋅ 𝑝
𝑚

(𝑥) . (45)

Since cont
𝑦
𝐻
2
∤ 𝑝
𝑚

(𝑥), we have 𝑐 = 0.
Thus (44) becomes

𝐻
2
(𝑥, 𝑦) = 0. (46)

Hence, we solve all solutions 𝑦(𝑥) such that 𝐻
2
(𝑥, 𝑦) = 0 to

obtain a solution set

𝑌
2
= {𝑦 (𝑥) 𝑝

2

(𝑥) + 𝑎
1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥) : 𝐻

2
(𝑥, 𝑦 (𝑥)) = 0,

𝑎
1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥) ∈ 𝑇

1
(𝐹) } .

(47)

Step 3.2. If cont
𝑦
𝐻
2
| 𝑝
𝑚

(𝑥), then cont
𝑦
𝐻
2
= 𝑝
ℓ
3(𝑥) for some

positive integer ℓ
3
≤ 𝑚 and (44) becomes

𝐹
3
(𝑥, 𝑦) = 𝑐𝑝

𝑚−ℓ
3
(𝑥) . (48)

Step 3.2.1. If ℓ
3
= 𝑚, then (48) becomes

𝐹
3
(𝑥, 𝑦) = 𝑐 (49)

and, by Algorithm 3, we compute 𝑦 = 𝑦(𝑥) and collect

𝑦 (𝑥) 𝑝
2

(𝑥) + 𝑎
1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥) (50)

in𝑊
2
for all 𝑎

1
(𝑥)𝑝(𝑥) + 𝑎

0
(𝑥) ∈ 𝑇

1
(𝐹). Hence, we output

𝑊
2
= {𝑦 (𝑥) 𝑝

2

(𝑥) + 𝑎
1
(𝑥) 𝑝 (𝑥)+ 𝑎

0
(𝑥) : 𝐹

3
(𝑥, 𝑦 (𝑥)) = 𝑐,

𝑎
1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥) ∈ 𝑇

1
(𝐹) } .

(51)

Step 3.2.2. If ℓ
3
< 𝑚, we use 𝑝(𝑥) to divide both sides of (48)

to obtain

𝐹
3
(𝑥, 𝑦) = 0 (mod𝑝 (𝑥)) . (52)

By the same reasoning used in (Step 1.2.2), we can solve 𝑦 =

𝑎
2
(𝑥) with deg 𝑎

2
(𝑥) < deg𝑝(𝑥) and obtain the set

𝑎
2
(𝑥) ∈ 𝑉

2
= {𝑎
2

1
(𝑥) , 𝑎

2

2
(𝑥) , . . . , 𝑎

2

𝑟
2

(𝑥)} . (53)

We let

𝑇
2
(𝐹) = {𝑎

2
(𝑥) 𝑝
2

(𝑥) + 𝑎
1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥)

: 𝑎
2
(𝑥) ∈ 𝑉

2
, 𝑎
1
(𝑥) 𝑝 (𝑥) + 𝑎

0
(𝑥) ∈ 𝑇

1
(𝐹) } ,

(54)

thus expression (44) can go to Step 4.
Continuing this process, we get the (𝑘 − 1)-th step and a

sequence {ℓ
1
, ℓ
2
, . . . , ℓ

𝑘−1
} and go to the next 𝑘-th step.

Step 𝑘. For each ∑
𝑘−2

𝑖=0
𝑎
𝑖
(𝑥)𝑝
𝑖

(𝑥) ∈ 𝑇
𝑘−2

(𝐹), we can replace 𝑦
by 𝑧𝑝𝑘−1(𝑥) + ⋅ ⋅ ⋅ + 𝑎

0
(𝑥) in (23), and then (23) becomes

𝐹 (𝑥, 𝑧𝑝
𝑘−1

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥)) = 𝑐𝑝

𝑚

(𝑥) . (55)

We let𝐻
𝑘−1

(𝑥, 𝑧) = 𝐹(𝑥, 𝑧𝑝
𝑘−1

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥)) and

𝐻
𝑘−1

(𝑥, 𝑦) = (cont
𝑦
𝐻
𝑘−1

) 𝐹
𝑘
(𝑥, 𝑦) (56)

for a primitive polynomial 𝐹
𝑘
(𝑥, 𝑦) ∈ R[𝑥, 𝑦], then (55)

becomes
𝐻
𝑘−1

(𝑥, 𝑦) = 𝑐𝑝
𝑚

(𝑥) . (57)

Note that in Section 4, Lemma 9, we will prove that 𝑝𝑘−1(𝑥) |
cont
𝑦
𝐻
𝑘−1

.

Step k.1. If cont
𝑦
𝐻
𝑘−1

∤ 𝑝
𝑚

(𝑥), by (56) and (57), we have

cont
𝑦
𝐻
𝑘−1

| 𝑐 ⋅ 𝑝
𝑚

(𝑥) , (58)

since cont
𝑦
𝐻
𝑘−1

∤ 𝑝
𝑚

(𝑥), we have 𝑐 = 0.
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Thus (57) becomes

𝐻
𝑘−1

(𝑥, 𝑦) = 0. (59)

Hence, we solve all solutions 𝑦(𝑥) such that𝐻
𝑘−1

(𝑥, 𝑦) = 0 to
obtain a solution set

𝑌
𝑘−1

= {𝑦 (𝑥) 𝑝
𝑘−1

+

𝑘−2

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑝
𝑖

(𝑥) : 𝐻
𝑘−1

(𝑥, 𝑦 (𝑥)) = 0,

𝑘−2

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑝
𝑖

(𝑥) ∈ 𝑇
𝑘−2

(𝐹)} .

(60)

Step k.2. If cont
𝑦
𝐻
𝑘−1

| 𝑝
𝑚

(𝑥), then cont
𝑦
𝐻
𝑘−1

= 𝑝
ℓ
𝑘(𝑥) for

some positive integer ℓ
𝑘
≤ 𝑚 and (57) becomes

𝐹
𝑘
(𝑥, 𝑦) = 𝑐𝑝

𝑚−ℓ
𝑘
(𝑥) . (61)

Step k.2.1. If ℓ
𝑘
= 𝑚, then (61) becomes

𝐹
𝑘
(𝑥, 𝑦) = 𝑐. (62)

By Algorithm 3, we compute 𝑦 = 𝑦(𝑥) and obtain

𝑦 (𝑥) 𝑝
𝑘−1

(𝑥) + 𝑎
𝑘−2

(𝑥) 𝑝
𝑘−2

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) (63)

in𝑊
𝑘−1

, for all 𝑎
𝑘−2

(𝑥)𝑝
𝑘−2

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) ∈ 𝑇

𝑘−2
(𝐹). Hence,

we output

𝑊
𝑘−1

= {𝑦 (𝑥) 𝑝
𝑘−1

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) :𝐹

𝑘
(𝑥, 𝑦 (𝑥)) = 𝑐,

𝑘−2

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑝
𝑖

(𝑥) ∈ 𝑇
𝑘−2

(𝐹)} .

(64)

Step k.2.2. If ℓ
𝑘
< 𝑚, we use 𝑝(𝑥) to divide both sides of (61)

to obtain

𝐹
𝑘
(𝑥, 𝑦) = 0 (mod𝑝 (𝑥)) . (65)

By the same reasoning used in (Step 1.2.2), we can solve 𝑦 =

𝑎
𝑘−1

(𝑥) with deg 𝑎
𝑘−1

(𝑥) < deg𝑝(𝑥) and obtain the set

𝑎
𝑘−1

(𝑥) ∈ 𝑉
𝑘−1

= {𝑎
𝑘−1

1
(𝑥) , 𝑎

𝑘−1

2
(𝑥) , . . . , 𝑎

𝑘−1

𝑟
𝑘−1

(𝑥)} . (66)

We let

𝑇
𝑘−1

(𝐹) = {

𝑘−2

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑝
𝑖

(𝑥) : 𝑎
𝑘−1

(𝑥) ∈ 𝑉
𝑘−1

,

𝑘−2

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑝
𝑖

(𝑥) ∈ 𝑇
𝑘−2

(𝐹)},

(67)

thus expression (57) can go to the next step.
As explained in Remark 8, this algorithm is not an infinite

loop.

Remark 8. (i) If 𝑉
𝑖
= 0, then 𝑉

𝑖+1
= 0 and if 𝑉

𝑖+1
= 0, then

𝑇
𝑖+1

(𝐹) = 0 for 𝑖 ≥ 0. This means that if𝑉
𝑖
= 0, then the work

finishes at step 𝑖 + 1 for 𝑖 ≥ 0.
(ii) This algorithm is not an infinite loop. Since ℓ

𝑘
< 𝑚,

and by Corollary 13, we have ℓ
𝑘
< ℓ
𝑘+1

for 𝑘 = 1, 2, . . ., thus
this algorithm will terminate at the (𝑚 + 1)-th Step. We can
thus say that this algorithm is a finite loop algorithm.

(iii) We may assume that the cardinal number |𝑊
𝑖
| < ∞,

for 𝑖 = 1, 2, . . .; however, if |𝑊
𝑖
| = ∞, then Algorithm 5

has an infinite number of solutions, which contradicts our
assumption.

Remark 8(ii) shows that the maximum number of steps
in this algorithm is 𝑚 + 1. Moreover, if the (𝑚 + 1)-th Step
happens, then we obtain

𝑝
𝑚

(𝑥) | 𝐻
𝑚
(𝑥, 𝑦) (68)

by Corollary 11 and let

𝐻
𝑚
(𝑥, 𝑦) = 𝑝

𝑚

(𝑥) 𝐹
𝑚+1

(𝑥, 𝑦) . (69)

Thus, the possible solutions of 𝐻
𝑚
(𝑥, 𝑦) = 𝑐𝑝

𝑚

(𝑥) are those
solutions 𝑦(𝑥) satisfying

𝐹
𝑚+1

(𝑥, 𝑦 (𝑥)) = 𝑐. (70)

Moreover, by Algorithm 3, we can get a solution set 𝑌 such
that the bound of all solutions is “𝑠⋅|𝑇

𝑚−1
(𝐹)|.” So the solution

set of (3) is contained in

𝑇 = (

𝑚−1

⋃

𝑖=0

𝑌
𝑖
)⋃(

𝑚−1

⋃

𝑖=0

𝑊
𝑖
)⋃𝑌. (71)

Finally, we check each element 𝑢(𝑥) ∈ 𝑇 to determine
whether or not

𝐹 (𝑥, 𝑢 (𝑥)) = 𝑐𝑝
𝑚

(𝑥) . (72)

The arithmetic computing time to solve each element 𝑢(𝑥)
in 𝑇 only requires non-NP-complete computing time and to
check that each 𝑢(𝑥) ∈ 𝑇 satisfies

𝐹 (𝑥, 𝑢 (𝑥)) = 𝑐𝑝
𝑚

(𝑥) . (73)

Non-NP-complete computing time is also needed given the
cardinal number of 𝑇:

|𝑇| ≤
𝑊0

 +
𝑌0

 + |𝑌| +

𝑚−2

∑

𝑖=0

𝑊𝑖+1
 +

𝑚−2

∑

𝑖=0

𝑌𝑖+1


(By Algorithm 3 and Lemma 7)

≤ 2𝑠 + 𝑠 ⋅
𝑇𝑚−1 (𝐹)

 + 2

𝑚−2

∑

𝑖=0

𝑠 ⋅
𝑇𝑖 (𝐹)

 ,

(74)

where |𝑇
𝑖
(𝐹)|, |𝑊

𝑖
|, and |𝑌

𝑖
| denote the cardinal number of

𝑇
𝑖
(𝐹),𝑊

𝑖
, and 𝑌

𝑖
. The remaining work “Checks the bound of

|𝑇
𝑖
(𝐹)|, for each 𝑖 = 1, 2, . . . , 𝑚.” In Section 4,Theorem 16, we

prove that
𝑇𝑖 (𝐹)

 ≤ 𝑠 (75)

for 𝑖 = 1, 2, . . . , 𝑚 − 1.
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By (74) and (75), we have the cardinal number

|𝑇| ≤ 2𝑠 + 𝑠 ⋅
𝑇𝑚−1 (𝐹)

 + 2

𝑚−2

∑

𝑖=0

𝑠 ⋅
𝑇𝑖 (𝐹)



≤ 2𝑠 + 𝑠
2

+ 2

𝑚−2

∑

𝑖=0

𝑠
2

= 2𝑠 + (2𝑚 − 1) 𝑠
2

.

(76)

That is, we have to check at most “2𝑠 + (2𝑚 − 1)𝑠
2” solutions

𝑢(𝑥) to satisfy

𝐹 (𝑥, 𝑢 (𝑥)) = 𝑐𝑝
𝑚

(𝑥) . (77)

Checking each solution only takes non-NP-complete time,
thus this algorithm needs non-NP-complete time. That
is, Algorithm 5 is indeed a non-NP-complete time algo-
rithm. Note that, for each 𝑘-th Step, whether 𝑦(𝑥)𝑝𝑘−1(𝑥) +
𝑎
𝑘−2

𝑝
𝑘−2

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) belongs to 𝑌

𝑘−1
or 𝑊
𝑘−1

, the upper
bound of all elements in 𝑇may not be as large; in fact,

|𝑇| ≤ 2𝑠 + 𝑠
2

+ (𝑚 − 1) 𝑠
2

= 2𝑠 + 𝑚𝑠
2

. (78)

In the next Section 4, we will complete all necessary
properties for this algorithm.

4. Main Theorems

For convenience, we describe some interesting properties of
the above algorithm.

Lemma 9. Let 𝐹(𝑥, 𝑦) ∈ R[𝑥, 𝑦], 𝑝(𝑥), 𝑎(𝑥) ∈ R[𝑥], and 𝑧

be a parameter, if 𝑝(𝑥) | 𝐹(𝑥, 𝑎(𝑥)), then 𝑝(𝑥) | 𝐹(𝑥, 𝑧𝑝(𝑥) +

𝑎(𝑥)).

Proof. Let 𝐹(𝑥, 𝑦) = 𝑓
𝑠
(𝑥)𝑦
𝑠

+𝑓
𝑠−1

(𝑥)𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑓
0
(𝑥). Then

𝐹 (𝑥, 𝑧𝑝 (𝑥) + 𝑎 (𝑥))

= 𝑓
𝑠
(𝑥) (𝑧𝑝 (𝑥) + 𝑎 (𝑥))

𝑠

+ 𝑓
𝑠−1

(𝑥) (𝑧𝑝 (𝑥) + 𝑎 (𝑥))
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑓
0
(𝑥)

= 𝑓
𝑠
(𝑥) (𝑧

𝑠

𝑝
𝑠

(𝑥) + 𝑠𝑧
𝑠−1

𝑝
𝑠−1

𝑎 (𝑥) + ⋅ ⋅ ⋅ + 𝑎
𝑠

(𝑥))

+ 𝑓
𝑠−1

(𝑥) (𝑧
𝑠−1

𝑝
𝑠−1

(𝑥) + (𝑠 − 1)

𝑧
𝑠−2

𝑝
𝑠−2

𝑎 (𝑥) + ⋅ ⋅ ⋅ + 𝑎
𝑠−1

(𝑥)) + ⋅ ⋅ ⋅ + 𝑓
0
(𝑥)

= 𝑓
𝑠
(𝑥) (𝑄

𝑠
(𝑥, 𝑧) 𝑝 (𝑥) + 𝑎

𝑠

(𝑥)) + 𝑓
𝑠−1

(𝑥)

× (𝑄
𝑠−1

(𝑥, 𝑧) 𝑝 (𝑥) + 𝑎
𝑠−1

(𝑥)) + ⋅ ⋅ ⋅ + 𝑓
0
(𝑥)

(where 𝑄
𝑖
(𝑥, 𝑧)

= 𝑧
𝑖

𝑝
𝑖−1

(𝑥) + 𝑖𝑧
𝑖−1

𝑝
𝑖−2

(𝑥) 𝑎 (𝑥) + ⋅ ⋅ ⋅ + 𝑖𝑧𝑎
𝑖−1

(𝑥))

= 𝑝 (𝑥) (𝑓
𝑠
(𝑥)𝑄
𝑠
(𝑥, 𝑧) + 𝑓

𝑠−1
(𝑥)𝑄
𝑠−1

(𝑥, 𝑧)

+ ⋅ ⋅ ⋅ + 𝑓
1
(𝑥)𝑄
1
(𝑥, 𝑧))

+ (𝑓
𝑠
(𝑥) 𝑎
𝑠

(𝑥) + 𝑓
𝑠−1

(𝑥) 𝑎
𝑠−1

(𝑥) + ⋅ ⋅ ⋅ + 𝑓
0
(𝑥))

= 𝑝 (𝑥) (𝑓
𝑠
(𝑥)𝑄
𝑠
(𝑥, 𝑧) + 𝑓

𝑠−1
(𝑥)𝑄
𝑠−1

(𝑥, 𝑧)

+ ⋅ ⋅ ⋅ + 𝑓
1
(𝑥)𝑄
1
(𝑥, 𝑧)) + 𝐹 (𝑥, 𝑎 (𝑥)) .

(79)

Thus, 𝑝(𝑥) | 𝐹(𝑥, 𝑎(𝑥)) ⇒ 𝑝(𝑥) | 𝐹(𝑥, 𝑧𝑝(𝑥) + 𝑎(𝑥)).

The definitions of𝐻
𝑖
(𝑥, 𝑦), cont

𝑦
𝐻
𝑖
, 𝐹
𝑖+1

(𝑥, 𝑦), and 𝑎
𝑖
(𝑥)

for 𝑖 = 1, 2, . . . , 𝑚 + 1 in Algorithm 5 are

𝐻
𝑘
(𝑥, 𝑧) = 𝐹 (𝑥, 𝑧𝑝

𝑘

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥)) , (80)

𝐻
𝑘
(𝑥, 𝑦) = (cont

𝑦
𝐻
𝑘
) 𝐹
𝑘+1

(𝑥, 𝑦) , (81)

for a primitive polynomial 𝐹
𝑘+1

(𝑥, 𝑦) ∈ R[𝑥, 𝑦] and 𝑝(𝑥) |

𝐹
𝑘+1

(𝑥, 𝑎
𝑘
(𝑥)) for 𝑘 = 0, 1, . . . , 𝑚.

Next, we prove some properties about 𝐻
𝑘
(𝑥, 𝑦) for 𝑘 =

1, 2, . . . , 𝑚 + 1.

Lemma 10. Consider 𝑝(𝑥)cont
𝑦
𝐻
𝑘
| cont

𝑦
𝐻
𝑘+1

, for 1 ≤ 𝑘 ≤

𝑚.

Proof. From (80), we have

𝐻
𝑘+1

(𝑥, 𝑧) = 𝐹 (𝑥, 𝑧𝑝
𝑘+1

(𝑥) + 𝑎
𝑘
(𝑥) 𝑝
𝑘

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥))

= 𝐹 (𝑥, (𝑧𝑝 (𝑥) + 𝑎
𝑘
(𝑥)) 𝑝

𝑘

(𝑥) + ⋅ ⋅ ⋅ + 𝑎
0
(𝑥))

= 𝐻
𝑘
(𝑥, 𝑧𝑝 (𝑥) + 𝑎

𝑘
(𝑥)) (by (80))

=(cont
𝑧
𝐻
𝑘
) 𝐹
𝑘+1

(𝑥, 𝑧𝑝 (𝑥)+𝑎
𝑘
(𝑥)) (by (81)) .

(82)

By definition of 𝑎
𝑘
(𝑥), we have 𝑝(𝑥) | 𝐹

𝑘+1
(𝑥, 𝑎
𝑘
(𝑥)). From

Lemma 9, we obtain 𝑝(𝑥) | 𝐹
𝑘+1

(𝑥, 𝑧𝑝(𝑥) + 𝑎
𝑘
(𝑥)). That is,

𝑝 (𝑥) cont
𝑦
𝐻
𝑘
| 𝐻
𝑘+1

(𝑥, 𝑧) , (83)

and, by (81), we obtain 𝑝(𝑥)cont
𝑦
𝐻
𝑘
| cont

𝑦
𝐻
𝑘+1

.

By Lemma 9, 𝑝(𝑥) | 𝐻
1
(𝑥, 𝑧), and the definition of

cont
𝑦
𝐻
1
, it follows that 𝑝(𝑥) | cont

𝑦
𝐻
1
. Moreover, by

Lemma 10, we can easily obtain the following corollaries.

Corollary 11. Consider 𝑝𝑖(𝑥) | cont
𝑦
𝐻
𝑖
, for 𝑖 ≥ 1.

To complete the main theorem, we give the following
definitions.

Definition 12. (i) The function 𝑓(𝑥) is said to have 𝑝(𝑥)-
power ℓ, denoted by 𝛿

𝑝
(𝑓(𝑥)) = ℓ, if 𝑝(𝑥)ℓ | 𝑓(𝑥) and

𝑝(𝑥)
ℓ+1

∤ 𝑓(𝑥).
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(ii) We say that 𝐹(𝑥, 𝑦) has 𝑝(𝑥)-power ℓ, if cont
𝑦
𝐹 has

𝑝(𝑥)-power ℓ.
The following corollary is an immediate result of

Lemma 10 and Definition 12.

Corollary 13. Consider ℓ
𝑖
< ℓ
𝑖+1

, for 𝑖 ≥ 1.

Proof. Since 𝛿
𝑝
(𝐻
𝑖
) = ℓ
𝑖+1

and by Lemma 10, we have

𝑝 (𝑥) cont
𝑦
𝐻
𝑘
| cont

𝑦
𝐻
𝑘+1

. (84)

It follows that

1 + 𝛿
𝑝
(𝐻
𝑖
) = 𝛿
𝑝
(𝑝 (𝑥)𝐻

𝑖
) ≤ 𝛿
𝑝
(𝐻
𝑖+1

) , (85)

so 1 + ℓ
𝑖
≤ ℓ
𝑖+1

; hence, ℓ
𝑖
< ℓ
𝑖+1

.

Next, we obtain someproperties of𝑝(𝑥)-power as follows.

Lemma 14. Let𝑓(𝑥),𝑔(𝑥), ℎ(𝑥) ∈ R[𝑥] and𝐹(𝑥, 𝑦) is defined
in (4). Then

(i) 𝛿
𝑝
(𝑓𝑔) = 𝛿

𝑝
(𝑓) + 𝛿

𝑝
(𝑔),

(ii) 𝛿
𝑝
(𝑓 + 𝑔) ≥ min{𝛿

𝑝
(𝑓), 𝛿
𝑝
(𝑔)}, and

(iii) 𝛿
𝑝
(𝐹) = min

0≤𝑖≤𝑠
{𝛿
𝑝
(𝑓
𝑖
)}.

(iv) If ℎ = 𝑓 + 𝑔 and 𝛿
𝑝
(ℎ) < 𝛿

𝑝
(𝑔), then 𝛿

𝑝
(ℎ) = 𝛿

𝑝
(𝑓).

For each 𝑘 ∈ N, we rewrite 𝑇
𝑘
(𝐹) defined in the

procedures of Algorithm 5 as the following definitions.

Definition 15. Let 𝐹(𝑥, 𝑦) ∈ R[𝑥, 𝑦], an irreducible polyno-
mial 𝑝(𝑥) ∈ R[𝑥], and 𝑧 be a parameter. We denote the sets
𝑇
𝑖
(𝐹), 𝑖 ∈ N defined in Algorithm 5 as follows:

(1) 𝑇
0
(𝐹) = {𝑎(𝑥) ∈ R[𝑥] : 𝑝(𝑥)cont

𝑧
𝐹(𝑥, 𝑧) | 𝐹(𝑥, 𝑎(𝑥))

with 0 ≤ deg 𝑎(𝑥) < deg𝑝(𝑥)},
(2) 𝑇
𝑘
(𝐹) = {𝑏

𝑘
(𝑥) ∈ R[𝑥] : 𝑏

𝑘
(𝑥) = 𝑎(𝑥)𝑝

𝑘

(𝑥) + 𝑏
𝑘−1

(𝑥)

satisfies (𝐷1) and (𝐷2)}where for 𝑘 ≥ 1, and the (𝐷1)

and (𝐷2) properties are given by the following:

(D1): 0 ≤ deg 𝑎(𝑥) < deg𝑝(𝑥) and 𝑏
𝑘−1

(𝑥) ∈ 𝑇
𝑘−1

(𝐹),
(D2): 𝑝(𝑥)cont

𝑧
𝐹(𝑥, 𝑧𝑝

𝑘

(𝑥)+𝑏(𝑥)) | 𝐹(𝑥, 𝑎(𝑥)𝑝
𝑘

(𝑥)+

𝑏(𝑥)).

From the above definitions, we obtain a bound of the
cardinal number |𝑇

𝑘
(𝐹)|.

Theorem 16. For each 𝑘 ∈ N, then |𝑇
𝑘
(𝐹)| ≤ deg

𝑦
𝐹 (| ⋅|means

the cardinal number).

Proof. This theorem will be proven by induction on deg
𝑦
𝐹.

(i) When deg
𝑦
𝐹 = 1, claim that |𝑇

𝑘
(𝐹)| ≤ 1 for any 𝑘 ∈ N.

For this purpose, we consider

𝐹 (𝑥, 𝑦) = 𝑓
1
(𝑥) 𝑦 + 𝑓

0
(𝑥) for some 𝑓

1
(𝑥) , 𝑓

0
(𝑥) ∈ R [𝑥] .

(86)

(1) If 𝑘 = 0, and let V
0

= 𝛿
𝑝
(𝐹(𝑥, 𝑧)) and 𝐹(𝑥, 𝑦) =

𝑓
1
(𝑥)𝑦 + 𝑓

0
(𝑥) = 𝑝

V
0(𝑥)(𝑔

0

1
(𝑥)𝑦 + 𝑔

0

0
(𝑥)) for some coprime

polynomials 𝑔0
1
(𝑥), 𝑔0

0
(𝑥) ∈ R[𝑥].

The only possible solution 𝑎
0
(𝑥) with 0 ≤ deg 𝑎

0
(𝑥) <

deg𝑝(𝑥) and 𝑝(𝑥)cont
𝑦
𝐹(𝑥, 𝑧) | 𝐹(𝑥, 𝑎

0
(𝑥)) is

𝑎
0
(𝑥) = (𝑔

0

1
(𝑥))
−1

(𝑔
0

0
(𝑥)) mod 𝑝 (𝑥) . (87)

That is, |𝑇
0
(𝐹)| ≤ 1.

(2) Next, we assume that |𝑇
𝑘−1

(𝐹)| ≤ 1, thus we deduce
that |𝑇

𝑘
(𝐹)| ≤ 1.

Let

V
𝑘
= 𝛿
𝑝
(𝐹 (𝑥, 𝑧𝑝

𝑘

(𝑥) + 𝑏
𝑘−1

(𝑥)))

for some 𝑏
𝑘−1

(𝑥) ∈ 𝑇
𝑘−1

(𝐹) ,

(88)

and 𝐹(𝑥, 𝑧𝑝𝑘(𝑥)+𝑏
𝑘−1

(𝑥)) = 𝑝
V
𝑘(𝑥)(𝑔

𝑘

1
(𝑥)𝑧+𝑔

𝑘

0
(𝑥)) for some

𝑔
𝑘

1
(𝑥), 𝑔𝑘

0
(𝑥) ∈ R[𝑥]. Consider

𝑇
𝑘
(𝐹) = {𝑏

𝑘
(𝑥) ∈ R [𝑥] : 𝑏

𝑘
(𝑥) = 𝑎 (𝑥) 𝑝

𝑘

(𝑥) + 𝑏
𝑘−1

(𝑥)

satisfies (𝐷1) and (𝐷2) } ,

(89)

and since |𝑇
𝑘−1

(𝐹)| ≤ 1 by assumption, 𝑏
𝑘−1

(𝑥) is uniquely
decided, as is V

𝑘
. The remaining task is to prove that 𝑎

𝑘
is

also uniquely determined. As 𝑏
𝑘
(𝑥) ∈ 𝑇

𝑘
(𝐹) with 𝑏

𝑘
(𝑥) =

𝑎
𝑘
(𝑥)𝑝
𝑘

(𝑥) + 𝑏
𝑘−1

(𝑥), 𝑎
𝑘
(𝑥) satisfies

0 ≤ deg 𝑎
𝑘
(𝑥) < deg𝑝 (𝑥) (90)

such that

𝑝 (𝑥) cont
𝑦
𝐹 (𝑥, 𝑧𝑝

𝑘

(𝑥) + 𝑏
𝑘−1

(𝑥)) |

𝐹 (𝑥, 𝑎
𝑘
(𝑥) 𝑝
𝑘

(𝑥) + 𝑏
𝑘−1

(𝑥))

for some 𝑏
𝑘−1

(𝑥) ∈ 𝑇
𝑘−1

(𝐹) ,

(91)

then

𝑎
𝑘
(𝑥) 𝑔
𝑘

1
(𝑥) + 𝑔

𝑘

0
(𝑥) = 0 mod 𝑝 (𝑥) , (92)

it follows that 𝑎
𝑘
(𝑥)must be

𝑎
𝑘
(𝑥) = (𝑔

𝑘

1
(𝑥))
−1

(𝑔
𝑘

0
(𝑥)) mod 𝑝 (𝑥) . (93)

Consequently, |𝑇
𝑘
(𝐹)| ≤ 1.

By (1) and (2), we get that |𝑇
𝑘
(𝐹)| ≤ 1 = deg

𝑦
𝐹 for any

𝑘 ∈ N.
(ii) We will prove this theorem by mathematical induc-

tion. Assume that
𝑇𝑘 (𝐹1)

 ≤ deg
𝑦
𝐹
1
, (94)

for any 𝐹
1
∈ R[𝑥] with deg

𝑦
𝐹
1
≤ 𝑛 − 1, we want to show

𝑇𝑘 (𝐹)
 ≤ deg

𝑦
𝐹, (95)

for any 𝐹 ∈ R[𝑥] with deg
𝑦
𝐹 = 𝑛.

Let 𝑢 = max{𝛿
𝑝
(𝐹(𝑥, 𝑐(𝑥))) : 𝑐(𝑥) ∈ 𝑇

𝑘
(𝐹)} and choose

𝑑(𝑥) ∈ 𝑇
𝑘
(𝐹) with

𝛿
𝑝
(𝐹 (𝑥, 𝑑 (𝑥))) = 𝑢. (96)
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Indeed,

𝛿
𝑝
(𝐹 (𝑥, 𝑑 (𝑥))) ≥ 𝛿

𝑝
(𝐹 (𝑥, 𝑐 (𝑥))) for any 𝑐 (𝑥) ∈ 𝑇

𝑘
(𝐹) .

(97)

By the division rule, let 𝐹(𝑥, 𝑦) be divided by 𝑦−𝑑(𝑥), giving
us

𝐹 (𝑥, 𝑦) = (𝑦 − 𝑑 (𝑥)) 𝐹
1
(𝑥, 𝑦) + 𝐹 (𝑥, 𝑑 (𝑥)) , (98)

for some 𝐹
1
(𝑥, 𝑦) ∈ R[𝑥, 𝑦] and deg

𝑦
𝐹
1
(𝑥, 𝑦) = 𝑛 − 1.

We want to show that

if 𝑐 (𝑥) ∈ 𝑇
𝑘
(𝐹) − {𝑑 (𝑥)} , then 𝑐 (𝑥) ∈ 𝑇

𝑘
(𝐹
1
) . (99)

For any 𝑐(𝑥) ∈ 𝑇
𝑘
(𝐹) − {𝑑(𝑥)}, by the definition of 𝑇

𝑘
(𝐹),

we have

𝑐 (𝑥) = 𝑎
1
(𝑥) (𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥) ,

𝑑 (𝑥) = 𝑎
2
(𝑥) (𝑝 (𝑥))

𝑘

+ 𝑏
2
(𝑥) ,

(100)

for some 𝑏
1
(𝑥), 𝑏

2
(𝑥) ∈ 𝑇

𝑘−1
(𝐹) and 0 ≤ deg 𝑎

1
(𝑥),

deg 𝑎
2
(𝑥) < deg𝑝(𝑥). Since the elements 𝑑(𝑥) and 𝑐(𝑥) are

distinct, so 𝑎
1
(𝑥) ̸= 𝑎

2
(𝑥) or 𝑏

1
(𝑥) ̸= 𝑏

2
(𝑥),

(a) If 𝑏
1
(𝑥) ̸= 𝑏

2
(𝑥), by the definition of 𝑏

1
(𝑥) and 𝑏

2
(𝑥), we

have deg 𝑏
1
(𝑥), deg 𝑏

2
(𝑥) < deg𝑝𝑘(𝑥), so

𝛿
𝑝
(𝑏
1
(𝑥) − 𝑏

2
(𝑥)) < 𝑘 ≤ 𝛿

𝑝
((𝑎
1
(𝑥) − 𝑎

2
(𝑥))𝑝
𝑘

(𝑥)) .

(101)

Therefore, one has the following:

(i) 𝛿
𝑝
(𝑐(𝑥) − 𝑑(𝑥)) = 𝛿

𝑝
((𝑎
1
(𝑥) − 𝑎

2
(𝑥))𝑝
𝑘

(𝑥) + (𝑏
1
(𝑥) −

𝑏
2
(𝑥))) = 𝛿

𝑝
(𝑏
1
(𝑥) − 𝑏

2
(𝑥)) (by Lemma 14, (iv)),

(ii) 𝛿
𝑝
(𝑏
1
(𝑥) − 𝑑(𝑥)) = 𝛿

𝑝
((−𝑎
2
(𝑥))𝑝
𝑘

(𝑥) + (𝑏
1
(𝑥) −

𝑏
2
(𝑥))) = 𝛿

𝑝
(𝑏
1
(𝑥) − 𝑏

2
(𝑥)) (by Lemma 14, (iv)),

(iii) 𝛿
𝑝
(𝑧(𝑝(𝑥))

𝑘

+ 𝑏
1
(𝑥) − 𝑑(𝑥)) = 𝛿

𝑝
((𝑧 − 𝑎

2
(𝑥))𝑝
𝑘

(𝑥) +

(𝑏
1
(𝑥) − 𝑏

2
(𝑥))) = 𝛿

𝑝
(𝑏
1
(𝑥) − 𝑏

2
(𝑥)) (by Lemma 14,

(iv)).

(b) if 𝑏
1
(𝑥) = 𝑏

2
(𝑥), then 𝑎

1
(𝑥) ̸= 𝑎

2
(𝑥), since 0 ≤ deg 𝑎

1
(𝑥),

deg 𝑎
2
(𝑥) < deg𝑝(𝑥), so

(i) 𝛿
𝑝
(𝑐(𝑥) − 𝑑(𝑥)) = 𝛿

𝑝
((𝑎
1
(𝑥) − 𝑎

2
(𝑥))𝑝
𝑘

(𝑥)) =

𝛿
𝑝
(𝑎
1
(𝑥) − 𝑎

2
(𝑥)) + 𝑘 = 𝑘 (by Lemma 14, (i)),

(ii) 𝛿
𝑝
(𝑏
1
(𝑥) − 𝑑(𝑥)) = 𝛿

𝑝
((−𝑎
2
(𝑥))𝑝
𝑘

(𝑥)) = 𝛿
𝑝
(𝑎
2
(𝑥)) +

𝑘 = 𝑘 (by Lemma 14, (i)),

(iii) 𝛿
𝑝
(𝑧(𝑝(𝑥))

𝑘

+ 𝑏
1
(𝑥) − 𝑑(𝑥)) = 𝛿

𝑝
((𝑧 − 𝑎

2
(𝑥))𝑝
𝑘

(𝑥) +

(𝑏
1
(𝑥)−𝑏

2
(𝑥))) = 𝛿

𝑝
(𝑧−𝑎
2
(𝑥))+𝑘 = 𝑘 (by Lemma 14,

(i)).

By the above equations, we obtain

𝛿
𝑝
(𝑐 (𝑥) − 𝑑 (𝑥)) = 𝛿

𝑝
(𝑏
1
(𝑥) − 𝑑 (𝑥))

= 𝛿
𝑝
(𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥) − 𝑑 (𝑥)) .

(102)

and by (D2) in Definition 15, we have

𝛿
𝑝
(𝐹 (𝑥, 𝑐 (𝑥))) > 𝛿

𝑝
(𝐹 (𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥))) . (103)

By (97) and (103), we have

𝛿
𝑝
𝐹 (𝑥, 𝑑 (𝑥)) ≥ 𝛿

𝑝
(𝐹 (𝑥, 𝑐 (𝑥)))

> 𝛿
𝑝
(𝐹 (𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥))) .

(104)

Moreover, we have

𝛿
𝑝
(𝐹 (𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥)))

= 𝛿
𝑝
((𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥) − 𝑑 (𝑥))

× 𝐹
1
(𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥)) + 𝐹 (𝑥, 𝑑 (𝑥)))

(by (98))

= 𝛿
𝑝
((𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥) − 𝑑 (𝑥))

× 𝐹
1
(𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥)))

(by (104) and Lemma 14, (iv))

= 𝛿
𝑝
(𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥) − 𝑑 (𝑥))

+ 𝛿
𝑝
(𝐹
1
(𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥))) (by Lemma 14, (i)) ,

(105)

𝛿
𝑝
(𝐹 (𝑥, 𝑐 (𝑥)))

= 𝛿
𝑝
((𝑐 (𝑥) − 𝑑 (𝑥)) 𝐹

1
(𝑥, 𝑐 (𝑥)) + 𝐹 (𝑥, 𝑑 (𝑥)))

= 𝛿
𝑝
((𝑐 (𝑥) − 𝑑 (𝑥)) 𝐹

1
(𝑥, 𝑐 (𝑥)))

(by (104) and Lemma 14, (iv) )

= 𝛿
𝑝
(𝑐 (𝑥) − 𝑑 (𝑥)) + 𝛿

𝑝
(𝐹
1
(𝑥, 𝑐 (𝑥)))

(by Lemma 14, (i)) .

(106)

From expression (106), we obtain

𝛿
𝑝
(𝑐 (𝑥) − 𝑑 (𝑥)) + 𝛿

𝑝
(𝐹
1
(𝑥, 𝑐 (𝑥)))

= 𝛿
𝑝
(𝐹 (𝑥, 𝑐 (𝑥)))

> 𝛿
𝑝
(𝐹 (𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥))) (by (104))

= 𝛿
𝑝
(𝑧(𝑝(𝑥))

𝑘

+ 𝑏
1
(𝑥) − 𝑑 (𝑥))

+ 𝛿
𝑝
(𝐹
1
(𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥))) (by (105)) .

(107)

From expression (102), that is, 𝛿
𝑝
(𝑐(𝑥)−𝑑(𝑥)) = 𝛿

𝑝
(𝑧(𝑝(𝑥))

𝑘

+

𝑏
1
(𝑥) − 𝑑(𝑥)) and by canceling 𝛿

𝑝
(𝑐(𝑥) − 𝑑(𝑥)) to both sides

of (107), it follows that

𝛿
𝑝
(𝐹
1
(𝑥, 𝑐 (𝑥))) > 𝛿

𝑝
(𝐹
1
(𝑥, 𝑧(𝑝 (𝑥))

𝑘

+ 𝑏
1
(𝑥))) . (108)
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That is, 𝑐(𝑥) ∈ 𝑇
𝑘
(𝐹
1
). Then we have 𝑇

𝑘
(𝐹) ⊆ 𝑇

𝑘
(𝐹
1
)⋃{𝑑(𝑥)}.

Therefore,

𝑇𝑘 (𝐹)
 ≤

𝑇𝑘 (𝐹1)
 + 1 ≤ (𝑛 − 1) + 1 = 𝑛. (109)

By induction, the proof is completed.

5. Applications (As a Game Problem)

A quasi-fixed polynomial problem can be employed to many
aspects of actuarial science, risk management, game theory,
and so forth. We give an example from game theory as
follows.

Example 1. Let𝐴 be an insurance company and𝐵 a customer.
They make a game as follows.

The companies𝐴 and 𝐵 enter into an 𝑠-year contract that
within with an interest rate 𝑥 = 𝑖. Assume each year 𝐵 pays
a total of 𝑓

𝑘
(𝑖) at 𝑘-th year to the insurance company 𝐴, 0 ≤

𝑘 ≤ 𝑠 and 𝐴 prepare the asset 𝑆 for 𝐵 at the starting time of
this contract. Assume the live inflation rate is 𝑦 = 1 + 𝑟 with
𝑟 = 𝑟(𝑖) dependent on the interest 𝑖. The total amount that 𝐵
pays at the s-th year of this contract obeys the law of (year)
motion about a quasi-fixed polynomial function:

𝐹 (𝑖, 𝑦 (𝑖)) = 𝑓
𝑠
(𝑖) (1 + 𝑟)

𝑠

+ 𝑓
𝑠−1

(𝑖) (1 + 𝑟)
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑓
0
(𝑖) .

(110)

Now 𝑥 = 𝑖, 𝑦 = 𝑦(𝑥). 𝑝(𝑥) = 1 + 𝑥 + 𝑥
2 is an irreducible

polynomial. When the quasi-fixed polynomial equation

𝐹 (𝑖, 𝑦 (𝑖)) = 𝑆(1 + 𝑖 + 𝑖
2

)
𝑚

, 𝑚 ∈ N, (111)

then 𝐵 can obtain a premium

𝑆(1 + 𝑖 + 𝑖
2

)
𝑚

. (112)

The second example concerns actuarial science.

Example 2. Traditionally, the disaster occurrence rate of all
policies issued by general insurance companies is fixed. The
actuary can use a variety of accounting systems to calcu-
late the relationship between the interest rate and disaster
occurrence for the policy. But, in general, measurement is
very time consuming, and it would be preferable to use a
simple mathematical calculation to estimate the relationship
between the interest rate and disaster occurrence. In the
following, we consider an 𝑠-year pure endowment contract.

An insurance company 𝐴 signs a contract to some
company 𝐵 to the effect that if, in 𝑘-th year, a disaster occurs,
𝐴 will pay an amount of money, 𝑎

𝑘
, to 𝐵, that 𝑎

𝑘
represents

the compensation paid by 𝐴 to 𝐵 at the end of the k-th year,
0 ≤ 𝑘 ≤ 𝑠 and the disaster occurrence rate is 𝑞. In calculating
the insurance fee 𝐵 should pay to 𝐴 at the beginning of the

contract, we assume that 𝐴 gives a bonus interest rate, 𝑖 + 𝑖
2

to 𝐵.

Question.Howmany dollars do𝐵 pay to𝐴 at the beginning of
this contract and what is the relationship between the interest
rate and disaster occurrence in the policy?

Answer. 𝐴 pays 𝑎
𝑘
dollars if the disaster occurs at the end of

𝑘-th year, 𝑘 = 1, 2, . . . , 𝑠. Note that

(1) the probability of the disaster occurring in the 𝑘-th
year is 𝑞(1 − 𝑞)

𝑘,
(2) according to time factor, the value of 𝑎

𝑘
dollars at the

end of 𝑘-th year is equal to the value of 𝑎
𝑘
(1 + 𝑖)

𝑠−𝑘

dollars at the end of 𝑠-th year where 𝑠 ≥ 𝑘, so the
amount that𝐴 is expected to pay to 𝐵 in the 𝑘-th year
is

𝑎
𝑘
(1 + 𝑖)

𝑠−𝑘

𝑞(1 − 𝑞)
𝑘

. (113)

Then the value of total amount that𝐴 pays𝐵 at the end of 𝑠-th
year is

𝐹 (𝑖, 𝑞) = 𝑎
0
(1 + 𝑖)

𝑠

𝑞 + 𝑎
1
(1 + 𝑖)

𝑠−1

𝑞 (1 − 𝑞) + ⋅ ⋅ ⋅ + 𝑎
𝑠
. (114)

This can be rewritten as

(i) 𝐹 (𝑖, 𝑞) = 𝑓
𝑠
(𝑖) 𝑞
𝑠

+ 𝑓
𝑠−1

(𝑖) 𝑞
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑓
0
(𝑖) . (115)

Moreover, we assume that the total amount that 𝐵 pays to 𝐴

at the beginning of this contract is 𝑎. Then, by translation of
the time factor, the value of this total amount that 𝐵 pays to
𝐴 by the end of the contract can be said to be

(ii) 𝑎(1 + 𝑖 + 𝑖
2

)
𝑠+1

. (116)

To balance each other, we set the values (i) and (ii) as
equal. Thus, the relation equation becomes

𝐹 (𝑖, 𝑞) = 𝑎(1 + 𝑖 + 𝑖
2

)
𝑠+1

for some 𝑎 ∈ R, (117)

where 𝑞 and 𝑖, respectively, denote the disaster occurrence
rate and the interest rate.

We can let 𝑥 = 𝑖, 𝑦 = 𝑞, 𝑝(𝑥) = 1 + 𝑥 + 𝑥
2, and𝑚 = 𝑠 + 1,

then the above problem can be rewritten as

𝐹 (𝑥, 𝑞) = 𝑎𝑝
𝑚

(𝑥) for some 𝑎 ∈ R. (118)

This example explains a quasi-fixed (polynomial) problem
concerning actuarial science.
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