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We define the notion of 𝛼∗-𝜓-contractive mappings for cone metric space and obtain fixed points of multivalued mappings in
connection with Hausdorff distance function for closed bounded subsets of cone metric spaces. We obtain some recent results
of the literature as corollaries of our main theorem. Moreover, a nontrivial example of 𝛼∗-𝜓-contractive mapping satisfying all
conditions of our main result has been constructed.

1. Introduction

Banach contraction principle is widely recognized as the
source of metric fixed point theory. Also, this principle plays
an important role in several branches of mathematics. For
instance, it has been used to study the existence of solutions
for nonlinear equations, systems of linear equations, and
linear integral equations and to prove the convergence of
algorithms in computational mathematics. Because of its
importance for mathematical theory, Banach contraction
principle has been extended in many directions.

In 2007, Huang and zhang [1] introduced cone metric
space with normal cone, as a generalization of metric space.
Rezapour and Hamlbarani [2] presented the results of [1]
for the case of cone metric space without normality in cone.
Many authors work out on it (see [3, 4]). Cho and Bae [5]
introduced the Hausdorff distance function on cone metric
spaces and generalized the result of [6] for multivalued
mappings.

In 2012, Samet et al. [7] introduced the concept of 𝛼-𝜓-
contractive type mappings. Their results generalized some
ordered fixed point results (see [7]). In [8], Karapinar et al.
introduced the notion of a 𝐺𝑚-Meir-Keeler contractive map-
ping and established some fixed point theorems for the G 𝑚-
Meir-Keeler contractive mapping in the setting of G-metric
spaces. For more details in fixed point theory related to our

paper, we refer to the reader [9–19]. Asl et al. [20] introduced
the notion of 𝛼∗-𝜓-contractive mappings and improved the
concept of 𝛼-𝜓-contractive mappings along with some fixed
point theorems in metric space. Consequently, Ali et al.
[21], Mohammadi et al. [22] and Salimi et al. [23] studied
the concept of 𝛼∗-𝜓-contractive mappings for proving fixed
point results by using generalized contractive conditions in
complete metric spaces.

In this paper, we first define the notion of 𝛼∗-𝜓-
contractive mappings for cone metric spaces and then we use
it to study fixed point theorems for multivalued mappings
satisfying 𝛼∗-𝜓-contractive conditions in a complete cone
metric space without the assumption of normality. We also
furnish a nontrivial example to support our main result.

2. Preliminaries

In the following, we always suppose that E is a real Banach
space, 𝑃 is a cone in E with nonempty interior, and ⪯ is the
partial ordering with respect to 𝑃. By 𝜃, we denote the zero
element of E. A subset 𝑃 is called a cone if and only if

(i) 𝑃 is closed, nonempty, and 𝑃 = {𝜃};
(ii) 𝑎, 𝑏 ∈ R, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 ⇒ 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃;
(iii) 𝑃 ∩ (−𝑃) = {𝜃}.
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For a given cone 𝑃 ⊆ E, we define a partial ordering ⪯
with respect to 𝑃 by 𝑥 ⪯ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃; 𝑥 ≺ 𝑦 will
stand for 𝑥 ⪯ 𝑦 and 𝑥 ̸= 𝑦, while 𝑥 ≪ 𝑦 stand for𝑦−𝑥 ∈ int𝑃,
where int𝑃 denotes the interior of 𝑃.

Definition 1 (see [1]). Let 𝑋 be a nonempty set. A function
𝑑 : 𝑋 × 𝑋 → E is said to be a 𝑐𝑜𝑛𝑒 metric, if the following
conditions hold:

(𝐶1) 𝜃 ⪯ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 𝜃 if and only
if 𝑥 = 𝑦;

(𝐶2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋;
(𝐶3) 𝑑(𝑥, 𝑧) ⪯ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

The pair (𝑋, 𝑑) is then called a 𝑐𝑜𝑛𝑒metric space.

Lemma 2 (see [1]). Let (𝑋, 𝑑) be a 𝑐𝑜𝑛𝑒 metric space, 𝑥 ∈ 𝑋,
and let {𝑥

𝑛
} be a sequence in 𝑋. Then

(i) {𝑥
𝑛
} converges to𝑥whenever for every 𝑐 ∈ Ewith 𝜃 ≪ 𝑐

there is a natural number 𝑛
0
such that 𝑑(𝑥

𝑛
, 𝑥) ≪ 𝑐, for

all 𝑛 ≥ 𝑛
0
. We denote this by lim

𝑛→∞
𝑥
𝑛
= 𝑥;

(ii) {𝑥
𝑛
} is a Cauchy sequence whenever for every 𝑐 ∈ E

with 𝜃 ≪ 𝑐 there is a natural number 𝑛
0
such that

𝑑(𝑥
𝑛
, 𝑥
𝑚
) ≪ 𝑐, for all 𝑛,𝑚 ≥ 𝑛

0
;

(iii) (𝑋, 𝑑) is complete conemetric if every Cauchy sequence
in𝑋 is convergent.

Remark 3 (see [3]). The results concerning fixed points and
other results, in case of cone spaces with nonnormal cones,
cannot be provided by reducing to metric spaces, because in
this case neither of the conditions of the lemmas 1–4, in [1]
hold. Further, the vector cone metric is not continuous in the
general case; that is, from𝑥

𝑛
→ 𝑥,𝑦

𝑛
→ 𝑦 it need not follow

that 𝑑(𝑥
𝑛
, 𝑦
𝑛
) → 𝑑(𝑥, 𝑦).

Let (𝑋, 𝑑) be a cone metric space. The following proper-
ties of cone metric spaces have been noticed [3].

(𝑃𝑇1) If 𝑢 ⪯ V and V ≪ 𝑤, then 𝑢 ≪ 𝑤.
(𝑃𝑇2) If 𝑢 ≪ V and V ⪯ 𝑤, then 𝑢 ≪ 𝑤.
(𝑃𝑇3) If 𝑢 ≪ V and V ≪ 𝑤, then 𝑢 ≪ 𝑤.
(𝑃𝑇4) If 𝜃 ⪯ 𝑢 ≪ 𝑐 for each 𝑐 ∈ int𝑃, then 𝑢 = 𝜃.
(𝑃𝑇5) If 𝑎 ⪯ 𝑏 + 𝑐, for each 𝑐 ∈ int𝑃, then 𝑎 ⪯ 𝑏.
(𝑃𝑇6) {𝑎

𝑛
} be a sequence in E. If 𝑐 ∈ int𝑃 and 𝜃 ⪯ 𝑎

𝑛
→ 𝜃

(as 𝑛 → ∞), then there exists 𝑛
0
∈ 𝑁 such that for

all 𝑛 ≥ 𝑛
0
, we have 𝑎

𝑛
≪ 𝑐.

With some modifications, we have the following defini-
tion from [24].

Definition 4. Let Ψ be a family of nondecreasing functions,
𝜓 : 𝑃 → 𝑃 such that

(i) 𝜓(𝜃) = 𝜃 and 𝜃 < 𝜓(𝑡) < 𝑡 for 𝑡 ∈ 𝑃 \ {𝜃},
(ii) 𝑡 ∈ Int𝑃 implies 𝑡 − 𝜓(𝑡) ∈ Int𝑃,
(iii) lim

𝑛→+∞
𝜓
𝑛

(𝑡) = 𝜃 for every 𝑡 ∈ 𝑃 \ {𝜃}.

3. Main Result

For a cone metric space (𝑋, 𝑑), denote (see [5])

𝑁(𝑋) = {𝐴 : 𝐴 is non empty subset of 𝑋}

𝐶𝐵 (𝑋) = {𝐴 : 𝐴 is non empty,

closed and bounded subset of 𝑋} ,

𝑠 (𝑝) = {𝑞 ∈ E : 𝑝 ⪯ 𝑞} for 𝑞 ∈ E,

𝑠 (𝑎, 𝐵) = ⋃

𝑏∈𝐵

𝑠 (𝑑 (𝑎, 𝑏)) = ⋃

𝑏∈𝐵

{𝑥 ∈ E : 𝑑 (𝑎, 𝑏) ⪯ 𝑥}

for 𝑎 ∈ 𝑋 and 𝐵 ∈ 𝐶𝐵 (𝑋) .

(1)

For 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋) we denote

𝑠 (𝐴, 𝐵) = (⋂

𝑎∈𝐴

𝑠 (𝑎, 𝐵)) ∩ (⋂

𝑏∈𝐵

𝑠 (𝑏, 𝐴)) . (2)

Lemma 5. Let (𝑋, 𝑑) be a cone metric space, and let 𝑃 be a
cone in Banach space E.

(1) Let 𝑝, 𝑞 ∈ E. If 𝑝 ⪯ 𝑞, 𝑠(𝑞) ⊂ 𝑠(𝑝).
(2) Let 𝑥 ∈ 𝑋 and 𝐴 ∈ 𝑁(𝑋). If 𝜃 ∈ 𝑠(𝑥, 𝐴), then 𝑥 ∈ 𝐴.
(3) Let 𝑞 ∈ 𝑃 and let 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋) and 𝑎 ∈ 𝐴. If 𝑞 ∈

𝑠(𝐴, 𝐵), then 𝑞 ∈ 𝑠(𝑎, 𝐵) for all 𝑎 ∈ 𝐴 or 𝑞 ∈ 𝑠(𝐴, 𝑏) for
all 𝑏 ∈ 𝐵.

(4) Let 𝑞 ∈ 𝑃 and let 𝜆 ≥ 0, then 𝜆𝑠(𝑞) ⊆ 𝑠(𝜆𝑞).

Remark 6. Let (𝑋, 𝑑) be a 𝑐𝑜𝑛𝑒 metric space. If E = 𝑅

and 𝑃 = [0, +∞), then (𝑋, 𝑑) is a metric space. Moreover,
for 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), 𝐻(𝐴, 𝐵) = inf 𝑠(𝐴, 𝐵) is the Hausdorff
distance induced by 𝑑.

Definition 7. Let (𝑋, 𝑑) be a complete cone metric space with
cone𝑃, 𝜓 ∈ Ψ, 𝛼 : 𝑋×𝑋 → [0, +∞), and𝐹 : 𝑋 → 𝐶𝐵(𝑋) is
known as 𝛼∗-𝜓-contractive multivalued mapping whenever

𝜓 (𝑑 (𝑥, 𝑦)) ∈ 𝛼
∗

(𝐹𝑥, 𝐹𝑦) 𝑠 (𝐹𝑥, 𝐹𝑦) (3)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼∗(𝐴, 𝐵) = inf{𝛼(𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
Also, we say that 𝐹 is 𝛼∗-admissible whenever 𝛼(𝑥, 𝑦) ≥ 1

implies 𝛼∗(𝐹𝑥, 𝐹𝑦) ≥ 1.

Note that an 𝛼∗-𝜓-contractive multivalued mappings for
conemetric space is generalized 𝛼∗-𝜓-contractive.When𝜓 ∈
Ψ is a strictly increasing mapping, 𝛼∗-𝜓-contractive is called
strictly generalized 𝛼∗-𝜓-contractive.

Theorem 8. Let (𝑋, 𝑑) be a complete cone metric space with
cone𝑃, 𝛼 : 𝑋×𝑋 → [0, +∞) be a function,𝜓 ∈ Ψ be a strictly
increasing map and 𝐹 : 𝑋 → 𝐶𝐵(𝑋), and 𝐹 be 𝛼∗-admissible
and𝛼∗-𝜓-contractivemultivaluedmapping on𝑋. Suppose that
there exist 𝑥

0
∈ 𝑋, 𝑥

1
∈ 𝐹𝑥
0
such that 𝛼(𝑥

0
, 𝑥
1
) ≥ 1. Assume

that if {𝑥
𝑛
} is a sequence in 𝑋 such that 𝛼(𝑥

𝑛
, 𝑥
𝑛+1
) ≥ 1 for all

𝑛 and 𝑥
𝑛
→ 𝑢 as 𝑛 → +∞ then 𝛼(𝑥

𝑛
, 𝑢) ≥ 1 for all 𝑛. Then,

there exists a point 𝑥∗ in𝑋 such that 𝑥∗ ∈ 𝐹𝑥∗.
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Proof. We may suppose that 𝑥
0
̸= 𝑥
1
. Then 𝛼∗(𝐹𝑥

0
, 𝐹𝑥
1
) ≥ 1

and

𝜓 (𝑑 (𝑥
0
, 𝑥
1
)) ∈ 𝛼

∗

(𝐹𝑥
0
, 𝐹𝑥
1
) 𝑠 (𝐹𝑥

0
, 𝐹𝑥
1
) . (4)

By Lemma 5(3), we have

𝜓 (𝑑 (𝑥
0
, 𝑥
1
)) ∈ 𝛼

∗

(𝐹𝑥
0
, 𝐹𝑥
1
) 𝑠 (𝑥
1
, 𝐹𝑥
1
) . (5)

By definition, we can take 𝑥
2
∈ 𝐹𝑥
1
such that

𝜓 (𝑑 (𝑥
0
, 𝑥
1
)) ∈ 𝛼

∗

(𝐹𝑥
0
, 𝐹𝑥
1
) 𝑠 (𝑑 (𝑥

1
, 𝑥
2
)) . (6)

By Lemma 5(4), we have

𝜓 (𝑑 (𝑥
0
, 𝑥
1
)) ∈ 𝛼

∗

(𝐹𝑥
0
, 𝐹𝑥
1
) 𝑠 (𝑑 (𝑥

1
, 𝑥
2
))

⊆ 𝑠 (𝛼
∗

(𝐹𝑥
0
, 𝐹𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
)) .

(7)

So,

𝛼
∗

(𝐹𝑥
0
, 𝐹𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝜓 (𝑑 (𝑥

0
, 𝑥
1
)) . (8)

Hence,

0 ≺ 𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝛼
∗

(𝐹𝑥
0
, 𝐹𝑥
1
) 𝑑 (𝑥
1
, 𝑥
2
) ⪯ 𝜓 (𝑑 (𝑥

0
, 𝑥
1
))

(9)

𝑥
1
̸= 𝑥
2
and 𝛼(𝑥

1
, 𝑥
2
) ≥ 1. Thus 𝛼∗(𝐹𝑥

1
, 𝐹𝑥
2
) ≥ 1 and

𝑑(𝑥
1
, 𝑥
2
) ⪯ 𝜓(𝑑(𝑥

0
, 𝑥
1
)). If 𝑥

2
∈ 𝐹𝑥
2
, then 𝑥

2
is a fixed point

of 𝐹. Assume that 𝑥
2
∉ 𝐹𝑥
2
. Then

𝜓 (𝑑 (𝑥
1
, 𝑥
2
)) ∈ 𝛼

∗

(𝐹𝑥
1
, 𝐹𝑥
2
) 𝑠 (𝐹𝑥

1
, 𝐹𝑥
2
) . (10)

By Lemma 5(3), we have

𝜓 (𝑑 (𝑥
1
, 𝑥
2
)) ∈ 𝛼

∗

(𝐹𝑥
1
, 𝐹𝑥
2
) 𝑠 (𝑥
2
, 𝐹𝑥
2
) . (11)

By definition, we can take 𝑥
3
∈ 𝐹𝑥
2
such that

𝜓 (𝑑 (𝑥
1
, 𝑥
2
)) ∈ 𝛼

∗

(𝐹𝑥
1
, 𝐹𝑥
2
) 𝑠 (𝑑 (𝑥

2
, 𝑥
3
)) . (12)

By Lemma 5(4), we have

𝜓 (𝑑 (𝑥
1
, 𝑥
2
)) ∈ 𝛼

∗

(𝐹𝑥
1
, 𝐹𝑥
2
) 𝑠 (𝑑 (𝑥

2
, 𝑥
3
))

⊆ 𝑠 (𝛼
∗

(𝐹𝑥
1
, 𝐹𝑥
2
) 𝑑 (𝑥
2
, 𝑥
3
)) .

(13)

So,

𝛼
∗

(𝐹𝑥
1
, 𝐹𝑥
2
) 𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝜓 (𝑑 (𝑥

1
, 𝑥
2
)) . (14)

Hence,

0 ≺ 𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝛼
∗

(𝐹𝑥
1
, 𝐹𝑥
2
) 𝑑 (𝑥
2
, 𝑥
3
) ⪯ 𝜓 (𝑑 (𝑥

1
, 𝑥
2
)) .

(15)

It is clear that 𝑥
2
̸= 𝑥
3

and 𝛼(𝑥
2
, 𝑥
3
) ≥ 1. Thus,

𝛼
∗

(𝐹𝑥
2
, 𝐹𝑥
3
) ≥ 1 and 𝑑(𝑥

2
, 𝑥
3
) < 𝜓
2

(𝜓(𝑑(𝑥
0
, 𝑥
1
))).

If 𝑥
3
∈ 𝐹𝑥
3
, then 𝑥

3
is a fixed point of 𝐹. Assume that

𝑥
3
∉ 𝐹𝑥
3
:

𝜓 (𝑑 (𝑥
2
, 𝑥
3
)) ∈ 𝛼

∗

(𝐹𝑥
2
, 𝐹𝑥
3
) 𝑠 (𝐹𝑥

2
, 𝐹𝑥
3
) . (16)

By Lemma 5(3), we have

𝜓 (𝑑 (𝑥
2
, 𝑥
3
)) ∈ 𝛼

∗

(𝐹𝑥
2
, 𝐹𝑥
3
) 𝑠 (𝑥
3
, 𝐹𝑥
3
) . (17)

By definition, we can take 𝑥
4
∈ 𝐹𝑥
3
such that

𝜓 (𝑑 (𝑥
2
, 𝑥
3
)) ∈ 𝛼

∗

(𝐹𝑥
2
, 𝐹𝑥
3
) 𝑠 (𝑑 (𝑥

3
, 𝑥
4
)) . (18)

By Lemma 5(4), we have

𝜓 (𝑑 (𝑥
2
, 𝑥
3
)) ∈ 𝛼

∗

(𝐹𝑥
2
, 𝐹𝑥
3
) 𝑠 (𝑑 (𝑥

3
, 𝑥
4
))

⊆ 𝑠 (𝛼
∗

(𝐹𝑥
2
, 𝐹𝑥
3
) 𝑑 (𝑥
3
, 𝑥
4
)) .

(19)

So

𝛼
∗

(𝐹𝑥
2
, 𝐹𝑥
3
) 𝑑 (𝑥
3
, 𝑥
4
) ⪯ 𝜓 (𝑑 (𝑥

2
, 𝑥
3
)) . (20)

Hence

0 ≺ 𝑑 (𝑥
3
, 𝑥
4
) ⪯ 𝛼
∗

(𝐹𝑥
2
, 𝐹𝑥
3
) 𝑑 (𝑥
3
, 𝑥
4
) ⪯ 𝜓 (𝑑 (𝑥

2
, 𝑥
3
)) .

(21)

It is clear that 𝑥
3
̸= 𝑥
4

and 𝛼(𝑥
3
, 𝑥
4
) ≥ 1. Thus,

𝛼
∗

(𝐹𝑥
3
, 𝐹𝑥
4
) ≥ 1 and 𝑑(𝑥

3
, 𝑥
4
) < 𝜓

3

(𝜓(𝑑(𝑥
0
, 𝑥
1
))). By

continuing this process, we obtain a sequence {𝑥
𝑛
} in𝑋 such

that 𝑥
𝑛
∈ 𝑇𝑥
𝑛−1

, 𝑥
𝑛
̸= 𝑥
𝑛−1

, 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 and

𝑑 (𝑥
𝑛
, 𝑥
𝑛+1
) ⪯ 𝜓 (𝑑 (𝑥

𝑛−1
, 𝑥
𝑛
)) ⪯ ⋅ ⋅ ⋅ ⪯ 𝜓

𝑛

(𝑑 (𝑥
0
, 𝑥
1
)) (22)

for all 𝑛.

Fix 𝜃 ≪ 𝑐. We choose a positive real number 𝛿 such that
(𝑐−𝜓(𝑐))+𝐼(𝜃, 𝛿) ⊂ Int𝑃, where 𝐼(𝜃, 𝛿) = {𝑦 ∈ 𝐸 : ‖𝑦‖ < 𝛿}.
By (iii) of Definition 4, there exists a natural number𝑁 such
that 𝜓𝑚(𝑑(𝑥

0
, 𝑥
1
)) ∈ 𝐼(𝜃, 𝛿), for all𝑚 ≥ 𝑁. Then

𝜓
𝑚

(𝑑 (𝑥
0
, 𝑥
1
)) ≪ 𝑐 − 𝜓 (𝑐) , (23)

for all 𝑚 ≥ 𝑁. Consequently, 𝑑(𝑥
𝑚
, 𝑥
𝑚+1
) ≪ 𝑐 − 𝜓(𝑐), for all

𝑚 ≥ 𝑁. Fix𝑚 ≥ 𝑁. Now we prove

𝑑 (𝑥
𝑚
, 𝑥
𝑛+1
) ≪ 𝑐 (24)

for all 𝑛 ≥ 𝑚. Note that (24) holds when 𝑛 = 𝑚. Assume that
(24) holds for some 𝑛 ≥ 𝑚. Then, we have

𝑑 (𝑥
𝑚
, 𝑥
𝑛+1
) ≪ 𝑐. (25)

Now by (22), we have

𝑑 (𝑥
𝑚
, 𝑥
𝑛+2
) ≤ 𝑑 (𝑥

𝑚
, 𝑥
𝑚+1
) + 𝑑 (𝑥

𝑚+1
, 𝑥
𝑛+2
)

≪ 𝑐 − 𝜓 (𝑐) + 𝜓𝑑 (𝑥
𝑚
, 𝑥
𝑛+1
)

≪ 𝑐 − 𝜓 (𝑐) + 𝜓 (𝑐) = 𝑐.

(26)

Therefore, (24) holds when 𝑛 = 𝑛+1. By induction, we deduce
that (24) holds for all 𝑛 ≥ 𝑚. This is sufficient to conclude
that {𝑥

𝑛
} is a Cauchy sequence. Choose 𝑢 ∈ 𝑋 such that

𝑥
𝑛
→ 𝑢. Since 𝛼(𝑥

𝑛
, 𝑢) ≥ 1 for all 𝑛 and 𝐹 is 𝛼∗-admissible,

so 𝛼∗(𝐹𝑥
𝑛
, 𝐹𝑢) ≥ 1 for all 𝑛. From (3), we have

𝜓 (𝑑 (𝑥
𝑛
, 𝑢)) ∈ 𝛼

∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑠 (𝐹𝑥

𝑛
, 𝐹𝑢) (27)
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for all 𝑛 ∈ N. By Lemma 5(3), we have

𝜓 (𝑑 (𝑥
𝑛
, 𝑢)) ∈ 𝛼

∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑠 (𝑥

𝑛+1
, 𝐹𝑢) . (28)

By definition, we can take V
𝑛
∈ 𝐹𝑢 such that

𝜓 (𝑑 (𝑥
𝑛
, 𝑢)) ∈ 𝛼

∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑠 (𝑑 (𝑥

𝑛+1
, V
𝑛
)) . (29)

By Lemma 5(4), we have

𝜓 (𝑑 (𝑥
𝑛
, 𝑢)) ∈ 𝛼

∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑠 (𝑑 (𝑥

𝑛+1
, V
𝑛
))

⊆ 𝑠 (𝛼
∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑑 (𝑥

𝑛+1
, V
𝑛
)) .

(30)

So

𝛼
∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑑 (𝑥

𝑛+1
, V
𝑛
) ⪯ 𝜓 (𝑑 (𝑥

𝑛
, 𝑢)) . (31)

Hence
0 ≺ 𝑑 (𝑥

𝑛+1
, V
𝑛
)

⪯ 𝛼
∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑑 (𝑥

𝑛+1
, V
𝑛
)

⪯ 𝜓 (𝑑 (𝑥
𝑛
, 𝑢))

⪯ 𝑑 (𝑥
𝑛
, 𝑢) .

(32)

Moreover, for a given 𝑐 ∈ Int𝑃, we have

𝑑 (𝑢, V
𝑛
) ⪯ 𝑑 (𝑢, 𝑥

𝑛+1
) + 𝑑 (𝑥

𝑛+1
, V
𝑛
)

⪯ 𝑑 (𝑢, 𝑥
𝑛+1
) + 𝛼
∗

(𝐹𝑥
𝑛
, 𝐹𝑢) 𝑑 (𝑥

𝑛+1
, V
𝑛
)

⪯ 𝑑 (𝑢, 𝑥
𝑛+1
) + 𝜓 (𝑑 (𝑥

𝑛
, 𝑢))

⪯ 𝑑 (𝑢, 𝑥
𝑛+1
) + 𝑑 (𝑥

𝑛
, 𝑢)

≪

𝑐

2

+

𝑐

2

= 𝑐, for 𝑛 ≥ 𝑘 = 𝑘 (𝑐) .

(33)

Hence, according to Lemma 2(i), we have lim
𝑛→∞

V
𝑛
= 𝑢.

Since 𝐹𝑢 is closed, 𝑢 ∈ 𝐹𝑢.

Theorem 9. Let (𝑋, 𝑑) be a complete cone metric space with
cone 𝑃, 𝛼 : 𝑋 × 𝑋 → [0, +∞) be a function, and 𝐹 : 𝑋 →

𝐶𝐵(𝑋) be 𝛼∗-admissible. If there exists a constant 𝑘 ∈ [0, 1)
such that

𝑘𝑑 (𝑥, 𝑦) ∈ 𝛼
∗

(𝐹𝑥, 𝐹𝑦) 𝑠 (𝐹𝑥, 𝐹𝑦) (34)

for all 𝑥, 𝑦 ∈ 𝑋. Suppose that there exist 𝑥
0
∈ 𝑋, 𝑥

1
∈ 𝐹𝑥
0
such

that 𝛼(𝑥
0
, 𝑥
1
) ≥ 1. Assume that if {𝑥

𝑛
} is a sequence in𝑋 such

that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑢 as 𝑛 → +∞; then

𝛼(𝑥
𝑛
, 𝑢) ≥ 1 for all 𝑛. Then, there exists a point 𝑥∗ in 𝑋 such

that 𝑥∗ ∈ 𝐹𝑥∗.

Proof. Take 𝜓(𝑡) = 𝑘𝑡 in Theorem 8.

Theorem 10. Let (𝑋, 𝑑) be a complete cone metric space with
cone 𝑃, 𝜓 ∈ Ψ be a strictly increasing map, and 𝐹 : 𝑋 →

𝐶𝐵(𝑋) be multivalued mapping such that

𝜓 (𝑑 (𝑥, 𝑦)) ∈ 𝑠 (𝐹𝑥, 𝐹𝑦) (35)

for all 𝑥, 𝑦 ∈ 𝑋. Then, there exists a point 𝑥∗ in 𝑋 such that
𝑥
∗

∈ 𝐹𝑥
∗.

Proof. Take 𝛼∗(𝐹𝑥, 𝐹𝑦) = 1 in the Theorem 8.

Corollary 11. Let (𝑋, 𝑑) be a complete cone metric space with
cone 𝑃 and let 𝐹 : 𝑋 → 𝐶𝐵(𝑋) be a multivalued mapping. If
there exists a constant 𝑘 ∈ [0, 1) such that

𝑘𝑑 (𝑥, 𝑦) ∈ 𝑠 (𝐹𝑥, 𝐹𝑦) (36)

for all 𝑥, 𝑦 ∈ 𝑋, then, there exists a point 𝑥∗ in 𝑋 such that
𝑥
∗

∈ 𝐹𝑥
∗.

Proof. Take 𝜓(𝑡) = 𝑘𝑡 and 𝛼∗(𝐹𝑥, 𝐹𝑦) = 1 in the Theorem 8.

Corollary 12 (see [20]). Let (𝑋, 𝑑) be a complete metric
space, 𝛼 : 𝑋×𝑋 → [0, +∞) be a function, 𝜓 ∈ Ψ be a strictly
increasing map, and 𝐹 : 𝑋 → 𝐶𝐵(𝑋) be 𝛼∗-admissible such
that

𝛼
∗

(𝐹𝑥, 𝐹𝑦)𝐻 (𝐹𝑥, 𝐹𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (37)

for all 𝑥, 𝑦 ∈ 𝑋. Suppose that there exist 𝑥
0
∈ 𝑋 such that

𝛼(𝑥
0
, 𝐹𝑥
0
) ≥ 1. Assume that if {𝑥

𝑛
} is a sequence in 𝑋 such

that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑢 as 𝑛 → +∞ then

𝛼(𝑥
𝑛
, 𝑢) ≥ 1 for all 𝑛. Then, there exists a point 𝑥∗ in 𝑋 such

that 𝑥∗ ∈ 𝐹𝑥∗.

By Remark 6, we have the following corollaries.

Corollary 13 (see [20]). Let (𝑋, 𝑑) be a complete metric
space, 𝜓 ∈ Ψ be a strictly increasingmap, and𝐹 : 𝑋 → 𝐶𝐵(𝑋)

be a multivalued mapping such that

𝐻(𝐹𝑥, 𝐹𝑦) ≤ 𝜓 (𝑑 (𝑥, 𝑦)) (38)

for all 𝑥, 𝑦 ∈ 𝑋. Then, there exists a point 𝑥∗ in 𝑋 such that
𝑥
∗

∈ 𝐹𝑥
∗.

Proof. Take 𝛼∗(𝐹𝑥, 𝐹𝑦) = 1 in the Corollary 12.

Corollary 14 (see [20]). Let (𝑋, 𝑑) be a complete metric space,
𝛼 : 𝑋 ×𝑋 → [0, +∞) be a function, and 𝐹 : 𝑋 → 𝐶𝐵(𝑋) be
𝛼
∗-admissible. If there exists a constant 𝑘 ∈ [0, 1) such that

𝛼
∗

(𝐹𝑥, 𝐹𝑦)𝐻 (𝐹𝑥, 𝐹𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) (39)

for all 𝑥, 𝑦 ∈ 𝑋. Suppose that there exist 𝑥
0
∈ 𝑋 such that

𝛼(𝑥
0
, 𝐹𝑥
0
) ≥ 1. Assume that if {𝑥

𝑛
} is a sequence in 𝑋 such

that 𝛼(𝑥
𝑛
, 𝑥
𝑛+1
) ≥ 1 for all 𝑛 and 𝑥

𝑛
→ 𝑢 as 𝑛 → +∞ then

𝛼(𝑥
𝑛
, 𝑢) ≥ 1 for all 𝑛. Then, there exists a point 𝑥∗ in 𝑋 such

that 𝑥∗ ∈ 𝐹𝑥∗.

Proof. Take 𝜓(𝑡) = 𝑘𝑡 in the Corollary 13.

Corollary 15 (see [25]). Let (𝑋, 𝑑) be a complete metric space
and let 𝐹 : 𝑋 → 𝐶𝐵(𝑋) be a multivalued mapping. If there
exists a constant 𝑘 ∈ [0, 1) such that

𝐻(𝐹𝑥, 𝐹𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) (40)

for all 𝑥, 𝑦 ∈ 𝑋. Then, there exists a point 𝑥∗ in 𝑋 such that
𝑥
∗

∈ 𝐹𝑥
∗.
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Proof. Take 𝛼∗(𝐹𝑥, 𝐹𝑦) = 1 in the Corollary 14.

Example 16. Let 𝑋 = [0, 1], 𝐸 = 𝐶1[0, 1], 𝑃 = {𝜃 ⪯ 𝑥(𝑡) : 𝑡 ∈
𝑋}, where 𝜃(𝑡) = 0 for all 𝑡 ∈ 𝑋. Define 𝑑 : 𝑋 × 𝑋 → 𝐸 by

𝑑 (𝑥, 𝑦) =




𝑥 − 𝑦





𝑒
𝑡 (41)

and 𝐹 : 𝑋 → 2
𝑋 by 𝐹𝑥 = [0, (𝑥/12)] for all 𝑥 ∈ 𝑋 and

𝛼 (𝑥, 𝑦) =

{

{

{

1





𝑥 − 𝑦






if 𝑥 ̸= 𝑦

1 if 𝑥 = 𝑦.
(42)

Then, 𝛼(𝑥, 𝑦) ≥ 1 ⇒ 𝛼
∗

(𝐹𝑥, 𝐹𝑦) = inf{𝛼(𝑥, 𝑦) : 𝑥 ∈ 𝐹𝑥, 𝑦 ∈
𝐹𝑦} ≥ 1. Then, clearly 𝐹 is 𝛼∗-admissible. Now for 𝑥, 𝑦 and
𝑥 ≤ 𝑦, we get

𝜓 (𝑑 (𝑥, 𝑦)) =

1

5





𝑥 − 𝑦





𝑒
𝑡

⪰

1

12





𝑥 − 𝑦





𝑒
𝑡

= 𝛼
∗

(𝐹𝑥, 𝐹𝑦) 𝑠 (𝐹𝑥, 𝐹𝑦)

(43)

which implies that

𝜓 (𝑑 (𝑥, 𝑦)) ∈ 𝛼
∗

(𝐹𝑥, 𝐹𝑦) 𝑠 (𝐹𝑥, 𝐹𝑦) . (44)

So 𝐹 is 𝛼∗-𝜓-contractive multivalued mapping on 𝑋 where
𝜓(𝑡) = 𝑡/5.Thus, all the conditions of main result are satisfied
to obtain the fixed point of 𝐹.
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