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The purpose of this paper is to prove some common point theorems for the generalized cyclic Meir-Keeler-type («, ¢, A, B)-
contraction in partially ordered metric spaces. Our results generalize many recent common point theorems in the literature.

1. Introduction and Preliminaries

Throughout this paper, by R*, we denote the set of all
nonnegative real numbers, while N is the set of all natural
numbers. Let (X, d) be a metric space, let D be a subset of
X,andlet f: D — X be a map. We say that f is contractive
if there exists o € [0, 1) such that forall x, y € D,

d(fx, fy)<a-d(x,y). 6))

The well-known Banach fixed point theorem asserts that if
D = X, f is contractive, and (X,d) is complete, then f
has a unique fixed point in X. It is well known that the
Banach contraction principle [1] is a very useful and classical
tool in nonlinear analysis. Also, this principle has many
generalizations. For instance, a mapping f: X — Xiscalled
a quasicontraction if there exists k < 1 such that

d(fx, fy)
< k-max{d(x,y),d(x, fx),d(y, fy), )
d(x fy).d (y, fx)},

forany x, y € X.In1974, Cirié [2] introduced these maps and
proved an existence and uniqueness fixed point theorem.
The following definitions and results will be needed in the
sequel. Let A and B be two nonempty subsets of a metric space
(X,d). A mapping f: AUB — AU Bis called a cyclic map

if f(A) € Band f(B) <€ A. In 2003, Kirk et al. [3, 4] proved
the following fixed point theorem.

Theorem 1 (see [3, 4]). Let A and B be two nonempty closed
subsets of a complete metric space (X, d), and suppose that f
AUB — AU B satisfies

(i) f(A) c Band f(B) c A,

(ii) d(fx, fy) < k-d(x,y) forall x € A, y € B, and
ke (0,1).

Then A N B is nonempty, and f has a unique fixed point in
ANB.

Recently, many authors proved some fixed point theo-
rems for cyclic maps satisfying various contractive conditions
(see, [5-20)).

Let X be a nonempty set, and let (X,C) be a partially
ordered set endowed with a metric d. Then, the triple (X, E, d)
is called a partially ordered metric space. Two elements x, y €
X are said to be comparable if either x C y or y C x holds.
Altun et al. [21] introduced the notion of weakly increasing
mappings and proved some existing theorems.

Definition 2 (see [21]). Let (X,C) be a partially ordered set
and f,g: X — X.'Then f, g are said to be weakly increasing
if fx C gfxand gx C fgx forall x € X.

And the following definition was introduced in [22].



Definition 3 (see [22]). Let (X, C) be a partially ordered set, let
A, Bbe closed subsets of X with X = AUB,andlet f,g: X —
X. Then the pair (f, g) is said to be (A, B)-weakly increasing
if fx C gfxforall x € Aand gx C fgx forall x € B.

In this paper, we introduce the new notion of generalized
cyclic Meir-Keeler-type («, v, A, B)-contraction. The purpose
of this paper is to prove some common point theorems for the
generalized cyclic Meir-Keeler-type («, v, A, B)-contraction
in partially ordered metric spaces. Our results generalize
many recent common point theorems in the literature.

2. Main Results

In the sequel, we denote by ¥ the class of functions v :
R*> — R* satisfying the following conditions:

(y,) w is an increasing, continuous function in each coor-
dinate;

(y,) forall t € R, w(t, t,£,0,2t) < t, w(t,t,£,2t,0) < t,
v(0,0,2,¢,0) < t,and w(£,0,0,t,t) < t;

(v,) w(ty,ty,t5,t4,t5) = 0ifand only if t, = ¢, =t; =1t, =
ts = 0.

We start with the following definition.

Definition 4 (see [23]). Let f: X — X be a self-mapping of
aset Xanda: X x X — R™.Then f is called a-admissible
if

xyeX, a(xy)=21=a(fx fy)=>1 (3)

Definition 5. Let A, Bbe two nonempty subsets of a set X with
X=AUB]letf:A - B,g:B — Awith f(A) c Band
g(B) c A,andleta : X x X — R™. Then the pair (f, g) is
called a-admissible if the following conditions hold:

(D) alfx, fx) 2 1,Vx € A = algfx, gfx) > 1,
(2) algy, gy) = 1,Vy € B= «alfgy, fgy) = 1.

In 1969, Meir and Keeler [24] introduced the following
notion of Meir-Keeler-type contraction in a metric space
(X, d).

Definition 6. Letting (X, d) be a metric space, f : X — X.
Then f is called a Meir-Keeler-type contraction whenever for
each 77 > 0, there exists y > 0 such that

n<d(x,y)<n+y=d(fx fy) <n. (4)

We now state the new notions of generalized cyclic Meir-
Keeler-type (, A, B)-contractions and generalized Meir-
Keeler-type (a, vy, A, B)-contractions in partially ordered
metric spaces as follows.

Definition 7. Let (X, C, d) be a partially ordered metric space,
let A, B be two nonempty subsets of X with X = AU B, and
let f: A - B,g:B — Awith f(A) c Band g(B) c A.
Then the pair ( f, g) is called a generalized cyclic Meir-Keeler-
type (y, A, B)-contraction; if for any comparable elements x,
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y € X withx € Aand y € B, we have that for each > 0
there exists § > 0 such that

n<y(d(xy).d(x fx),d(y.gy).d(x, gy).d(y, fx))
<n+é

=d(fx.gy)<n -
5

where y € V.

Definition 8. Let (X, E, d) be a partially ordered metric space,
let A, B be two nonempty subsets of X with X = A U B,
andlet f : A - B,g : B — A with f(A) ¢ Band
gB) ¢ A,anda : X x X — R". Then (f, g) is called a
generalized cyclic Meir-Keeler-type («, y, A, B)-contraction
if the following conditions hold:

(1) the pair (f, g) is «-admissible;

(2) for any comparable elements x, y € X with x € Aand
y € B, we have that for each # > 0 there exists § > 0
such that

n<y(d(xy).d(x fx),d(y.gy).d(x,gy),d(y, fx))
<n+0

= a(fx, fx)a(gy,gy)d (fx.gy) <n, o
6

where y € V.

Remark 9. Note that if f is a generalized cyclic Meir-Keeler-
type («,y, A, B)-contraction, then we have that for any
comparable elements x, y € X with x € Aand y € B,

a(fx, fx)a(gy, gy)d (fx, gy)
<y(d(xy).d(x fx),d(y,gy).d(x gy).d(y, fx)) .

(7)
Further, if
v (d(xy).d(x fx),d(y. gy).d (x. gy).d (y: fx)) = (()é)

then d(fx, gy) = 0.
On the other hand, if

v(d(x,y).d(x, fx),d(y.gy).d (x.gy),d(y, fx)) > (()é)

then
a(fx, fx)a(gy,gy)d (fx gy)

<y(d(xy).d(x fx),d(y.gy).d(x,gy).d(y, fX()l)O-)

We now state our first main result for the generalized
cyclic Meir-Keeler-type («, y, A, B)-contraction as follows.



Abstract and Applied Analysis

Theorem 10. Let (X,C,d) be a partially ordered complete
metric space, let A, B be nonempty closed subsets of X with
X=AUBleta: XxX — RY,andlet f,g: X — X
be two mappings such that the pair (f, g) is a generalized cyclic
Meir-Keeler-type («,y, A, B)-contraction and (A, B)-weakly
increasing. Suppose that the following conditions hold:

(i) f or g is continuous;
(ii) there exists x, € A with a( fx,, fxo) = 1;

(i) if a(x,,, x,) = 1 foralln € N and lim,, _, . x,, = v, then
a(fv, fv) = 1and a(gv, gv) = 1.
Then f and g have a common fixed point in X.
Proof. By (ii), there exists x, € X with a( fx,, fx,) > 1. Since

f(A) ¢ Band the pair (f, g) is a-admissible, there exists x; €
B such that

x; = fxg,  a(gx,gxy) = a(gfxe gfxg) =2 1. (1)

Since g(B) ¢ Aand the pair (f, g) is «-admissible, there exists
x, € A such that

a(fx,, fx;) = a(fgx, fgx)) 2 1. (12)

Xy = g%

Continuing this process, we construct the sequence {x,,} in X
such that

Xonr1 = [Xop Xont2 = GXon+1>

(13)
Xon € A’ Xon+1 € B’

and for all n € N U {0},

o (x2n+1’x2n+1) = (fon’ foH) 2 1’
(14)

@ (x2n+2’ x2n+2) =Q (gx2n+1’ gx2n+1) > 1

Since the pair (f, g) is (A, B)-weakly increasing, we have that

X1 :fxoggfxozgxl =X, gfgxl :fx2:x3 E(, )
15

and so we conclude that for all n € N U {0},

9f X, = 9%t = Xope2 E f9%0un = fXopa = Xppp3. (16)

Step 1. We will show that {x,} is a Cauchy sequence in
(X,c,d).

Case 1. Suppose that x,, = x,,,, for some n € N in the
inequality (16). Since x,, and x,,,,, are comparable in X with
X,, € Aand x,,,, € B, by the Remark 9, we have

d (Xop41> Xoi2)
= d (fXym 9%3011)
< o ( [y f23) @ (9% GXopa1) A ([0 9%311)
< ¥ (d (Xom Xop41) A (X0 fX0) > d (X3115 GXope1) »
d (%3 9%one1) A (Xani15 fX20))
= ¥ (d (Xo0 Xop41) >4 (%2 X21) » A (K15 X312) »
d (%3 X3112) » A (Xops1> Xope1))

< 1// (0’ 0’ d (x2n+1’ x2n+2) > d (x2n+1’ x2n+2) > 0) .
17)

If d(x415 Xop12) > 0, then y(0,0,d(xy115 X542)> (X415
X5,42),0) > 0. By Remark 9, we get a contradiction. So we
conclude that d(x,,,,,,%,,.,) = 0; thatis, x,,,; = Xy,.2-
Similarly, we may show that x,,,, = x,,,;. Hence {x,} is
a constant sequence, and so {x,} is a Cauchy sequence in
(X,c,d).

Case 2. Suppose that x,, # x,,,; for all n € N in the ine-
quality (16).

Substep 1. We show that the sequence {d(x,, x,,,,) : n € NU
{0}} is decreasing.

Subcase 1. If n is even, then we let n = 2m for some m € N.
Since x,,, € A, X,,,,; € B, and x,,,, x,,,,, are comparable in
X, we have

d (%115 X,12)

= d (Xpme1> Xame2) = d (o GXomir)

< o (fxom fXom) & (9%omi1s 9%omin) A (fXom> GXomi1)

<Y (d (%2 Xoms1) > @ (X fXom) » @ (Xoms1> GXoms1) »
A (%m> 9%2ms1) » 4 (Xomers fXom))

= ¥ (d (Xam X2ms1) » 4 (Xa> X2me1) » 4 (Kot Xome2) »
d (%> Xome2) > A (Xame1> Xama))

< ¥ (d (Xom Xome1) » 4 (Ko Xomer) » 4 (Xopmi1> Xamaa)
d (%3 Xome1) + A (Xgpme1 Xomi2) - 0)

=y (d (0 Xpe1) > d (X Xp1) > d (X115 X012) »

d ('xn’ xn+1) +d ('xn+1’ 'xn+2) > 0) .
(18)



If d(x,,,,, X5pmi1) < A(Xppi1> Xamsa)> then the above inequality
becomes

d (x2m+l’ x2m+2)

<y (d (Xame1> Xome2) > 4 (Xomi1> Xomaa) »

(19)
d (x2m+1’ x2m+2) ,2d (x2m+1’ x2m+2) > 0)
< d (Xpmi1> Xome2) >
which is a contradiction. So we have that
d (x2m+1’ x2m+2) <d (xzrw x2m+1) . (20)

Subcase 2. If nis odd, then we let n = 2m + 1 for some m € N.
Since x,,,,, € A, X,,,,3 € Band x,,,,,, X5,,,3 are comparable
in X, we have

d (X120 X11)
= d (Xomi3 Xam2) = 4 (X GXomin)
< a(foomizs fXomi) € (9%ome1> 9%ome)
X d (fXome2> 9%oma1)
<y (d (Xome2 Xome1) » 4 (Xamazs fXomia) »
d (%me1> GXome) > A (Xamszs GXomi1) »
d (Xme1> [Xomi2))
= ¥ (d (Xamazs Xome1) > 4 (mazs Xamaz) » A (Xomi1> Xamea) »
d (Xgmi2s Xoms2) » @ (Xome1> Xome3))
< ¥ (d (omezr Xome1) » 4 (Xomizs Xami3) » 4 (Xama 1> Xomaz) »
0,d (Xgm1> Xomez) + & (Ko Xome3))
= ¥ (d (%1 %) » d (X1 Xpi2) » d (%0 X,111) 5

0’ d ('xn’ xn+1) +d ('xn+1’ xn+2)) .
(21)

If d(Xp415 Xomea) < A(Xgm42> X2ms3)> then the above inequal-
ity becomes

d (x2m+2’ x2m+3)

<Y (d (Xpmi2s Xome3) > A (Xomiszs Xome3) »

(22)
d (X435 x2m+3) ,0,2d (X495 x2m+3))
< d (Xomizs Xome3) »
which is a contradiction. So we have that
d (Xpmizs Xames) < A (Xami1s Xomea) - (23)
From (20) and (23), we conclude that
d (x+1’ xn+2) < d (xn+1’ xn+1) . (24)
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From the above argument, we have that the sequence {d(x,,,
X,.1) : n € N U{0}} is decreasing, and it must converge to
some # > 0; that is,

nangod (xn’ xn+1) =n. (25)

Substep 2. We next claim that
Jim d (x,, fx,.,,) = 0. (26)

Notice that # = inf{d(fx,, fx,,;) : n € NU{0}}. We claim
that 77 = 0. Suppose, to the contrary, that 7 > 0.

If n is even, by the argument of Subcase 1 and the
inequality (25), we have

nll,néo‘// (d (xn’ xn+1) ’ d (xn’ xn+1) > d (xn+1’ xn+2) >
(27)

d (xn’ xn+1) + d (xn+1’ xn+2) > 0) =1

Since (f, g) is a generalized cyclic Meir-Keeler-type (e, v,
A, B)-contraction, corresponding to # use and taking into
account the above (27), there exist & > 0 and a natural
number k such that

1 <y (d (% Xpar) > d (% Xpe1) > d (X1 Xpera) » 4 (%0 X))

+ d(xk+1>xk+2)>0) < 77+5

= & (fxp, fxp) & (%1 GXka1) d (i GXki1) < 15
(28)

which implies
d (fx 9xi1)

< & (fxp fx1) @ (9%ki15 9%nr1) d (i GXpi) < 1.

(29)

So we get a contradiction, since # = inf{d(x,,x,,;) : n €
N U {0}. Thus we have that

lim d (x,, fx,.,) = 0. (30)

If n is odd, by the argument of Subcase 2 and the ine-
quality (25), we have

nll)ngow (d (xn+1’ xn) > d ('xn+1’ ‘xn+2) > d (xn’ xn+1) >

(3D
0, d (xn’ xn+1) +d (xn+1’ xn+2)) =7
Similarly, we can prove that
nh_?god (xn’ fxn+1) =0. (32)

Substep 3. We show that {x,} is a Cauchy sequence in (X, C,
d). It is sufficient to show that {x,,} is a Cauchy sequence in
(X,c,d).

Suppose, to the contrary, that {x,,} is not a Cauchy
sequence in (X,C,d). Then there exist € > 0 and two
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subsequences {x,,,,} and {x,,} of {x,,} such that n(k) is
the smallest integer for which n(k) > m(k) > k,

d (Xamrys Xan(ey) = € d (Xomy Xany-2) < & (33)

and we get

€ < d (Xym@ry Xan(k))
< d (Xgmeys Xango-2) + & (Xan(e)-2> Xon(iy-1)
(34)
+d (x2n(k)—1’ x2n(k))

<e+d (xZn(k)—Z’ x2n(k)—1) +d (x2n(k)—1’ x2n(k)) .

Letting k — oo in the above inequality, we get
Jim d (X0, Xon(e)) = €. (35)
On the other hand, we also obtain that

€ < d (Xpmm)> X2n(k))
< d (%2mmy Xany-1) + & (X2n)-1> X2n())
<d (XZm(k)H’ x2n(k)—1) +d (XZm(k)’ x2m(k)+1)
+d (xZn(k)—l’ x2n(k))
(36)
< d (%2mmy> Xany-1) + 24 (X2mm)> Xamiy+1)
+d (xZn(k)—D x2n(k))

< d (Xam@eys Xangey) + 28 (Xameys Xomegy 1)

+2d (X015 X2n(k)) -

Letting k — oo in the above inequality, we get

Jim d (X0 Xon(e))
= nligrgod (me(k)’ x2n(k)71)
(37)

= ,,lgngod (me(k)+1’ xZn(k)—l)

=e.
Since

d (x2m(k)+1’ xZn(k)—l)
< d (Xam@y+1> Xon(i)) + 4 (X2009> X20)-1) (38)

< d (Xgm@+1> X2ni-1) + 24 (X2h)> X2n(iy-1) »

letting k — o0 in the above inequality, we have

Jim d (X410 Xon(ey) = €. (39)

Since x,,,4) € As Xpu0-1 € B, and xp,)s X001 are com-
parable in X, we have

d (me(k)+1’ xZn(k))
=d (f Xom(k)> ngn(k)—l)
< o (fXomiip [Xomy) & (9%2n(0-1> FXon(io-1)
< d (fXom@)> 9%2m(-1)

<y(d (me(k)’ xZn(k)—l) ,d (me(k)> f: x2m(k)) >
d (xzn(k)—p gx2n(k)—1) .d (me(k)’ ngn(k)—l) >
d (x2n(k)—1’ f me(k)))

=y(d (me(k)’ xZn(k)—l) N (me(k)> x2m(k)+1) >
d (xZn(k)—l’ xZn(k)) .d (me(k)’ x2n(k)) J

d (xZn(k)—l’ x2m(k)+1)) .
(40)

Letting k — oo in the above inequality and using (37) and
(39), we get

e = lim d (%0115 Xony) < ¥ (6:0,0,6,€) <&, (41)

which implies a contradiction. So we get that {x, } is a Cauchy
sequence in (X, C, d).

Step 2. Finally, we prove the existence of common fixed point
of fand g.

Since (X, E, d) is complete and {x,,} is a Cauchy sequence
in (X, C, d), there exists v € X such that
nli—{r(goxn - nleréoxzn - nli—pgoxzn_l = (42)
From (42) and since «(x,,x,) > 1 for all n € N, we have
a(fv, fv) > 1and a(gv, gv) > 1.
Since {x,, } is a sequence in A and A is closed, by (42), we
have that v € A. Similarly, since {x,,,,} is a sequence in B and
Bis closed, by (42), we have that v € B. We now claim that v is

a common fixed point of f and g. Without loss of generality,
we assume that f is continuous, and by (42), we have

Xops1 = [Xp — ¥ aSH — 00. (43)

By the uniqueness of the limit, we have that v = fv.
Since v C v with v € A and v € B, we have

d(v.gv) =d(f.gv)
<a(fv fr)a(grgv)d(frgv)
<y (dmv),d( fv),d (v, gv),
d(v,gv),d (v fv))
y(0,0.d (5, 9).d (5 99).,0)
<d(»gv).

(44)

This implies that v = gv. So we complete the proof. O



Applying Theorem 10 and if we let a(x, y) = 1, then we
immediately get the following theorem.

Theorem 11. Let (X,C,d) be a partially ordered complete
metric space, let A, B be nonempty closed subsets of X with
X = AUB, andlet f,g : X — X be two mappings
such that the pair (f, g) is a generalized cyclic Meir-Keeler-type
(y, A, B)-contraction and (A, B)-weakly increasing. If f or g is
continuous, then f and g have a common fixed point in X.

We next state our second main result for the generalized
cyclic Meir-Keeler-type («, y, A, B)-contraction as follows.

Theorem 12. Let (X,C,d) be a partially ordered complete
metric space, let A, B be nonempty closed subsets of X with
X=AUBleta: XxX — RY,andlet f,g: X — X
be two mappings such that the pair (f, g) is a generalized cyclic
Meir-Keeler-type («,y, A, B)-contraction and (A, B)-weakly
increasing. Suppose that the following conditions hold:

(i) if {x,} is a nondecreasing sequence in X and
lim,,_, . x,, =, then x, C v;

(i) there exists x, € A with a fxy, fx,) = 1;

(i) if a(x,, x,) = 1 foralln € N and lim,, _, . x,, = v, then
a(fv, fv) = 1and a(gv, gv) = 1.

Then f and g have a common fixed point in X.

Proof. From the same proof’s process of Theorem 10, we can
construct a nondecreasing sequence {x,} in X with x,, € A,
Xpue1 € Byand x,, — v for some v € X. Since x, — vand
A, B are nonempty closed subsets of X, we have x,, — 7,
Xpue1 — Vv,and v € AN B. By the condition (i), we get x,, C v
foralln e N.

Since x,,, € A and v € B, we have

d (%41, 97)
=d (fxom gv)
< o (fxo fXn) (97> 97) d (fX0 97)
<y (d (x ), d (X fx20),d (v, gv),  (45)
d (x> 97)d (v, fx2,))
=y (d (xo07)»d (X X2011) »d (v, g7)
d (x> 97)d (¥, X301)) -

Lettingn — oo in the above inequality, we get
d(v,gv) <y (0,0,d(v,gv).d (v,gv),0) <d(v,gv). (46)
This implies that d(v, gv) = 0; that is, v = gv. Similarly, we

may show that » = fv. So v is a common fixed point of f and
9g- O

Applying Theorem 12, it is easy to get the following
theorem.
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Theorem 13. Let (X,C,d) be a partially ordered complete
metric space, let A, B be nonempty closed subsets of X with
X = AUB, andlet f,g : X — X be two mappings
such that the pair (f, g) is a generalized cyclic Meir-Keeler-type
(y, A, B)-contraction and (A, B)-weakly increasing. Suppose
that the following condition holds:

if {x,} is a nondecreasing sequence in X and
lim, , x, = v, then x,, C 7.

Then f and g have a common fixed point in X.
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