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Let 𝐹 : R𝑛 × R → R be a real-valued polynomial function of the form 𝐹(𝑥, 𝑦) = 𝑎
𝑠
(𝑥)𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥)𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) where the

degree 𝑠 of 𝑦 in 𝐹(𝑥, 𝑦) is greater than 1. For arbitrary polynomial function 𝑓(𝑥) ∈ R[𝑥], 𝑥 ∈ R𝑛, we will find a polynomial
solution 𝑦(𝑥) ∈ R[𝑥] to satisfy the following equation (⋆): 𝐹(𝑥, 𝑦(𝑥)) = 𝑎𝑓(𝑥) where 𝑎 ∈ R is a constant depending on the
solution 𝑦(𝑥), namely a quasi-coincidence (point) solution of (⋆), and 𝑎 is called a quasi-coincidence value of (⋆). In this paper,
we prove that (i) the number of all solutions in (⋆) does not exceed deg

𝑦
𝐹(𝑥, 𝑦)((2

deg𝑓(𝑥)
+ 𝑠 + 3) ⋅ 2

deg𝑓(𝑥)
+ 1) provided those

solutions are of finitely many exist, (ii) if all solutions are of infinitely many exist, then any solution is represented as the form
𝑦(𝑥) = −𝑎

𝑠−1
(𝑥)/𝑠𝑎

𝑠
(𝑥) + 𝜆𝑝(𝑥) where 𝜆 is arbitrary and 𝑝(𝑥) = (𝑓(𝑥)/𝑎

𝑠
(𝑥))
1/𝑠 is also a factor of 𝑓(𝑥), provided the equation (⋆)

has infinitely many quasi-coincidence (point) solutions.

1. Introduction

In 1987, Lenstra [1] researched a polynomial function
𝐹(𝑥, 𝑦) ∈ Q(𝛼) [𝑥, 𝑦] (𝛼 is an algebraic number) and
attempted to search the factorization of 𝐹(𝑥, 𝑦). Continuing
his job, many scientists tried to find the roots of the polyno-
mial equations (cf. [2–6]). Later, many authors also studied
fixed point theory and fixed coincidence theory (cf. [7–11]).
Recently, Lai and Chen ([12–15]) research the quasi-fixed
(point) polynomial problem; they assumed 𝐹 : R𝑛 ×R → R

a polynomial function and solved 𝑦(𝑥) ∈ R[𝑥] to satisfy the
polynomial equation as the form

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎𝑝
𝑚

(𝑥) , 𝑥 ∈ R, (1)

where 𝑎 ∈ R, 𝑝(𝑥) is an irreducible polynomial in R[𝑥], and
the polynomial function 𝐹(𝑥, 𝑦) is written by

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑦
𝑖 with 𝑠 ≥ 1, (2)

where 𝑠 = deg
𝑦
𝐹 denotes the degree of 𝑦 in 𝐹(𝑥, 𝑦).

Definition 1 (Lai and Chen [12]). A polynomial function
𝑦 = 𝑦(𝑥) satisfying (1) is called a quasi-fixed solution

corresponding to some real number 𝑎. This number 𝑎 is
called a quasi-fixed value corresponding to the polynomial
solutions 𝑦 = 𝑦(𝑥).

Moreover, Chen and Lai [16] extended (1) to a more gen-
eral coincidence (point) problem in which the𝑓(𝑥) ∈ R[𝑥] is
replaced by the irreducible polynomial power 𝑝𝑚(𝑥) ∈ R[𝑥],
where 𝑓(𝑥) is an arbitrary polynomial. Then we restate (1) as
the following equation:

𝐹 (𝑥, 𝑦) = 𝑎𝑓 (𝑥) . (3)

It is a new development coincidence point-like problem. We
call the polynomial solution 𝑦 = 𝑦(𝑥) for (3) a quasi-
coincidence (point) solution. Precisely, we give the following
definition like Definition 1.

Definition 2 (Chen and Lai [16]). A polynomial function
𝑦 = 𝑦(𝑥) satisfying (3) is called a quasi-coincidence (point)
solution corresponding to some real number 𝑎. This number
𝑎 is called a quasi-coincidence value corresponding to the
polynomial solutions 𝑦 = 𝑦(𝑥).
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Furthermore, we consider a multivariate polynomial
function 𝐹 : R𝑛 × R → R and extend (3) as a more general
coincidence (point) problem inwhich the𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)

is replaced by 𝑥 throughout this paper, where 𝑓(𝑥) is a
nonzero arbitrary polynomial inR[𝑥]. Then we restate (3) as
the following equation:

𝐹 (𝑥, 𝑦) = 𝑎𝑓 (𝑥) . (4)

Thus, we can give some definitions like Definition 2 as
follows.

Definition 3. A polynomial function 𝑦 = 𝑦(𝑥) satisfying (4)
is called a quasi-coincidence (point) solution corresponding
to some real number 𝑎. This number 𝑎 is called a quasi-
coincidence value corresponding to the polynomial solutions
𝑦 = 𝑦(𝑥).

The number of all solutions in (4) may be infinitely many,
finitely many, or not solvable. In this paper, we solve all
solutions of (4) if the number is infinitely many. Moreover,
we provide an upper bound for the number of all solutions if
the number is finitely many.

In Section 2, we derive some properties of quasi-
coincidence solutions. If (4) has infinitely many quasi-
coincidence solutions, the form of 𝐹(𝑥, 𝑦) will be described
in Section 3. In the last section, we solve all solutions if (4)
has infinitely many solutions.

2. Preliminaries

For convenience, we denote the polynomial function by

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
1
(𝑥) 𝑦 + 𝑎

0
(𝑥)

=

𝑠

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑦
𝑖

(5)

throughout this paper and since there may exist many
solutions corresponding to the same number 𝑎, we use the
similar notations like (Definition 2, [11]) to represent them.

Notation 1. (1) Qcs
𝐹
, the set of all solutions satisfying

equation (4), the solution in Qcs
𝐹
is also called a quasi-

coincidence solution in (4) (like Definition 2).
(2) Qcv

𝐹
, the set of all solutions 𝑎 satisfying equation (4),

the solution in Qcv
𝐹
is also called a quasi-coincidence value

in (4) (like Definition 2).
(3) Qcs

𝐹
(𝑎), the set of all quasi-coincidence solutions

𝑦(𝑥) corresponding to a quasi-coincidence value 𝑎.
(4) For each 𝑎 ∈ R, we denote |Qcs

𝐹
(𝑎)| as the cardinal

number of Qcs
𝐹
(𝑎).

Evidently, by Notation 1, we have the following lemma.

Lemma 4. (i) 𝑄𝑐𝑠
𝐹
= ⋃
𝑎∈𝑄𝑐V𝐹

𝑄𝑐𝑠
𝐹
(𝑎);

(ii) 𝑄𝑐𝑠
𝐹
(𝑎)⋂𝑄𝑐𝑠

𝐹
(𝑏) = 0 for any 𝑎 ̸= 𝑏 in 𝑄𝑐V

𝐹
;

(iii) |𝑄𝑐𝑠
𝐹
(𝑎)| ≤ deg

𝑦
𝐹(𝑥, 𝑦) for any 𝑎 ∈ R;

(iv) |𝑄𝑐𝑠
𝐹
| ≤ |𝑄𝑐V

𝐹
||𝑄𝑐𝑠
𝐹
(𝑎)| for any 𝑎 ∈ 𝑄𝑐V

𝐹
.

Proof. (i)⋃
𝑎∈Qcv𝐹 Qcs

𝐹
(𝑎) ⊆ Qcs

𝐹
is obvious.

Conversely, for any 𝑦(𝑥) ∈ Qcs
𝐹
, by Notation 1(1), we

have

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎𝑓 (𝑥) (6)

for some 𝑎 ∈ Qcv
𝐹
.Thismeans𝑦(𝑥) ∈ Qcs

𝐹
(𝑎) andwe obtain

Qcs
𝐹
⊆ ⋃

𝑎∈Qcv𝐹

Qcs
𝐹
(𝑎) . (7)

(ii) Let 𝑎 ̸= 𝑏 in Qcv
𝐹
; if there exists 𝑦(𝑥) ∈ R[𝑥] such that

𝑦 (𝑥) ∈ Qcs
𝐹
(𝑎)⋂Qcs

𝐹
(𝑏) , (8)

by Notation 1(3), we have

𝑎𝑓 (𝑥) = 𝐹 (𝑥, 𝑦 (𝑥)) = 𝑏𝑓 (𝑥) . (9)

This leads a contradiction to 𝑎 ̸= 𝑏 and we have
Qcs
𝐹
(𝑎)⋂Qcs

𝐹
(𝑏) = 0.

(iii) For each 𝑎 ∈ R, the number of all solutions 𝑦 =

𝑦(𝑥) to the polynomial equation 𝐹(𝑥, 𝑦) − 𝑎𝑓(𝑥) = 0 is at
most deg

𝑦
(𝐹(𝑥, 𝑦) − 𝑎𝑓(𝑥)) = deg

𝑦
𝐹(𝑥, 𝑦); then the result is

obtained.
(iv) By (i), we have

Qcs
𝐹
= ⋃

𝑎∈Qcv𝐹

Qcs
𝐹
(𝑎) . (10)

It follows that

Qcs
𝐹

 =



⋃

𝑎∈Qcv𝐹

Qcs
𝐹
(𝑎)



≤
Qcv
𝐹



Qcs
𝐹
(𝑎)

 , for any 𝑎 ∈ Qcv
𝐹
.

(11)

In the following lemma, we explain some interesting
properties of the relations of quasi-coincidence point solu-
tions. Throughout this paper, we consider (4) for polynomial
function (5) and nonzero arbitrary polynomial 𝑓(𝑥) inR[𝑥].

Lemma 5. Let the cardinal number |𝑄𝑐V
𝐹
| ≥ 2 and 𝑎 ̸= 𝑏 in

𝑄𝑐V
𝐹
. Then for any 𝑦

1
(𝑥) ∈ 𝑄𝑐𝑠

𝐹
(𝑎) and 𝑦

2
(𝑥) ∈ 𝑄𝑐𝑠

𝐹
(𝑏), one

has

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = 𝑑𝑝 (𝑥) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑑 ∈ R, (12)

and this 𝑝(𝑥) is a factor of 𝑓(𝑥), that is, 𝑝(𝑥) | 𝑓(𝑥).

Proof. Since 𝑦
1
(𝑥), 𝑦

2
(𝑥) correspond to 𝑎, 𝑏, respectively, we

have

𝐹 (𝑥, 𝑦
1
(𝑥)) = 𝑎𝑓 (𝑥) , (13)

𝐹 (𝑥, 𝑦
2
(𝑥)) = 𝑏𝑓 (𝑥) . (14)



Abstract and Applied Analysis 3

Subtracting (14) from (13) and using binomial formula, it
yields that

(𝑎 − 𝑏) 𝑓 (𝑥) = 𝐹 (𝑥, 𝑦
1
(𝑥)) − 𝐹 (𝑥, 𝑦

2
(𝑥))

= 𝑎
𝑠
(𝑥) [𝑦

𝑠

1
(𝑥) − 𝑦

𝑠

2
(𝑥)]

+ 𝑎
𝑠−1

(𝑥) [𝑦
𝑠−1

1
(𝑥) − 𝑦

𝑠−1

2
(𝑥)]

+ ⋅ ⋅ ⋅ + 𝑎
1
(𝑥) [𝑦

1
(𝑥) − 𝑦

2
(𝑥)]

= [𝑦
1
(𝑥) − 𝑦

2
(𝑥)]

× [𝑎
𝑠
(𝑥) 𝐺
𝑠
(𝑦
1
(𝑥) , 𝑦

2
(𝑥))

+ 𝑎
𝑠−1

(𝑥) 𝐺
𝑠−1

(𝑦
1
(𝑥) , 𝑦

2
(𝑥))

+ ⋅ ⋅ ⋅ + 𝑎
1
(𝑥)]

= [𝑦
1
(𝑥) − 𝑦

2
(𝑥)] 𝑄 (𝑥, 𝑦

1
(𝑥) , 𝑦

2
(𝑥)) ,

(15)

where

𝐺
𝑗
(𝑦
1
(𝑥) , 𝑦

2
(𝑥)) = 𝑦

𝑗−1

1
(𝑥)

+ 𝑦
𝑗−2

1
(𝑥) 𝑦
2
(𝑥) + ⋅ ⋅ ⋅ + 𝑦

𝑗−1

2
(𝑥) ,

(16)

for 𝑗 = 𝑠, 𝑠 − 1, . . . , 2, 1. Evidently, the factor 𝑦
1
(𝑥) − 𝑦

2
(𝑥) is

divisible to the term (𝑎 − 𝑏)𝑓(𝑥) and since 𝑎 ̸= 𝑏, we obtain

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = 𝑑𝑝 (𝑥) (17)

for some real number 𝑑 ∈ R and factor 𝑝(𝑥) of 𝑓(𝑥).

In Lemma 5, the difference of any two distinct quasi-
coincidence solutions corresponding to distinct values is a
factor of 𝑓(𝑥). Thus we may define a class of those factors in
the following.

Notation 2. (i) DenoteΦ(𝑝(𝑥)) = {𝛼𝑝(𝑥) : 𝛼 ∈ R}.
(ii) Let 𝑦(𝑥) be an arbitrary polynomial in R[𝑥], and we

denote 𝑦(𝑥) + Φ(𝑝(𝑥)) = {𝑦(𝑥) + 𝛼𝑝(𝑥) : 𝛼 ∈ R}.
(iii) deg𝑓(𝑥) = ∑

𝑛

𝑖=1
deg
𝑥𝑖

𝑓(𝑥).

If 𝑦
1
(𝑥), 𝑦

2
(𝑥) ∈ Qcs

𝐹
correspond to distinct quasi-

coincidence values, by Lemma 5 and Notation 2, we have

𝑦
1
(𝑥) − 𝑦

2
(𝑥) ∈ ⋃

𝑝(𝑥)|𝑓(𝑥)

Φ(𝑝 (𝑥)) . (18)

Since the number of all factors 𝑝(𝑥) to 𝑓(𝑥) is at most
2
deg𝑓(𝑥), by the definitions of “the pigeonhole principle” in
[17], we have the following results.

Lemma 6. Suppose that
𝑄𝑐V
𝐹

 ≥ 𝑘 ⋅ 2
deg𝑓(𝑥)

+ 2. (19)

Then there exists 𝑦(𝑥) ∈ 𝑄𝑐𝑠
𝐹
and 𝑝(𝑥) is a factor of𝑓(𝑥) such

that
(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩ 𝑄𝑐𝑠

𝐹

 ≥ 𝑘. (20)

Proof. Since |Qcv
𝐹
| ≥ 𝑘2

deg𝑓(𝑥)
+2, by (18), there exists 𝑦

1
(𝑥),

𝑦
2
(𝑥), . . . , 𝑦

{𝑘2
deg𝑓(𝑥)
+2}

(𝑥) ∈ Qcs
𝐹
such that

𝑦
𝑗
(𝑥) − 𝑦

1
(𝑥) ∈ Φ (𝑝

𝑗
(𝑥)) (21)

for some factor 𝑝
𝑗
(𝑥) of 𝑓(𝑥), for 𝑗 = 2, 3, . . . , 𝑘2

deg𝑓(𝑥)
+ 2.

Moreover, we have that the number of all factors to 𝑓(𝑥) is
at most 2deg𝑓(𝑥). By “the pigeonhole principle,” there exists a
subset {𝑦

𝑗𝑖
(𝑥)}
𝑘

𝑖=1
⊆ {𝑦
𝑗
(𝑥)}
𝑘2

deg𝑓(𝑥)
+2

𝑗=2
such that

𝑦
𝑗𝑖
(𝑥) − 𝑦

1
(𝑥) ∈ Φ (𝑝 (𝑥)) , (22)

for 𝑖 = 1, 2, . . . , 𝑘 and some factor 𝑝(𝑥) of 𝐹(𝑥) (this 𝑝(𝑥) is
independent of the choice of 𝑖). Thus

{𝑦
𝑗𝑖
(𝑥)}
𝑘

𝑖=1

⊆ (𝑦
1
(𝑥) + Φ (𝑝 (𝑥))) ∩Qcs

𝐹
,

(𝑦1 (𝑥) + Φ (𝑝 (𝑥))) ∩Qcs
𝐹

 ≥ 𝑘.

(23)

For convenience, we explain the relations of Qcs
𝐹
and

Φ(𝑝(𝑥)) in the following lemma.

Lemma 7. Let 𝑦(𝑥) ∈ 𝑄𝑐𝑠
𝐹
(𝑎) for some 𝑎 ∈ R. Then

𝑄𝑐𝑠
𝐹
= 𝑄𝑐𝑠

𝐹
(𝑎)⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

{(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩ 𝑄𝑐𝑠
𝐹
})

(24)

for some factor 𝑝(𝑥) of 𝑓(𝑥).

Proof. For any 𝑦
1
(𝑥) ∈ Qcs

𝐹
\ Qcs
𝐹
(𝑎), then 𝑦

1
(𝑥) ∈ Qcs(𝑏)

for some 𝑏 ∈ Qcv
𝐹
. By Lemma 5, we have

𝑦
1
(𝑥) − 𝑦 (𝑥) ∈ Φ (𝑝 (𝑥)) (25)

for some factor 𝑝(𝑥) of 𝑓(𝑥). Then

𝑦
1
(𝑥) ∈ ⋃

𝑝(𝑥)|𝑓(𝑥)

{𝑦 (𝑥) + Φ (𝑝 (𝑥))} (26)

and it follows that

Qcs
𝐹
⊆ Qcs

𝐹
(𝑎)⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

{𝑦 (𝑥) + Φ (𝑝 (𝑥))}) . (27)

Moreover, by Lemma 4(i), Qcs
𝐹
(𝑎) ⊆ Qcs

𝐹
; then we obtain

Qcs
𝐹

= Qcs
𝐹
(𝑎)⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

{(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩Qcs
𝐹
}) .

(28)

In order to let the number of all elements in the intersec-
tion of sets 𝑦

1
(𝑥) + Φ(𝑝

1
(𝑥)) and 𝑦

2
(𝑥) + Φ(𝑝

2
(𝑥)) be large

enough, we find a lower bound for |Qcv
𝐹
| in the following

theorem.
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Theorem 8. Suppose that the cardinal number
𝑄𝑐V
𝐹

 ≥ (2
deg𝑓(𝑥)

+ 𝑠 + 3) (2
deg𝑓(𝑥)

) + 2. (29)

Then for any 𝑦
1
(𝑥) ̸= 𝑦

2
(𝑥) ∈ 𝑄𝑐𝑠

𝐹
, there exist two factors

𝑝
1
(𝑥) and 𝑝

2
(𝑥) of 𝑓(𝑥) such that

(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥))) ∩ (𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥))) ∩ 𝑄𝑐𝑠

𝐹

− {𝑦
1
(𝑥) , 𝑦

2
(𝑥)}

 ≥ 2.

(30)

Proof. Let 𝑦
1
(𝑥) ∈ Qcs

𝐹
and by assumption

Qcv
𝐹

 ≥ (2
deg𝑓(𝑥)

+ 𝑠 + 3) (2
deg𝑓(𝑥)

) + 2, (31)

and by Lemma 6, there exists a factor 𝑝
1
(𝑥) of 𝑓(𝑥) such that

(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥))) ∩Qcs

𝐹

 ≥ 2
deg𝑓(𝑥)

+ 𝑠 + 3. (32)

This implies that
(𝑦1 (𝑥) + Φ (𝑝

1
(𝑥))) ∩Qcs

𝐹
− {𝑦
1
(𝑥)}

 ≥ 2
deg𝑓(𝑥)

+ 𝑠 + 2.

(33)

Moreover, for any 𝑦
2
(𝑥) ∈ Qcs

𝐹
, we have

(𝑦
1
(𝑥) + Φ (𝑝

1
(𝑥)))

∩Qcs
𝐹
− {𝑦
1
(𝑥)} ⊆ (𝑦

1
(𝑥) + Φ (𝑝

1
(𝑥))) ∩Qcs

𝐹

⊆ Qcs
𝐹

(by Lemma 7)

= Qcs
𝐹
(𝑏)⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

(𝑦
2
(𝑥) + Φ (𝑝 (𝑥))) ∩Qcs

𝐹
) ,

(34)

for some constant 𝑏 ∈ R and it follows that

2
deg𝑓(𝑥)

+ 𝑠 + 2

=
(𝑦1 (𝑥) + Φ (𝑝

1
(𝑥))) ∩Qcs

𝐹
− {𝑦
1
(𝑥)}



≤
(𝑦1 (𝑥) + Φ (𝑝

1
(𝑥))) ∩Qcs

𝐹



≤



Qcs
𝐹
(𝑏)⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

(𝑦
2
(𝑥) + Φ (𝑝 (𝑥))) ∩Qcs

𝐹
)



≤
Qcs
𝐹
(𝑏)

 + ∑

𝑝(𝑥)|𝑓(𝑥)

(𝑦2 (𝑥) + Φ (𝑝 (𝑥))) ∩Qcs
𝐹



(by Lemma 4 (iii))

≤ 𝑠 + ∑

𝑝(𝑥)|𝑓(𝑥)

𝑦2 (𝑥) + Φ (𝑝 (𝑥)) ∩Qcs
𝐹

 .

(35)

Canceling both sides of the above inequality by “𝑠”, it follows
that

2
deg𝑓(𝑥)

+ 2 ≤ ∑

𝑝(𝑥)|𝑓(𝑥)

𝑦2 (𝑥) + Φ (𝑝 (𝑥)) ∩Qcs
𝐹

 , (36)

this implies that

2
deg𝑓(𝑥)

+ 1 ≤ ∑

𝑝(𝑥)|𝑓(𝑥)

𝑦2 (𝑥) + Φ (𝑝 (𝑥)) ∩Qcs
𝐹
− {𝑦
2
(𝑥)}

 ;

(37)

By the pigeonhole’ principle and since the number of all
factors 𝑝(𝑥) to 𝑓(𝑥) is at most 2deg𝑓(𝑥), we have

(𝑦2 (𝑥) + Φ (𝑝
2
(𝑥))) ∩Qcs

𝐹
− {𝑦
2
(𝑥)}

 ≥ 2,

(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥)) − {𝑦

1
(𝑥)})

∩ (𝑦
2
(𝑥) + Φ (𝑝

2
(𝑥)) − {𝑦

2
(𝑥)}) ∩Qcs

𝐹

 ≥ 2

(38)

for some factor 𝑝
2
(𝑥) of 𝑓(𝑥). Thus we obtain

(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥))) ∩ (𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥))) ∩Qcs

𝐹

− {𝑦
1
(𝑥) , 𝑦

2
(𝑥)}

 ≥ 2.

(39)

Up to now, we have not shown that the factor 𝑝(𝑥)

uniquely existed eventually. In the following theorem, we
would show the uniqueness property for the factor 𝑝(𝑥) of
𝑓(𝑥) if the number of all quasi-coincidence values is large
enough.

Theorem 9. Assume that the cardinal number
𝑄𝑐V
𝐹

 ≥ (2
deg𝑓(𝑥)

+ 𝑠 + 3) (2
deg𝑓(𝑥)

) + 2. (40)

Then for any 𝑦
1
(𝑥), 𝑦
2
(𝑥) ∈ 𝑄𝑐𝑠

𝐹
, one has

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = 𝜆𝑝 (𝑥) , (41)

where 𝜆 ∈ R and 𝑝(𝑥) is a factor of 𝑓(𝑥) (this 𝑝(𝑥) is
independent of the choice of 𝑦

1
(𝑥) and 𝑦

2
(𝑥)).

Proof. Let 𝑦
1
(𝑥) ̸= 𝑦

2
(𝑥) ∈ Qcs

𝐹
; by Theorem 8, we have

(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥))) ∩ (𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥))) ∩Qcs

𝐹

− {𝑦
1
(𝑥) , 𝑦

2
(𝑥)}

 ≥ 2

(42)

for some factors 𝑝
1
(𝑥) and 𝑝

2
(𝑥) of 𝑓(𝑥). There exists

𝑔
1
(𝑥) ̸= 𝑔

2
(𝑥) ∈ Qcs

𝐹
, such that

𝑔
1
(𝑥) , 𝑔

2
(𝑥) ∈ (𝑦

1
(𝑥) + Φ (𝑝

1
(𝑥)))

∩ (𝑦
2
(𝑥) + Φ (𝑝

2
(𝑥)))

∩Qcs
𝐹
− {𝑦
1
(𝑥) , 𝑦

2
(𝑥)} .

(43)

This implies that

𝑔
1
(𝑥) ∈ 𝑦

1
(𝑥) + Φ (𝑝

1
(𝑥)) ,

𝑔
2
(𝑥) ∈ 𝑦

1
(𝑥) + Φ (𝑝

1
(𝑥)) ,

𝑔
1
(𝑥) ∈ 𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥)) ,

𝑔
2
(𝑥) ∈ 𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥)) .

(44)
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By Notation 2(ii), it yields that

𝑔
1
(𝑥) − 𝑦

1
(𝑥) = 𝜆

1
𝑝
1
(𝑥) ,

𝑔
2
(𝑥) − 𝑦

1
(𝑥) = 𝜆

2
𝑝
1
(𝑥) ,

𝑔
1
(𝑥) − 𝑦

2
(𝑥) = 𝜆

3
𝑝
2
(𝑥) ,

𝑔
2
(𝑥) − 𝑦

2
(𝑥) = 𝜆

4
𝑝
2
(𝑥)

(45)

for some constants 𝜆
1
, 𝜆
2
, 𝜆
3
, and 𝜆

4
∈ R and consequently

𝑔
2
(𝑥) − 𝑔

1
(𝑥) = (𝑔

2
(𝑥) − 𝑦

1
(𝑥)) − (𝑔

1
(𝑥) − 𝑦

1
(𝑥))

= (𝜆
2
− 𝜆
1
) 𝑝
1
(𝑥) ,

𝑔
2
(𝑥) − 𝑔

1
(𝑥) = (𝑔

2
(𝑥) − 𝑦

2
(𝑥)) − (𝑔

1
(𝑥) − 𝑦

2
(𝑥))

= (𝜆
4
− 𝜆
3
) 𝑝
2
(𝑥) .

(46)

This implies that

(𝜆
2
− 𝜆
1
) 𝑝
1
(𝑥) = (𝜆

4
− 𝜆
3
) 𝑝
2
(𝑥) , (47)

and 𝑝
1
(𝑥) = 𝑝

2
(𝑥). Therefore,

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = (𝑔

1
(𝑥) − 𝑦

2
(𝑥)) − (𝑔

1
(𝑥) − 𝑦

1
(𝑥))

= (𝜆
3
− 𝜆
1
) 𝑝
1
(𝑥) ,

(48)

and this means that the factor 𝑝(𝑥) of 𝑓(𝑥) is uniquely deter-
mined independent of the choice of 𝑦

1
(𝑥) and 𝑦

2
(𝑥).

Corollary 10. Assume that the cardinal number

𝑄𝑐𝑠
𝐹

 ≥ deg
𝑦
𝐹 (𝑥, 𝑦) ((2

deg𝑓(𝑥)
+ 𝑠 + 3) (2

deg𝑓(𝑥)
) + 2) .

(49)

Then for any 𝑦(𝑥) ∈ 𝑄𝑐𝑠
𝐹
, there exists ℎ(𝑥), 𝑝(𝑥) ∈ R[𝑥] such

that

𝑦 (𝑥) = ℎ (𝑥) + 𝜆𝑝 (𝑥) (50)

for some 𝜆 ∈ R (ℎ(𝑥), 𝑝(𝑥) are independent of the choice of
𝑦(𝑥)).

Proof. By Lemma 4(iv), we have

Qcs
𝐹

 ≤
Qcv
𝐹



Qcs
𝐹
(𝑎)

 , for any 𝑎 ∈ Qcv
𝐹

(by Lemma 4 (iii))

≤ deg
𝑦
𝐹 (𝑥, 𝑦)

Qcv
𝐹

 .

(51)

By assumption, it follows that

deg
𝑦
𝐹 (𝑥, 𝑦) ((2

deg𝑓(𝑥)
+ 𝑠 + 3) (2

deg𝑓(𝑥)
) + 2)

≤ deg
𝑦
𝐹 (𝑥, 𝑦)

Qcv
𝐹

 .

(52)

Dividing both sides of the above equation by deg
𝑦
𝐹(𝑥, 𝑦), we

get

Qcv
𝐹

 ≥ ((2
deg𝑓(𝑥)

+ 𝑠 + 3) (2
deg𝑓(𝑥)

) + 2) . (53)

If ℎ(𝑥) ∈ Qcs
𝐹
, for any 𝑦(𝑥) ∈ Qcs

𝐹
, by Theorem 9, we have

𝑦 (𝑥) = ℎ (𝑥) + 𝑑𝑝 (𝑥) (54)

for some factor 𝑝(𝑥) of 𝑓(𝑥).

3. The Type of 𝐹(𝑥,𝑦) If the Number
of All Quasi-Coincidence Solutions
Is Infinitely Many

In this section, we consider (4) for polynomial function
𝐹(𝑥, 𝑦) in (5); that is, let

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑦
𝑖 with 𝑠 ≥ 2. (55)

𝑓(𝑥) ∈ R[𝑥] and we assume that 𝐹(𝑥, 𝑦) has at least
𝑠 + 1 distinct quasi-coincidence solutions satisfying some
conditions, that is, 𝑦

1
(𝑥), 𝑦
2
(𝑥), 𝑦
3
(𝑥), . . . , 𝑦

𝑠+1
(𝑥), . . . in the

following theorem. According to the above assumptions, we
could derive the following result.

Theorem 11. Suppose that the cardinal number |𝑄𝑐𝑠
𝐹
| ≥ 𝑠 + 1

and for each 𝑦(𝑥) ∈ 𝑄𝑐𝑠
𝐹
can be represented as the form

𝑦 (𝑥) = 𝑦
1
(𝑥) + 𝜆

𝑖
𝑝 (𝑥) , 𝜆

𝑖
∈ R, (56)

for some 𝑦
1
(𝑥), 𝑝(𝑥) ∈ R[𝑥] and 𝜆

𝑖
∈ R, for 𝑖 = 1, 2, . . . , 𝑠 +

1, . . .. Then 𝑝
𝑠

(𝑥) | 𝑓(𝑥) and the polynomial 𝐹(𝑥, 𝑦) can be
represented as

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦

1
(𝑥))
𝑖 (57)

for constants 𝑐
𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑠.

Proof. Let 𝑦
𝑖
(𝑥) be distinct quasi-coincidence solutions of

𝐹(𝑥, 𝑦) corresponding to quasi-coincidence values 𝑎
𝑖
, 1 ≤ 𝑖 ≤

𝑠 + 1, such that

𝐹 (𝑥, 𝑦
𝑖
(𝑥)) = 𝑎

𝑖
𝑓 (𝑥) . (58)

Choose 𝑖 = 1, 𝐹(𝑥, 𝑦
1
(𝑥)) = 𝑎

1
𝑓(𝑥). When 𝑦 − 𝑦

1
(𝑥) divides

the function 𝐹(𝑥, 𝑦), we get

𝐹 (𝑥, 𝑦) = (𝑦 − 𝑦
1
(𝑥)) 𝐹

1
(𝑥, 𝑦) + 𝑎

1
𝑓 (𝑥) , (59)

where 𝐹
1
(𝑥, 𝑦) is the quotient and 𝑎

1
𝑓(𝑥) is the remainder.

From the above identity, take 𝑦 = 𝑦
2
(𝑥), and it becomes

𝐹 (𝑥, 𝑦
2
(𝑥)) = (𝑦

2
(𝑥) − 𝑦

1
(𝑥)) 𝐹

1
(𝑥, 𝑦
2
(𝑥)) + 𝑎

1
𝑓 (𝑥)

= 𝑎
2
𝑓 (𝑥) .

(60)
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Then

(𝑦
2
(𝑥) − 𝑦

1
(𝑥)) 𝐹

1
(𝑥, 𝑦
2
(𝑥)) = (𝑎

2
− 𝑎
1
) 𝑓 (𝑥) . (61)

By (56), 𝑦
2
(𝑥) − 𝑦

1
(𝑥) = 𝜆

2
𝑝(𝑥), it yields that

𝐹
1
(𝑥, 𝑦
2
(𝑥)) = (

(𝑎
2
− 𝑎
1
)

𝜆
2

)
𝑓 (𝑥)

𝑝 (𝑥)

= 𝑑
2

𝑓 (𝑥)

𝑝 (𝑥)
∈ R [𝑥] for 𝑑

2
=

(𝑎
2
− 𝑎
1
)

𝜆
2

.

(62)

Hence

𝐹
1
(𝑥, 𝑦) = (𝑦 − 𝑦

2
(𝑥)) 𝐹

2
(𝑥, 𝑦) + 𝑑

2

𝑓 (𝑥)

𝑝 (𝑥)
. (63)

Continuing this process from 𝑖 = 2 to 𝑠 − 1, we obtain

𝐹
𝑖
(𝑥, 𝑦) = (𝑦 − 𝑦

𝑖+1
(𝑥)) 𝐹

𝑖+1
(𝑥, 𝑦) + 𝑑

𝑖+1

𝑓 (𝑥)

𝑝𝑖 (𝑥)
, (64)

for some 𝑑
𝑖+1

∈ R, 𝑖 = 1, 2, . . . , 𝑠 − 1. Finally, we could get

𝐹
𝑠−1

(𝑥, 𝑦) = (𝑦 − 𝑦
𝑠
(𝑥)) 𝐹

𝑠
(𝑥) + 𝑑

𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
. (65)

𝐹
𝑠
(𝑥) does not contain the variable 𝑦 since deg

𝑦
𝐹 = 𝑠. By the

assumption (58), 𝐹(𝑥, 𝑦
𝑠+1

(𝑥)) = 𝑎
𝑠+1

𝑓(𝑥). It follows that

𝐹
𝑠
(𝑥) = 𝜆

𝑓 (𝑥)

𝑝𝑠 (𝑥)
∈ R [𝑥] , for some constant 𝜆 ∈ R.

(66)

Consequently,

𝐹 (𝑥, 𝑦) = (𝑦 − 𝑦
1
(𝑥)) 𝐹

1
(𝑥, 𝑦) + 𝑎

1
𝑓 (𝑥)

= (𝑦 − 𝑦
1
(𝑥)) ((𝑦 − 𝑦

2
(𝑥)) 𝐹

2
(𝑥, 𝑦) + 𝑑

2

𝑓 (𝑥)

𝑝 (𝑥)
)

+ 𝑎
1
𝑓 (𝑥) = ⋅ ⋅ ⋅ = (𝑦 − 𝑦

1
(𝑥))

× ((𝑦 − 𝑦
2
(𝑥))

× (⋅ ⋅ ⋅ ((𝑦 − 𝑦
𝑠
(𝑥)) 𝐹

𝑠
(𝑥) + 𝑑

𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
) ⋅ ⋅ ⋅ )

+ 𝑑
2

𝑓 (𝑥)

𝑝 (𝑥)
) + 𝑎
1
𝑓 (𝑥)

= (𝑦 − 𝑦
1
(𝑥))

× ((𝑦 − 𝑦
2
(𝑥))

× (⋅ ⋅ ⋅ ( (𝑦 − 𝑦
𝑠
(𝑥)) 𝜆

𝑓 (𝑥)

𝑝𝑠 (𝑥)

+ 𝑑
𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
) ⋅ ⋅ ⋅ ) + 𝑑

2

𝑓 (𝑥)

𝑝 (𝑥)
)

+ 𝑎
1
𝑓 (𝑥) .

(67)

By (56), we have𝑦
𝑖
(𝑥) = 𝑦

1
(𝑥)+𝜆

𝑖
𝑝(𝑥), 𝑖 = 2, 3, . . . , 𝑠+1.Then

𝐹(𝑥, 𝑦) can be expanded to a power series in the expression

𝐹 (𝑥, 𝑦) = (𝑦 − 𝑦
1
(𝑥))

× ((𝑦 − 𝑦
1
(𝑥) − 𝜆

2
𝑝 (𝑥))

× (⋅ ⋅ ⋅ ( (𝑦 − 𝑦
1
(𝑥) − 𝜆

𝑠
𝑝 (𝑥)) 𝜆

𝑓 (𝑥)

𝑝𝑠 (𝑥)

+ 𝑑
𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
) ⋅ ⋅ ⋅ ) + 𝑑

2

𝑓 (𝑥)

𝑝 (𝑥)
)

+ 𝑎
1
𝑓 (𝑥) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦

1
(𝑥))
𝑖

,

(68)

for some real numbers 𝑐
𝑗
, 𝑗 = 0, 1, . . . , 𝑠. Moreover, the

leading coefficient of 𝐹(𝑥, 𝑦), 𝑐
𝑠
(𝑓(𝑥)/𝑝

𝑠

(𝑥)) is contained to
R[𝑥], and it follows 𝑝𝑠(𝑥) | 𝑓(𝑥).

In the above theorem, if there exist at least 𝑠 + 1 quasi-
coincidence solutions with some relations, then 𝐹(𝑥, 𝑦) has
a fixed type. In the following theorem, if 𝐹(𝑥, 𝑦) has a fixed
type expressed as in Theorem 11, then the cardinal number
|Qcs
𝐹
| = ∞.

Theorem 12. The following three conditions are equivalent:

(i) 𝐹(𝑥, 𝑦) = ∑
𝑠

𝑖=0
𝑐
𝑖
(𝑓(𝑥)/𝑝

𝑖

(𝑥))(𝑦 − 𝑦
1
(𝑥))
𝑖 for some

𝑦
1
(𝑥) ∈ R[𝑥], some factor 𝑝(𝑥) of 𝑓(𝑥) and 𝑐

𝑖
∈ R,

𝑖 = 0, 1, . . . , 𝑠;

(ii) |𝑄𝑐𝑠
𝐹
| = ∞;

(iii) |𝑄𝑐V
𝐹
| ≥ (2

deg𝑓(𝑥)
+ 𝑠 + 3) ⋅ 2

deg𝑓(𝑥)
+ 2.

(In fact, if |𝑄𝑐𝑠
𝐹
| = ∞, then |𝑄𝑐𝑠

𝐹
| = the cardinal number of

R).

Proof. (i) ⇒ (ii) Suppose that (i) holds. Let 𝑦 = 𝑦
1
(𝑥)+𝜆𝑝(𝑥)

for any constant 𝜆 ∈ R; we have

𝐹 (𝑥, 𝑦
1
(𝑥) + 𝜆𝑝 (𝑥)) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝜆𝑝 (𝑥))

𝑖

= (

𝑠

∑

𝑖=0

𝑐
𝑖
𝜆
𝑖

)𝑓 (𝑥)

= 𝑐𝑝
𝑚

(𝑥) for 𝑐 =
𝑠

∑

𝑖=0

𝑐
𝑖
𝜆
𝑖

∈ R.

(69)

This means that 𝑦
1
(𝑥) + 𝜆𝑝(𝑥) ∈ Qcs

𝐹
for all 𝜆 ∈ R and we

obtain

∞ =

{𝑦
1
(𝑥) + 𝜆𝑝 (𝑥)}

𝜆∈R


≤
Qcs
𝐹

 . (70)

It follows that the cardinal number |Qcs
𝐹
| = ∞.
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(ii) ⇒ (iii) can be obtained obvious from Lemma 4(iv).
(iii) ⇒ (i) For any 𝑦(𝑥), 𝑦

1
(𝑥) ∈ Qcs

𝐹
, by Theorem 9, we

have

𝑦 (𝑥) − 𝑦
1
(𝑥) = 𝑑𝑝 (𝑥) , (71)

for some fixed factor 𝑝(𝑥) of 𝑓(𝑥) and by Theorem 11, we
obtain

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦

1
(𝑥))
𝑖

, (72)

for some 𝑦
1
(𝑥) and 𝑐

𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑠.

Corollary 13. If the number of all quasi-fixed solutions is
finitely many, the number of all quasi-fixed values does not
exceed an integer ℓ. Actually,

ℓ = (2
deg𝑓(𝑥)

+ 𝑠 + 3) ⋅ 2
deg𝑓(𝑥)

+ 1. (73)

Proof. By the contrapositive of Theorem 12(ii) ⇒ (iii), we
have “if |Qcs

𝐹
| < ∞, then |Qcv

𝐹
| < (2

deg𝑓(𝑥)
+𝑠+3)⋅2

deg𝑓(𝑥)
+

2.”Hence the number of all quasi-fixed values is atmost ℓ; that
is, ℓ ≤ (2

deg𝑓(𝑥)
+ 𝑠 + 3) ⋅ 2

deg𝑓(𝑥)
+ 1.

Corollary 14. If the number of all quasi-fixed solutions is
finitely many, the number of all quasi-fixed solutions does not
exceed

deg
𝑦
𝐹 (𝑥, 𝑦) ((2

deg𝑓(𝑥)
+ 𝑠 + 3) ⋅ 2

deg𝑓(𝑥)
+ 1) . (74)

Proof. By Lemma 4(iv), we have for any 𝑎 ∈ Qcv
𝐹

Qcs
𝐹

 ≤
Qcs
𝐹
(𝑎)



Qcv
𝐹



(by Lemma 4 (iii) and Corollary 13)

≤ deg
𝑦
𝐹 (𝑥, 𝑦) ((2

deg𝑓(𝑥)
+ 𝑠 + 3) ⋅ 2

deg𝑓(𝑥)
+ 1) .

(75)

4. Main Theorems and Some Corollaries

If the 𝐹(𝑥, 𝑦) can be represented as the form (57), then any
quasi-coincidence solution can be formed in this section.

Lemma 15. Let 𝐹(𝑥, 𝑦) be represented as in (57). Then ℎ(𝑥) ∈

R[𝑥] is a quasi-coincidence solution of 𝐹(𝑥, 𝑦) if and only if

ℎ (𝑥) = 𝑦 (𝑥) + 𝑑𝑝 (𝑥) (76)

for some 𝑑 ∈ R and some factor 𝑝(𝑥) of 𝑓(𝑥).

Proof. Since

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦 (𝑥))

𝑖

, (77)

we let 𝑦 = 𝑦(𝑥), and then

𝐹 (𝑥, 𝑦 (𝑥)) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦(𝑥) − 𝑦(𝑥))

𝑖

= 𝑐
0
𝑓 (𝑥) ;

(78)

this means 𝑦(𝑥) ∈ Qcs
𝐹
.

By Theorem 12,

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦 (𝑥))

𝑖

, then Qcs
𝐹

 = ∞.

(79)

Assume that ℎ(𝑥) is a quasi-coincidence solution of 𝐹(𝑥, 𝑦)
and by Corollary 10, we obtain that for any quasi-coincidence
solution ℎ(𝑥), we have

ℎ (𝑥) = 𝑦 (𝑥) + 𝑑𝑝 (𝑥) , for some 𝑑 ∈ R. (80)

Conversely, suppose ℎ(𝑥) = 𝑦(𝑥) + 𝑑𝑝(𝑥), for some factor
𝑝(𝑥) of 𝑓(𝑥) and 𝑑 ∈ R. Substituting this ℎ(𝑥) as 𝑦 in (57),
we have

𝐹 (𝑥, ℎ (𝑥)) = 𝐹 (𝑥, 𝑦 (𝑥) + 𝑑𝑝 (𝑥))

=

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑑𝑝 (𝑥))

𝑖

= (

𝑠

∑

𝑖=0

𝑐
𝑖
𝑑
𝑖

)𝑓 (𝑥) .

(81)

Therefore ℎ(𝑥) ∈ Qcs
𝐹
.

Note that not any polynomial function 𝐹(𝑥, 𝑦) can be
written as (57). Actually, almost all 𝐹(𝑥, 𝑦) are expressed as
the form of the next theorem. In this situation, any solution
can be written as the next form (∗) in this theorem under
some condition.

Theorem 16. Let 𝐹(𝑥, 𝑦) be a polynomial function with

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) , (82)

and 𝑓(𝑥) a polynomial. If the cardinal number |Qcs
𝐹
| is

infinitely many, then each quasi-coincidence solution of (4)
must be of the form

−
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝜆𝑝 (𝑥) (∗)

for arbitrary 𝜆 ∈ R, where 𝑝(𝑥) = (𝑓(𝑥)/𝑎
𝑠
(𝑥))
1/𝑠 is a factor

of 𝑓(𝑥).

Proof. Assume |Qcs
𝐹
| = ∞. By Theorem 12, we have

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝑥)

=

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦(𝑥))

𝑖

,

(83)
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for some 𝑐
𝑖
∈ R, 𝑖 = 0, . . . , 𝑠, and𝑦(𝑥) ∈ Qcs

𝐹
. Comparing the

coefficients of 𝑦𝑠 and 𝑦
𝑠−1 in both sides of the above equation,

we get

𝑎
𝑠
(𝑥) = 𝑐

𝑠

𝑓 (𝑥)

𝑝𝑠 (𝑥)
,

𝑎
𝑠−1

(𝑥) = −𝑠𝑎
𝑠
(𝑥) 𝑦 (𝑥) + 𝑐

𝑠−1

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
.

(84)

Consequently, by (84), we get

𝑝
𝑠

(𝑥) = 𝑐
𝑠

𝑓 (𝑥)

𝑎
𝑠
(𝑥)

,

𝑦 (𝑥) =
𝑐
𝑠−1

𝑠𝑐
𝑠

𝑝 (𝑥) −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

∈ R [𝑥] .

(85)

By Lemma 15, for any 𝑑 ∈ R, we have that any quasi-
coincidence solution is represented by

𝑦 (𝑥) + 𝑑𝑝 (𝑥) =
𝑐
𝑠−1

𝑠𝑐
𝑠

𝑝 (𝑥) −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝑑𝑝 (𝑥)

= −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ (𝑑 −
𝑐
𝑠−1

𝑠𝑐
𝑠

)𝑝 (𝑥)

= −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝜆𝑝 (𝑥) ,

(86)

where 𝑝(𝑥) = (𝑐
𝑠
)
1/𝑠

(𝑓(𝑥)/𝑎
𝑠
(𝑥))
1/𝑠 (note that since 𝑑 is

arbitrary, then 𝜆 is arbitrary).
This completes the proof.

Corollary 17. Let 𝐹(𝑥, 𝑦) be a polynomial function with

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) . (87)

If the cardinal number |𝑄𝑐𝑠
𝐹
| of equation

𝐹 (𝑥, 𝑦) = 𝑎 (88)

is infinitely many, then the leading coefficient 𝑎
𝑠
(𝑥) must be a

real number and each quasi-coincidence point solutionmust be
of the form

𝜆 −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

()

for arbitrary 𝜆 ∈ R.

Corollary 18. Let 𝐹 : R × R → R be a polynomial function
with

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) . (89)

If the cardinal number |𝑄𝑐𝑠
𝐹
| of equation

𝐹 (𝑥, 𝑦) = 𝑎𝑥 (90)

is infinitely many, then the leading coefficient 𝑎
𝑠
(𝑥) must be a

real number and each quasi-coincidence point solutionmust be
of the form

𝜆
1
+ 𝜆
2

𝑎
𝑠−1

(𝑥)

𝑥
()

for arbitrary 𝜆
1
and some 𝜆

2
∈ R.

Proof. Assume that there exist infinitely many solutions; by
Theorem 16, any solution of (4) has the form

−
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝜆𝑝 (𝑥) (91)

for arbitrary 𝜆 ∈ R and 𝑝(𝑥) = 𝑐(𝑥/𝑎
𝑠
(𝑥))
1/𝑠

∈ R[𝑥],
and then 𝑎

𝑠
(𝑥) is a factor of 𝑥. This means that 𝑎

𝑠
(𝑥) ∈ R

or 𝑎
𝑠
(𝑥) = 𝑘𝑥 for some constant 𝑘 ∈ R, if 𝑎

𝑠
(𝑥) ∈ R;

this implies 𝑝(𝑥) = 𝑐(𝑥/𝑎
𝑠
(𝑥))
1/𝑠

∉ R[𝑥], and this leads a
contradiction. So we have 𝑎

𝑠
(𝑥) = 𝑘𝑥, for some 𝑘 ∈ R; then

𝑝(𝑥) = 𝑐/𝑘
1/𝑠

∈ R and any solution (91) is represented as

−
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝜆𝑝 (𝑥) = 𝜆
1
+ 𝜆
2

𝑎
𝑠−1

(𝑥)

𝑥
(92)

for arbitrary 𝜆
1
= 𝜆𝑐/𝑘

1/𝑠 and some 𝜆
2
= −1/𝑠𝑘 ∈ R.

Finally, we provide one example to explain Theorem 16.

Example 19. Let 𝑥 = (𝑥
1
, 𝑥
2
) ∈ R2, 𝑓(𝑥) = (𝑥

1
+ 𝑥
2
)
2, and

𝐹 (𝑥, 𝑦) = 𝑎
2
(𝑥) 𝑦
2

+ 𝑎
1
(𝑥) 𝑦 + 𝑎

0
(𝑥)

= 𝑦
2

− (2𝑥
1
𝑥
2
− 𝑥
1
− 𝑥
2
) 𝑦

+ (𝑥
2

1
𝑥
2

2
− 𝑥
2

1
𝑥
2
− 𝑥
1
𝑥
2

2
+ 𝑥
2

1
+ 2𝑥
1
𝑥
2
+ 𝑥
2

2
) .

(93)

Can we solve all quasi-fixed solutions of 𝐹(𝑥, 𝑦) = 𝑎𝑓(𝑥)?
This polynomial function has exactly 5(≥ 𝑠 + 3, since 𝑠 = 2)

quasi-fixed solutions as follows:

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
1
𝑥
2
− 𝑥
1
− 𝑥
2
) = 1(𝑥

1
+ 𝑥
2
)
2

,

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
1
𝑥
2
) = 1(𝑥

1
+ 𝑥
2
)
2

,

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
1
𝑥
2
+ 𝑥
1
+ 𝑥
2
) = 3(𝑥

1
+ 𝑥
2
)
2

,

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
1
𝑥
2
+ 2𝑥
1
+ 2𝑥
2
) = 3(𝑥

1
+ 𝑥
2
)
2

,

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
1
𝑥
2
+
𝑥
1

2
+
𝑥
2

2
) =

3

4
(𝑥
1
+ 𝑥
2
)
2

.

(94)

In fact, by Theorem 16, we can find any quasi-coincidence
solution written as

−
𝑎
1
(𝑥)

𝑠𝑎
2
(𝑥)

+ 𝜆𝑝 (𝑥) =
2𝑥
1
𝑥
2
− 𝑥
1
− 𝑥
2

2
+ 𝜆𝑝 (𝑥)

= 𝑥
1
𝑥
2
+ (𝜆 −

1

2
) (𝑥
1
− 𝑥
2
)

= 𝑥
1
𝑥
2
+ 𝜇 (𝑥

1
− 𝑥
2
) ,

(95)

where 𝜇 = 𝜆 − 1/2 ∈ R is arbitrary and 𝑝(𝑥) =

(𝑓(𝑥)/𝑎
𝑠
(𝑥))
1/𝑠

= 𝑥
1
+ 𝑥
2
. This shows the quasi-coincidence

(point) solutions have cardinal |Qs
𝐹
| = ∞.

In practice, we have no idea to check the number of this
equation is infinitely many or finitely many. But we provide
an easy method to solve all solutions if the number of all
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solutions is infinitely many in this paper. Thus, we can solve
those solutions directly and checkwhether those solutions are
the solutions of 𝐹(𝑥, 𝑦) = 𝑎𝑓(𝑥) and give an example in the
following.

Example 20. Let 𝑥 = (𝑥
1
, 𝑥
2
) ∈ R2, 𝑓(𝑥) = 𝑥

2

1
(𝑥
2
+ 𝑥
3
)
2, and

𝐹 (𝑥, 𝑦) = 𝑎
2
(𝑥) 𝑦
2

+ 𝑎
1
(𝑥) 𝑦 + 𝑎

0
(𝑥)

= 𝑦
2

− (2𝑥
1
𝑥
2
− 𝑥
1
(𝑥
2
+ 𝑥
3
)) 𝑦

+ (𝑥
2

1
𝑥
2

2
+ 𝑥
2

1
𝑥
2
𝑥
3
+ 𝑥
2

1
𝑥
2

3
) .

(96)

We will solve all quasi-fixed solutions of 𝐹(𝑥, 𝑦) = 𝑎𝑓(𝑥) if
the number of all solutions is infinitely many.

By Theorem 16, we can find that any quasi-coincidence
solution can be written as

−
𝑎
1
(𝑥)

𝑠𝑎
2
(𝑥)

+ 𝜆𝑝 (𝑥) =
2𝑥
1
𝑥
2
− 𝑥
1
(𝑥
2
+ 𝑥
3
)

2
+ 𝜆𝑝 (𝑥)

= 𝑥
1
𝑥
2
+ 𝜇𝑥
1
(𝑥
2
+ 𝑥
3
) ,

(97)

where 𝜇 = 𝜆 − 1/2 ∈ R is arbitrary and 𝑝(𝑥) =

(𝑓(𝑥)/𝑎
𝑠
(𝑥))
1/𝑠

= 𝑥
1
(𝑥
2
+ 𝑥
3
). We let 𝑦(𝑥) = 𝑥

1
𝑥
2
+ 𝜇𝑥
1
(𝑥
2
+

𝑥
3
) and calculate 𝐹(𝑥, 𝑦(𝑥)) and obtain

𝐹 (𝑥, 𝑦 (𝑥)) = (𝜇
2

+ 𝜇 + 1) 𝑥
2

1
(𝑥
2
+ 𝑥
3
)
2

. (98)

This means that the quasi-coincidence (point) solutions have
cardinal |Qs

𝐹
| = ∞.

We would like to provide one open problem as follows.

Further Development. Let Q be a quotient field. Consider a
quotient-valued polynomial function

𝐹 : Q
𝑛

×Q → Q. (99)

Can we find all quasi-coincidence solutions 𝑦 = 𝑦(𝑥) ∈ Q[𝑥]

to satisfy

𝐹 (𝑥, 𝑦) = 𝑎𝑓 (𝑥) (100)

for some polynomials 𝑓(𝑥) ∈ Q[𝑥] by a co-NP hardness
algorithm?
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