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The classical growth has been characterized in terms of approximation errors for a continuous function on [−1, 1] by Reddy (1970),
and a compact 𝐾 of positive capacity by Nguyen (1982) and Winiarski (1970) with respect to the maximum norm. The aim of this
paper is to give the general growth ((𝑝, 𝑞)-growth) of entire functions in C𝑛 by means of the best polynomial approximation in
terms of 𝐿𝑝-norm, with respect to the setΩ

𝑟
= {𝑧 ∈ C𝑛

; exp𝑉
𝐾
(𝑧) ≤ 𝑟}, where𝑉

𝐾
= sup{(1/𝑑) log |𝑃

𝑑
|, 𝑃

𝑑
polynomial of degree ≤

𝑑, ‖𝑃
𝑑
‖
𝐾
≤ 1} is the Siciak’s extremal function on an 𝐿-regular nonpluripolar compact 𝐾 is not pluripolar.

1. Introduction

Let 𝑓(𝑧) = ∑
+∞

𝑘=0
𝑎
𝑘
𝑧
𝜆𝑘 be a nonconstant entire function and

𝑀(𝑓, 𝑟) = max
|𝑧|=𝑟

|𝑓(𝑧)|. It is well known that the function
𝑟 󳨃→ log(𝑀(𝑓, 𝑟)) is indefinitely increasing convex function
of log(𝑟). To estimate the growth of 𝑓 precisely, Boas (see [1])
has introduced the concept of order, defined by the number
𝜌 (0 ≤ 𝜌 ≤ +∞):

𝜌 = lim sup
𝑟→+∞

log log (𝑀 (𝑓, 𝑟))

log (𝑟)
. (1)

The concept of type has been introduced to determine the
relative growth of two functions of the same nonzero finite
order. An entire function, of order 𝜌, 0 < 𝜌 < +∞, is said to
be of type 𝜎, 0 ≤ 𝜎 ≤ +∞, if

𝜎 = lim sup
𝑟→+∞

log (𝑀 (𝑓, 𝑟))

𝑟𝜌
. (2)

If 𝑓 is an entire function of infinite or zero order, the
definition of type is not valid and the growth of such function
cannot be precisely measured by the above concept. Bajpai et
al. (see [2]) have introduced the concept of index-pair of an

entire function. Thus, for 𝑝 ≥ 𝑞 ≥ 1, they have defined the
number

𝜌 (𝑝, 𝑞) = lim sup
𝑟→+∞

log[𝑝] (𝑀 (𝑓, 𝑟))

log[𝑞] (𝑟)
, (3)

𝑏 ≤ 𝜌(𝑝, 𝑞) ≤ +∞, where 𝑏 = 0 if 𝑝 > 𝑞 and 𝑏 = 1 if 𝑝 = 𝑞,
where log[0](𝑥) = 𝑥, and log[𝑝](𝑥) = log(log[𝑝−1](𝑥)), for 𝑝 ≥
1.

The function 𝑓 is said to be of index-pair (𝑝, 𝑞) if 𝜌(𝑝 −
1, 𝑞−1) is nonzero finite number.Thenumber𝜌(𝑝, 𝑞) is called
the (𝑝, 𝑞)-order of 𝑓.

Bajpai et al. have also defined the concept of the (𝑝, 𝑞)-
type 𝜎(𝑝, 𝑞), for 𝑏 < 𝜌(𝑝, 𝑞) < +∞, by

𝜎 (𝑝, 𝑞) = lim sup
𝑟→+∞

log[𝑝−1] ((𝑀 (𝑓, 𝑟)))

(log[𝑞−1] (𝑟))
𝜌(𝑝,𝑞)

. (4)

In their works, the authors established the relationship of
(𝑝, 𝑞)-growth of 𝑓 with respect to the coefficients 𝑎

𝑘
in the

Maclaurin series of 𝑓.
We have also many results in terms of polynomial

approximation in classical case. Let 𝐾 be a compact subset
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of the complex plane C of positive logarithmic capacity and
𝑓 a complex function defined and bounded on𝐾. For 𝑘 ∈ N,
put

𝐸
𝑘
(𝐾, 𝑓) =

󵄩󵄩󵄩󵄩𝑓 − 𝑇𝑘
󵄩󵄩󵄩󵄩𝐾, (5)

where the norm ‖ ⋅ ‖
𝐾
is the maximum on𝐾 and 𝑇

𝑘
is the 𝑘th

Chebytchev polynomial of the best approximation to 𝑓 on𝐾.
Bernstein showed (see [3, page 14]), for 𝐾 = [−1, 1], that

there exists a constant 𝜌 > 0 such that

lim
𝑘→+∞

𝑘
1/𝜌 𝑘√𝐸

𝑘
(𝐾, 𝑓) (6)

is finite, if and only if 𝑓 is the restriction to 𝐾 of an entire
function of order 𝜌 and some finite type.

This result has been generalized by Reddy (see [4, 5]) as
follows:

lim
𝑘→+∞

𝑘√𝐸
𝑘
(𝐾, 𝑓) = (𝜌𝑒𝜎) 2

−𝜌 (7)

if and only if 𝑓 is the restriction to 𝐾 of an entire function 𝑔
of order 𝜌 and type 𝜎 for𝐾 = [−1, 1].

In the samewayWiniarski (see [6]) generalized this result
to a compact𝐾 of the complex planeC of positive logarithmic
capacity, denoted 𝑐 = cap(𝐾) as follows.

If 𝐾 is a compact subset of the complex plane C, of
positive logarithmic capacity, then

lim
𝑘→+∞

𝑘(𝐸
𝑘
(𝐾, 𝑓))

𝜌/𝑘

= 𝑐
𝜌

𝑒𝜌𝜎 (8)

if and only if 𝑓 is the restriction to𝐾 of an entire function of
order 𝜌 (0 < 𝜌 < +∞) and type 𝜎.

Recall that the capacity of [−1, 1] is cap([−1, 1]) = 1/2 and
the capacity of a unit disc is cap(𝐷(0, 1)) = 1.

The authors considered, respectively, the Taylor devel-
opment of 𝑓 with respect to the sequence (𝑧

𝑛
)
𝑛
and the

development of 𝑓with respect to the sequence (𝑊
𝑛
)
𝑛
defined

by

𝑊
𝑛
(𝑧) =

𝑗=𝑛

∏

𝑗=1

(𝑧 − 𝜂
𝑛𝑗
) , 𝑛 = 1, 2, . . . , (9)

where 𝜂(𝑛) = (𝜂
𝑛0
, 𝜂

𝑛1
, . . . , 𝜂

𝑛𝑛
) is the 𝑛th extremal points

system of 𝐾 (see [6, page 260]).
We remark that the above results suggest that the rate at

which the sequence ( 𝑘√𝐸
𝑘
(𝐾, 𝑓))

𝑘
tends to zero depends on

the growth of the entire function (order and type).
Harfaoui (see [7]) obtained a result of generalized order

in terms of approximation in 𝐿𝑝-norm for a compact of C𝑛.
The aim of this paper is to generalize the growth ((𝑝, 𝑞)-

order and (𝑝, 𝑞)-type), studied by Reddy (see [4, 5]) and
Winiarski (see [6]), in terms of approximation in 𝐿𝑝-norm
for a compact of C𝑛 satisfying some properties which will be
defined later.

We also obtain a general result of Harfaoui (see [7]) in
term of (𝑝, 𝑞)-order and (𝑝, 𝑞)-type for the functions

𝛼 (𝑥) = log𝑝−1 (𝑥) , 𝛽 (𝑥) = log𝑞−1 (𝑥) for (𝑝, 𝑞) ∈ N
2

.

(10)

So we establish relationship between the rate at which
(𝜋

𝑝

𝑘
(𝐾, 𝑓))

1/𝑘, for 𝑘 ∈ N, tends to zero in terms of best
approximation in 𝐿

𝑝-norm, and the generalized growth of
entire functions of several complex variables for a compact
subset 𝐾 of C𝑛, where𝐾 is a compact well selected and

𝜋
𝑝

𝑘
(𝐾, 𝑓) = inf {󵄩󵄩󵄩󵄩𝑓 − 𝑃

󵄩󵄩󵄩󵄩𝐿𝑝(𝐾,𝜇)
; 𝑃 ∈ P

𝑘
(C

𝑛

)} , (11)

where P
𝑘
(C𝑛

) is the family of all polynomials of degree ≤ 𝑘

and 𝜇 is the well selected measure (the equilibrium measure
𝜇 = (𝑑𝑑

𝑐

𝑉
𝐾
)
𝑛 associated to a 𝐿-regular compact 𝐾) (see [8])

and 𝐿𝑝(𝐾, 𝜇), 𝑝 ≥ 1, is the class of all functions such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐾,𝜇)

= (∫
𝐾

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝

𝑑𝜇)

1/𝑝

< ∞. (12)

In this work we give the generalization of these results
in C𝑛, replacing the circle {𝑧 ∈ C; |𝑧| = 𝑟} by the set
{𝑧 ∈ C𝑛

; exp(𝑉
𝐾
(𝑧)) < 𝑟}, where 𝑉

𝐾
is the Siciak’s extremal

function of𝐾, a compact ofC𝑛 satisfying someproperties (see
[9, 10]), and using the development of 𝑓 with respect to the
sequence (𝐴

𝑘
)
𝑘∈N constructed by Zeriahi (see [11]).

Recall that in the paper of Winiarski (see [6]) the author
used the Cauchy inequality. In our work we replace this
inequality by an inequality given by Zeriahi (see [11]).

2. Definitions and Notations

Before we give some definitions and results which will be
frequently used in this paper, let 𝐾 be a compact of C𝑛 and
let ‖ ⋅ ‖

𝐾
denote the maximum norm on 𝐾.

Multivariate polynomial inequalities are closely related to
the Siciak extremal function associatedwith a compact subset
𝐾 of C𝑛,

𝑉
𝐾
= sup { 1

𝑑
log 󵄨󵄨󵄨󵄨𝑃𝑑

󵄨󵄨󵄨󵄨 , 𝑃𝑑 polynomial in C
𝑛 of degree

≤ 𝑑,
󵄩󵄩󵄩󵄩𝑃𝑑

󵄩󵄩󵄩󵄩𝐾 ≤ 1} .

(13)

Siciak’s function establishes an important link between
polynomial approximation in several variables and pluripo-
tential theory.

It is known (see [10]) that

𝑉
𝐾
(𝑧) = sup {𝑢 (𝑧) : 𝑢 ∈L (C

𝑛

) ; 𝑢 ≤ 0 on 𝐾} , (14)

where

L (C
𝑛

) = {𝑢 ∈ PSH (C
𝑛

) : 𝑢 (𝑧) − log (|𝑧|)

≤ 𝑂 (1) as |𝑧| 󳨀→ ∞}

(15)

is the Lelong class of plurisubharmonic functions with
logarithmic growth at infinity. If 𝐾 is nonpluripolar (i.e.,
there is no plurisubharmonic function 𝑢 such that 𝐾 ⊂

{𝑢(𝑧) = −∞}), then the plurisubharmonic function 𝑉∗

𝐾
(𝑧) =

lim sup
𝑤→𝑧

𝑉
𝐾
(𝑤) is the unique function in the class L(C𝑛

)



Abstract and Applied Analysis 3

which vanishes on 𝐾 except perhaps for a pluripolar subset
and satisfies the complex Monge-Ampère equation (see [12]):

(𝑑𝑑
𝑐

𝑉
𝐾
)
𝑛

= 0 on C
𝑛

\ 𝐾. (16)

If 𝑛 = 1, the Monge-Ampère equation reduces to the
classical Laplace equation.

For this reason, the function𝑉∗

𝐾
is considered as a natural

counterpart of the classical Green function with logarithmic
pole at infinity and it is called the pluricomplex Green
function associated with 𝐾.

Definition 1 (Siciak [10]). The function

𝑉
𝐾
= sup { 1

𝑑
log 󵄨󵄨󵄨󵄨𝑃𝑑

󵄨󵄨󵄨󵄨 , 𝑃𝑑 polynomial of degree ≤ 𝑑,

󵄩󵄩󵄩󵄩𝑃𝑑
󵄩󵄩󵄩󵄩𝐾 ≤ 1}

(17)

is called the Siciak’s extremal function of the compact𝐾.

Definition 2. A compact𝐾 in C𝑛 is said to be 𝐿-regular if the
extremal function, 𝑉

𝐾
, associated to 𝐾 is continuous on C𝑛.

Regularity is equivalent to the following Bernstein-
Markov inequality (see [9]).

For any 𝜖 > 0, there exists an open 𝑈 ⊃ 𝐾 such that for
any polynomial 𝑃

‖𝑃‖
𝑈
≤ 𝑒

𝜖⋅deg(𝑃)
‖𝑃‖

𝐾
. (18)

In this case we take 𝑈 = {𝑧 ∈ C𝑛

; 𝑉
𝐾
(𝑧) < 𝜖}.

Regularity also arises in polynomial approximation. For
𝑓 ∈ C(𝐾), we let

𝜖
𝑘
(𝐾, 𝑓) = inf {󵄩󵄩󵄩󵄩𝑓 − 𝑃

󵄩󵄩󵄩󵄩𝐾, 𝑃 ∈ P
𝑘
(C

𝑛

)} , (19)

where P
𝑘
(C𝑛

) is the set of polynomials of degree at most 𝑑.
Siciak showed that (see [10]).

If 𝐾 is 𝐿-regular, then

lim sup
𝑘→+∞

(𝜀
𝑘
(𝐾, 𝑓))

1/𝑘

=
1

𝑅
< 1 (20)

if and only if 𝑓 has an analytic continuation to

{𝑧 ∈ C𝑛

; 𝑉
𝐾
(𝑧) < log( 1

𝑅
)} . (21)

It is known that if 𝐾 is a compact 𝐿-regular of C𝑛,
there exists a measure 𝜇, called extremal measure, having
interesting properties (see [9, 10]), in particular, we have the
following properties.

(𝑃
1
) Bernstein-Markov inequality: for all 𝜖 > 0, there

exists a constant 𝐶 = 𝐶
𝜀
such that

(BM) : 󵄩󵄩󵄩󵄩𝑃𝑑
󵄩󵄩󵄩󵄩𝐾 = 𝐶(1 + 𝜀)

𝑠𝑘
󵄩󵄩󵄩󵄩𝑃𝑑

󵄩󵄩󵄩󵄩𝐿2(𝐾,𝜇)
, (22)

for every polynomial of 𝑛 complex variables of degree
at most 𝑑.

(𝑃
2
) Bernstein-Walsh (BW) inequality: for every set

𝐿-regular 𝐾 and every real 𝑟 > 1 we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐾 ≤ 𝑀𝑟

deg(𝑓)
(∫

𝐾

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝

𝑑𝜇)

1/𝑝

. (23)

Note that the regularity is equivalent to the Bernstein-
Markov inequality.

Let 𝛼 : N → N𝑛

, 𝑘 󳨃→ 𝛼(𝑘) = (𝛼
1
(𝑘), . . . , 𝛼

𝑛
(𝑘)) be a

bijection such that

|𝛼 (𝑘 + 1)| ≥ |𝛼 (𝑘)| , where |𝛼 (𝑘)| = 𝛼
1
(𝑘) + ⋅ ⋅ ⋅ + 𝛼

𝑛
(𝑘) .

(24)

Zeriahi (see [11]) has constructed according to the
Hilbert-Schmidt method a sequence of monic orthogonal
polynomials according to an extremal measure (see [9]),
(𝐴

𝑘
)
𝑘
, called extremal polynomial, defined by

𝐴
𝑘
(𝑧) = 𝑧

𝛼(𝑘)

+

𝑘−1

∑

𝑗=1

𝑎
𝑗
𝑧
𝛼(𝑗) (25)

such that
󵄩󵄩󵄩󵄩𝐴𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(𝐾,𝜇)

=
[
[

[

inf
{{

{{

{

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑧
𝛼(𝑘)

+

𝑘−1

∑

𝑗=1

𝑎
𝑗
𝑧
𝛼(𝑗)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
(𝐾,𝜇)

,

(𝑎
1
, 𝑎

2
, . . . , 𝑎

𝑛
) ∈ C

𝑛
}

}

}

]

]

1/𝛼𝑘

.

(26)

We need the following notations and lemma which will be
used in the sequel (see [2]):

(𝑁
1
) 𝜈

𝑘
= 𝜈

𝑘
(𝐾) = ‖𝐴

𝑘
‖
𝐿
2
(𝐾,𝜇)

,
(𝑁

2
) 𝑎

𝑘
= 𝑎

𝑘
(𝐾) = ‖𝐴

𝑘
‖
𝐾
= max

𝑧∈𝐾
|𝐴

𝑘
(𝑧)| and 𝜏

𝑘
=

(𝑎
𝑘
)
1/𝑠𝑘 , where 𝑠

𝑘
= deg(𝐴

𝑘
).

For 𝑝 ∈ N, put, for 𝑝 ≥ 1 and 𝑥 > 0,

log[𝑝] (𝑥) = log (log[𝑝−1] (𝑥)) ,

exp[𝑝] (𝑥) = exp (exp[𝑝−1] (𝑥)) ,

Λ
[𝑝]

=

𝑝

∏

𝑘=1

log[𝑘] (𝑥) , 𝐸
[𝑝]
(𝑥) =

𝑝

∏

𝑘=0

exp𝑘 (𝑥) ,

log[0] (𝑥) = 𝑥, exp[0] (𝑥) = 𝑥.

(27)

Lemma 3 (see [2]). With the above notations one has the
following results:

(𝑅𝑅1) 𝐸
[−𝑝]

(𝑥) = 𝑥/∧
[𝑝−1]

(𝑥) and ∧
[−𝑝]

(𝑥) = 𝑥/

𝐸
[𝑝−1]

(𝑥),

(𝑅𝑅2) (𝑑/𝑑𝑥)exp[𝑝](𝑥) = 𝐸
[𝑝]
(𝑥)/𝑥 = 1/∧

[−𝑝−1]
(𝑥),
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(𝑅𝑅3) (𝑑/𝑑𝑥)log[𝑝](𝑥) = 𝐸
[−𝑝]

(𝑥)/𝑥 = 1/∧
[𝑝−1]

(𝑥),
(𝑅𝑅4)

𝐸
−1

[𝑝]
(𝑥) =

{{

{{

{

𝑥, if 𝑝 = 0,
log[𝑝−1] {log (𝑥) − log[2] (𝑥)

+𝑜 (log
[3]
(𝑥))} , if 𝑝 = 1, 2, . . . ,

(28)

(𝑅𝑅5)

lim
𝑥→+∞

exp (𝐸
[𝑝−2]

(𝑥)) = {
𝑒, if 𝑝 = 2,
1, if 𝑝 ≥ 3,

(29)

(𝑅𝑅6)

lim
𝑥→+∞

[exp[𝑝−1] (𝐸−1

[𝑝−2]
(𝑥))]

1/𝑥

= {
𝑒, if 𝑝 = 2,
1, if 𝑝 ≥ 3.

(30)

For more details of these results, see [2].

Definition 4. Let 𝐾 be a compact 𝐿-regular and put

Ω
𝑟
= {𝑧 ∈ C

𝑛

; exp𝑉
𝐾
(𝑧) ≤ 𝑟} . (31)

An entire function 𝑓 is said to be of (𝐾, 𝑝, 𝑞)-order
𝜌
𝐾
(𝑝, 𝑞) if it is of index-pair (𝑝, 𝑞) such that

𝜌 = 𝜌
𝐾
(𝑝, 𝑞) = lim sup

𝑟→+∞

log[𝑝] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

)

log[𝑞]𝑟
. (32)

If 𝜌 ∈ [𝛽, +∞[, the (𝐾, 𝑝, 𝑞)-type is defined by

𝜎 = 𝜎
𝐾
(𝑝, 𝑞) = lim sup

𝑟→+∞

log[𝑝−1] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

)

(log[𝑞−1]𝑟)
𝜌

, (33)

with 𝛽 = 1 if 𝑝 = 𝑞 and 𝛽 = 0 and 𝑝 > 𝑞.

3. (𝑝, 𝑞)-Growth in terms of the Coefficients of
the Development with respect to Extremal
Polynomials

The object of this section is to establish the relationship of
(𝑝, 𝑞)-growth of an entire function with respect to the set

Ω
𝑟
= {exp (𝑉

𝐾
) < 𝑟} (34)

and the coefficients of entire function𝑓 onC𝑛 of the develop-
ment with respect to the sequence of extremal polynomials.

The (𝑝, 𝑞)-growth of an entire function is defined by
(𝐾, 𝑝, 𝑞)-order and (𝐾, 𝑝, 𝑞)-type of 𝑓.

Let (𝐴
𝑘
)
𝑘
be the basis of extremal polynomials associated

to the set 𝐾 defined by (25). Recall that (𝐴
𝑘
)
𝑘
is a basis of

the vector space of entire functions, hence if 𝑓 is an entire
function, then

𝑓 = ∑

𝑘≥1

𝑓
𝑘
𝐴

𝑘
. (35)

To prove the aim result of this sectionwe needBrernstein-
Walsh inequality and the following lemmas which have been
proved by Zeriahi (see [11]).

Lemma5. Let𝐾 be a compact𝐿-regular subset of C𝑛 and let𝑓
be an entire function such that 𝑓 = ∑+∞

𝑘=0
𝑓
𝑘
𝐴

𝑘
. Then for every

𝜃 > 1, there exists an integer 𝑁
𝜃
≥ 1 and a constant 𝐶

𝜃
such

that

𝜋
𝑝

𝑘
(𝐾, 𝑓) ≤ 𝐶

𝜃

(𝑟 + 1)
𝑁𝜃

(𝑟 − 1)
2𝑁−1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟𝜃

𝑟𝑘
, (36)

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜈𝑘 ≤ 𝐶𝜃

(𝑟 + 1)
𝑁𝜃

(𝑟 − 1)
2𝑁−1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟𝜃

𝑟𝑠𝑘
, (37)

where 𝑁
𝜃
∈ N and 𝐶

𝜃
> 0 are constant not depending on

(𝑟, 𝑘, 𝑓).

Lemma 6. If 𝐾 is an 𝐿-regular, then the sequence of extremal
polynomials (𝐴

𝑘
)
𝑘
satisfies

lim
𝑘→+∞

(

󵄨󵄨󵄨󵄨𝐴𝑘
(𝑧)
󵄨󵄨󵄨󵄨

𝜈
𝑘

)

1/𝑠𝑘

= exp (𝑉
𝐾
(𝑧)) (38)

for every 𝑧 ∈ C𝑛, and

lim
𝑘→+∞

(

󵄩󵄩󵄩󵄩𝐴𝑘

󵄩󵄩󵄩󵄩
𝑠𝑘

𝐾

𝜈
𝑘

)

1/𝑠𝑘

= 1. (39)

Recall that the second assertion (37) of Lemma 5 replaces
the Cauchy inequality for complex function defined on the
complex plane C.

Theorem 7. Let 𝑓 = ∑
𝑘≥1

𝑓
𝑘
𝐴

𝑘
be an entire function. Then 𝑓

is said of a finite (𝐾, 𝑝, 𝑞)-order 𝜌
𝐾
(𝑝, 𝑞) if and only if

𝐿 (𝑝, 𝑞) = lim sup
𝑘→+∞

log[𝑝−1] (𝑠
𝑘
)

log[𝑞−1] [(−1/𝑠
𝑘
) log (󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
)]
< +∞

(40)

and 𝜌
𝐾
(𝑝, 𝑞) = 𝑃

1
(𝐿(𝑝, 𝑞)), where

𝑃
1
(𝐿 (𝑝, 𝑞)) =

{{{{

{{{{

{

𝐿 (𝑝, 𝑞) , if 𝑝 > 𝑞,
1 + 𝐿 (2, 2) , if 𝑝 = 𝑞 = 2,
max (1, 𝐿 (𝑝, 𝑞)) , if 3 ≤ 𝑝 = 𝑞 < +∞,

+∞, if 𝑝 = 𝑞 = +∞,

(41)

for (𝑝, 𝑞) ∈ N2 with 𝑝 ≥ 𝑞.

Proof. Put 𝜌 = 𝜌
𝐾
(𝑝, 𝑞). Let us prove that 󰜚 ≥ 𝑃

1
(𝐿(𝑝, 𝑞)). If

𝑓 is of finite (𝑝, 𝑞)-order 𝜌, then we have

𝜌 = lim sup
𝑟→+∞

log[𝑝]󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

log[𝑞]𝑟
= lim sup

𝑟→+∞

log[𝑝]󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟𝜃

log[𝑞] (𝑟𝜃)
. (42)

Thus for every 𝜀 > 0 there exists 𝑟(𝜀) such that for every 𝑟 >
𝑟(𝜀)

log (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟𝜃

) ≤ exp[𝑝−2](log[𝑞−1] (𝑟𝜃))
𝜌+𝜀

. (43)
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Using the inequalities (37) of Lemma 5 and (39) of Lemma 6,
one has, for every 𝜀 > 0, there exist 𝑟(𝜀) and 𝑘(𝜀) such that for
every 𝑟 > 𝑟(𝜀) and 𝑘 > 𝑘(𝜀)

log (󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
) ≤ 𝑠

𝑘
log (1 + 𝜀) + log (𝐶

𝜃
) + 𝑁

𝜃
log (1 + 𝑟)

− (2𝑁 − 1) log (𝑟 − 1)

− 𝑠
𝑘
log (𝑟) + log (󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩Ω𝑟𝜃
)

(44)

for 𝑟 > 𝑟(𝜀) and 𝑘 > 𝑘(𝜀). But for 𝑟 > 𝑟(𝜀) and 𝑘 > 𝑘(𝜀) we
have

−
1

𝑠
𝑘

log (󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
) ≥ −

1

𝑠
𝑘

⋅ log(
𝐶
𝜃
(1 + 𝜀) ⋅ log (1 + 𝑟)𝑁𝜃

(𝑟 − 1)
(2𝑁−1)

)

+ exp[𝑝−2](log[𝑞−1] (𝑟𝜃))
𝜌+𝜀

.

(45)

Then, by proceeding to limits as 𝑘 → ∞, we get for 𝑟
sufficiently large

log (󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
) ≤ (1 + 𝑜 (1)) log (𝑟) . (46)

(i) For (𝑝, 𝑞) ̸= (2, 2) with 𝑝 > 𝑞, let

𝑟
𝑘
=
1

𝜃
exp[𝑞−1] (log[𝑝−2](

𝑠
𝑘

𝜌 + 𝜀
)

1/𝜌+𝜀

) > 𝑟 (𝜀) . (47)

Then if we replace in the equality (46) 𝑟 by 𝑟
𝑘
, we get easily

that for 𝑘 sufficiently large

−
1

𝑠
𝑘

log (󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
)

≥ exp[𝑞−2] (log[𝑝−2](
𝑠
𝑘

𝜌 + 𝜀
)

1/(𝜌+𝜀)

) [1 + 𝑜 (1)] .

(48)

After passing to the upper limit, we get for 𝑝 > 𝑞

lim sup
𝑘→+∞

log[𝑝−1] (𝑠
𝑘
)

log[𝑞−1] ((−1/𝑠
𝑘
) log (󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
))
≤ 𝜌. (49)

(ii) For 3 ≤ 𝑝 = 𝑞 < +∞, the inequality (46) gives 𝜌 ≥

max(1, 𝐿(𝑝, 𝑞)) (because 𝜌 ≥ 1 for 𝑝 = 𝑞).
(iii) For (𝑝, 𝑞) = (2, 2), choose 𝑟

𝑘
= (1/𝜃) exp(𝑠

𝑘
/(𝜌 +

𝜀))
1/(𝜌−1+𝜀)

> 𝑟(𝜀) and in the same way we show that

−
1

𝑠
𝑘

log (𝑓
𝑘
| 𝜏

𝑠𝑘

𝑘
) ≥ (

𝑠
𝑘

𝜌 + 𝜀
)

1/(𝜌−1+𝜀)

⋅
𝜌 − 1 + 𝜀

𝜌 + 𝜀
⋅ (1 + 𝑜 (1))

(50)

for 𝑘 sufficiently large, thus

lim sup
𝑘→+∞

log (𝑠
𝑘
)

log ((−1/𝑠
𝑘
) log (󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
))
≤ 𝜌 − 1. (51)

By combining (i), (ii), and (iii) we have 𝜌 ≥ 𝑃
1
(𝐿(𝑝, 𝑞)).

This result holds obviously if 𝜌 = +∞.

We prove now reverse inequality 𝜌 ≤ 𝑃
1
(𝐿(𝑝, 𝑞)). By the

definition of 𝐿(𝑝, 𝑞), for every 𝜀 > 0 there exists 𝑘(𝜀) such that
for every 𝑘 ≥ 𝑘(𝜀)

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
≤ exp (−𝑠

𝑘
exp[𝑞−2](log[𝑝−2] (𝑠

𝑘
))

1/(𝐿+𝜀)

) , (52)

where 𝐿 = 𝐿(𝑝, 𝑞), for simplification.
Let 𝑘(𝑟) be a positive integer such that, for 𝑘 ≥ 𝑘(𝑟),

𝑠
𝑘(𝑟)

≤ exp[𝑝−2] (log[𝑞−1](2 (1 + 𝜀) 𝑟)𝐿+𝜀) < 𝑠
𝑘(𝑟)

+ 1 (53)

and 𝑘(𝑟) > 𝑘(𝜀), by (39), (37), (BM) and (BW) inequalities,
there exists 𝑘

0
∈ N, such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤

𝑘=𝑘(𝜀)

∑

𝑘=0

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝐴𝑘

(𝑧)
󵄨󵄨󵄨󵄨 + 𝐶𝜀

𝑘=𝑘(𝑟)

∑

𝑘=𝑘(𝜀)+1

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
𝑟
𝑠𝑘 + 𝐶

󸀠

𝜀

⋅

+∞

∑

𝑘=𝑘(𝑟)+1

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
((1 + 𝜀) 𝑟)

𝑠𝑘 .

(54)

Indeed,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤

𝑘=+∞

∑

𝑘=0

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝐴𝑘

(𝑧)
󵄨󵄨󵄨󵄨 (55)

(because 𝑧 satisfies exp(𝑉
𝐾
(𝑧)) ≤ 𝑟).

By (38) and (39), for 𝑘 sufficiently large we have
󵄨󵄨󵄨󵄨𝐴𝑘

󵄨󵄨󵄨󵄨 ≤ (1 + 𝜀)
𝑠𝑘[exp (𝑉

𝐾
(𝑧))]

𝑠𝑘
,

𝜏
𝑠𝑘

𝑘
≤ (1 + 𝜀)

𝑠𝑘𝜈
𝑘
.

(56)

Therefore, for 𝑟 sufficiently large we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤ 𝐴
𝑘(𝜀)

+

𝑁(𝑟)

∑

𝑘=𝑘𝜀+1

𝑓
𝑘
𝜏
𝑠𝑘

𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1

+

+∞

∑

𝑘=𝑁(𝑟)

2
−𝑠𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2

, (57)

where 𝐴
𝑘(𝜀)

is a polynomial of degree not exceeding 𝑘
𝜀
. By

using (46) we get
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤ 𝐴
𝑘(𝜀)

+ 𝑐
𝜀
(2 (1 + 𝜀) 𝑟)

𝑠𝑘(𝑟)

×

+∞

∑

𝑘=0

exp {−𝑠
𝑘
exp[𝑞−2] (ln[𝑝−2](𝑠

𝑘
)
𝐿+𝜀

)}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

1

+

+∞

∑

𝑘=0

2
−𝑠𝑘

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2

.

(58)

By (52) the series (1) is convergent, and (2) is obviously
convergent, hence we have for 𝑟 sufficiently large

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤ 𝐴
𝑘(𝜀)

+ 𝐴
1
(2 (1 + 𝜀) 𝑟)

𝑠𝑘(𝑟) + 1, (59)

where𝐴
1
is a constant.Thus, for 𝑟 sufficiently large we obtain

log (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

) ≤ 𝑠
𝑘
log ((1 + 𝜀) 𝑟) (1 + 𝑜 (1)) . (60)
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Therefore, for 𝑟 sufficiently large

log[2] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

) ≤ log (𝑠
𝑘
) + log[2] ((1 + 𝜀) 𝑟) + 𝑜 (1) . (61)

For 𝑟 sufficiently large let

𝑠
𝑘
= 𝐸 [exp[𝑝−2] ((log[𝑞−1] (2𝑟))

𝐿+𝜖

)] , (62)

where 𝐸(𝑥) is the integer part of 𝑥. Replacing 𝑠
𝑘
in the

inequality (61) we get

log[2] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

) ≤ exp[𝑝−3] (log[𝑞−1](2𝑟)𝐿+𝜀)

+ log[2] ((1 + 𝜀) 𝑟) + 𝑜 (1) .
(∗)

To prove the result we proceed in three steps.

Step 1. For (𝑝, 𝑞) = (2, 2), we have

log[2] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

) ≤ (𝐿 + 𝜀) log[2] (2𝑟) + log[2] ((1 + 𝜀) 𝑟) + 𝑜 (1) .
(63)

Then

log[2] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

)

log[2] (2𝑟)
≤ (𝐿 + 𝜀) + 1 + 𝑜 (1) . (64)

Proceeding to the upper limit we get 𝜌 ≤ 1 + 𝐿(2, 2) =

𝑃
1
(𝐿(2, 2)).

Step 2. For 3 ≤ 𝑝 = 𝑞, since 𝜌 ≥ 1, we get 𝜌 ≤

max(1(𝐿(𝑝, 𝑝)) = 𝑃
1
(𝐿(𝑝, 𝑞)).

Step 3. For 𝑝 < 𝑞, the relation (∗) is equivalent to

log[2] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

) ≤ exp[𝑝−3] (log[𝑞−1](2𝑟)𝐿+𝜀) (1 + +𝑜 (1)) .
(65)

Then, for 𝑟 sufficiently large

log[𝑝] (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

) ≤ log (log[𝑞−1](2𝑟)𝐿+𝜀) (1 + 𝑜 (1))

= (𝐿 + 𝜀) (log[𝑞] (2𝑟)) (1 + 𝑜 (1)) .
(66)

Passing to the upper limit after division by log[𝑞](2𝑟) we
obtain 𝜌 ≤ 𝐿(𝑝, 𝑞).

By combining (i), (ii), and (iii) we obtain for 𝑝 ≥ 𝑞 ≥ 1,
𝜌 ≤ 𝑃

1
(𝐿(𝑝, 𝑞)). The inequality is obviously true for 𝐿(𝑝, 𝑞) =

+∞.

Theorem 8. Let 𝑓 be an entire function of (𝐾, 𝑝, 𝑞)-order
𝜌
𝐾
(𝑝, 𝑞) ∈ ]𝛽,∞[. Then 𝑓 is of finite (𝐾, 𝑝, 𝑞)-type 𝜎

𝐾
(𝑝, 𝑞)

if and only if

𝛾 (𝑝, 𝑞) = lim sup
𝑘→+∞

log[𝑝−2] (𝑠
𝑘
)

[log[𝑞−2] ((−1/𝑠
𝑘
) log 󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 𝜏
𝑠𝑘

𝑘
)]

𝜌−𝐶
< +∞

(67)

and 𝜎
𝐾
(𝑝, 𝑞) = 𝛾(𝑝, 𝑞)𝑀(𝑝, 𝑞), where 𝛽 = 1 if 𝑝 = 𝑞, 𝛽 = 0

if 𝑝 > 𝑞, 𝐶 = 1 if 𝑝 = 𝑞 = 2, 𝐶 = 0 if (𝑝, 𝑞) ̸= (2, 2), 𝑠
𝑘
=

deg(𝐴
𝑘
), and

𝑀(𝑝, 𝑞) =

{{{{{{

{{{{{{

{

1, if𝑝 ≥ 3,
1

𝑒 ⋅ 𝜌 (2, 1)
, if (𝑝, 𝑞) = (2, 1) ,

(𝜌 (2, 2) − 1)
𝜌(2,2)−1

(𝜌 (2, 2))
𝜌(2,2)

, (𝑝, 𝑞) = (2, 2) .

(68)

Proof. Let us first prove that 𝜎
𝐾
(𝑝, 𝑞) ≤ 𝑀(𝑝, 𝑞) ⋅ 𝛾(𝑝, 𝑞). By

the definition of 𝛾 = 𝛾(𝑝, 𝑞), for every 𝜀 > 0 there exists 𝑘(𝜀)
such that for every 𝑘 ≥ 𝑘(𝜀),

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
≤ exp(−𝑠

𝑘
exp[𝑞−2](

log[𝑝−2] (𝑠
𝑘
)

𝛾 + 𝜀
)

1/(𝜌−𝐶)

) .

(69)

Let 𝑘(𝑟) be a positive integer such that

𝑘 (𝑟) ≤ exp[𝑝−2] ((𝛾 + 𝜀) (log[𝑞−1] (2 (1 + 𝜀) 𝑟))
𝜌−𝐶

)

< 𝑘 (𝑟) + 1

(70)

and 𝑘 ≥ 𝑘(𝑟). By the estimate (39) from Lemma 6 and the
(BM) and (BW) inequalities, there exists 𝑘

0
∈ N such that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤ 𝑘 (𝑟) +max
𝑘≥0

{𝑓
𝑘
⋅ 𝜏

𝑠𝑘

𝑘
((1 + 𝜀) 𝑟)

𝑠𝑘} + ∑

𝑘=0

2
−𝑠𝑘 . (71)

Put

𝐻(𝑟) = max
𝑥≥0

{𝜔 (𝑟, 𝑥)} , (72)

where

𝜔 (𝑟, 𝑥) = −𝑥 exp[𝑞−2]([
log[𝑝−2] (𝑥)
𝛾 + 𝜀

]

1/𝜌−𝐶

)

+ 𝑥 log ((1 + 𝜀) 𝑟) .

(73)

By repeating the argument used in the proof ofTheorem 7
one may easily check that

𝜎
𝐾
(𝑝, 1) ≤ 𝑀(𝑝, 1) 𝛾 (𝑝, 1) . (74)

For example we will show that 𝜎
𝐾
(𝑝, 1) ≤ 𝑀(𝑝, 1)𝛾(𝑝, 1).

By the relation (69) we have

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜏

𝑠𝑘

𝑘
≤ (

𝛾 + 𝜀

log[𝑝−2] (𝑠
𝑘
)
)

𝑠𝑘/𝜌

. (75)

The maximum of the function 𝑥 󳨃→ 𝜔(𝑥, 𝑟) is reached for
𝑥 = 𝑥

𝑟
, where 𝑥

𝑟
is the solution of the equation

− log(
log[𝑝−2] (𝑥)
𝛾 + 𝜀

)

1/𝜌

+ log ((1 + 𝜀) 𝑟) =
𝐸
[1−𝑝]

(𝑥)

𝜌
.

(76)
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For 𝑝 = 2 the relation (75) becomes

− log( 𝑥

𝛾 + 𝜀
)

1/𝜌

+ log ((1 + 𝜀) 𝑟) = 1

𝜌
. (77)

Thus

𝑥
𝑟
=
1

𝑒
(𝛾 + 𝜀) ((1 + 𝜀) 𝑟)

𝜌

. (78)

Therefore 𝐻(𝑟) = 𝜔(𝑟, 𝑥
𝑟
) = 𝑥

𝑟
/𝜌 and 𝜔(𝑟, 𝑥

𝑟
) = (1/𝑒𝜌)(𝛾 +

𝜀)((1 + 𝜀)𝑟)
𝜌 and by (69) we get

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤ 𝐶
0
+ (𝛾 + 𝜀) ((1 + 𝜀) 𝑟)

𝜌 exp (𝐻 (𝑟)) (79)

which gives for 𝑟 sufficiently large

log (󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

) ≤ 𝐻 (𝑟) + 𝜌 log ((1 + 𝜀) 𝑟) (1 + 𝑜 (1)) . (80)

Passing to the upper limit when 𝑟 → +∞ we get

𝜎
𝐾
(2, 1) ≤ 𝑀 (2, 1) 𝛾 (2, 1) . (81)

For 𝑝 ≥ 3 we have

𝜔 (𝑟, 𝑥
𝑟
) =

𝑥
𝑟

𝜌
𝐾

[1−𝑝](𝑥)
=

𝑥
2

𝑟

𝜌⋀
[𝑝−2]

(𝑥
𝑟
)
. (82)

Therefore

log (𝜔 (𝑟, 𝑥
𝑟
)) = 2 log (𝑥

𝑟
) − log (𝜌) − log( ⋀

[𝑝−2]

(𝑥
𝑟
))

= 2 log (𝑥
𝑟
) −

𝑝−1

∑

𝑘=1

log𝑘 (𝑥
𝑟
) .

(83)

Hence

log (𝜔 (𝑟, 𝑥
𝑟
))

log (𝑥
𝑟
)

= 1 −

𝑝−1

∑

𝑘=1

log𝑘 (𝑥
𝑟
)

log (𝑥
𝑟
)
. (84)

Then, for 𝑟 sufficiently large,

log (𝜔 (𝑟, 𝑥
𝑟
)) ∼ log (𝑥

𝑟
) ∼ exp[𝑝−2] [(𝛾 + 𝜀) ((1 + 𝜀) 𝑟)𝜌] ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Ω𝑟

≤ exp[𝑝−2] [(𝛾 + 𝜀) ((1 + 𝜀) 𝑟)𝜌] .
(85)

We obtain the result after passing to the upper limit.

Remark 9. If 𝑛 = 1 and (𝑝, 𝑞) = (2, 1), we know that

lim
𝑘→+∞

(𝜏
𝑘
)
1/𝑠𝑘

= 𝜏 (𝐾) = cap (𝐾) . (86)

Then by usingTheorems 7 and 8 we get

𝜌
𝐾
(2, 1) = lim

𝑘→+∞

−
𝑠
𝑘
log (𝑠

𝑘
)

log (󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨)
= 𝜌 (2, 1) ,

𝜎
𝐾
(2, 1) = lim sup

𝑟→+∞

𝑠
𝑘
⋅ ([

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 ⋅ 𝜏𝑘]

1/𝑠𝑘
)
𝜌𝐾(2,1)

= 𝜎 (2, 1) (cap (𝐾))𝜌𝐾(2,1)

(87)

which gives the result of Winiarski.

Remark 10. The notion of the type associated to a compact
in C was considered by Nguyen (see [13]). In this work the
concept of the general type seems to be a new result for a
compact in C𝑛, (𝑛 ≥ 2), which is not Cartesian product. Also
the generalized order is independent of the norm but not the
generalized type.

4. Best Polynomial Approximation in
terms of 𝐿𝑝-Norm

Let 𝑓 be a bounded function defined on a 𝐿-regular compact
𝐾 of C𝑛.

The object of this section is to study the relationship
between the rate of the best polynomial approximation of𝑓 in
𝐿
𝑝-norm and the (𝑝, 𝑞)-growth of an entire function 𝑔 such

that 𝑔
|𝐾
= 𝑓.

To our knowledge, no similar result is known according
to polynomial approximation in 𝐿

𝑝-norm (1 ≤ 𝑝 ≤ ∞)
with respect to a measure 𝜇 on 𝐾 in C𝑛. To prove the aim
results we use the results obtained in the second section to
give relationship between the general growth of 𝑓 and the
sequence

𝜋
𝑝

𝑘
(𝐾, 𝑓) = inf {󵄩󵄩󵄩󵄩𝑓 − 𝑃

󵄩󵄩󵄩󵄩𝐿𝑝(𝐾,𝜇)
, 𝑃 ∈ P

𝑘
(C

𝑛

)} (88)

which extend the classical results of Reddy and Winiarsk in
C𝑛. We need the following lemmas.

Lemma 11. If 𝐾 is compact 𝐿-regular in C𝑛, then every
function 𝑓 ∈ 𝐿2P(𝐾, 𝜇) can be written in the form

𝑓 =

+∞

∑

𝑘=0

𝑓
𝑘
⋅ 𝐴

𝑘
, (89)

where 𝐿2P(𝐾, 𝜇) is the closed subspace of 𝐿
2

(𝐾, 𝜇) generated by
the restrictions to𝐸 of polynomialsC𝑛 and (𝐴

𝑘
) is the sequence

defined by (25).

Lemma 12. Let (𝐴
𝑘
) be the sequence defined by (25) and 𝑓 =

∑
𝑘≥0

𝑓
𝑘
𝐴

𝑘
an element of 𝐿𝑝(𝐾, 𝜇), for 𝑝 ≥ 1, then

lim sup
𝑘→+∞

log[𝑝−1] (𝑘)
log[𝑞−1] ((−1/𝑘) log (𝜋𝑝

𝑘
(𝐾, 𝑓)))

= lim sup
𝑘→+∞

log[𝑝−1] (𝑠
𝑘
)

log[𝑞−1] ((−1/𝑠
𝑘
) log (󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
))
,

(90)

lim sup
𝑘→+∞

log[𝑝−2] (𝑘)

(log[𝑞−2] ((−1/𝑘) log (𝜋𝑝
𝑘
(𝐾, 𝑓))))

𝜌−𝐶

= lim sup
𝑘→+∞

log[𝑝−2] (𝑠
𝑘
)

(log[𝑞−2] ((−1/𝑠
𝑘
) log (󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
)))

𝜌−𝐶
.

(91)

Proof of Lemma 12. Theproof is done in two steps (𝑝 ≥ 2 and
1 < 𝑝 < 2). Let 𝑓 = ∑

𝑘≥0
𝑓
𝑘
⋅ 𝐴

𝑘
be an element of 𝐿𝑝(𝐾, 𝜇).

Step 1. If 𝑓 ∈ 𝐿
𝑝

(𝐾, 𝜇) with 𝑝 ≥ 2, then 𝑓 = ∑
+∞

𝑘=0
𝑓
𝑘
⋅ 𝐴

𝑘

with convergence in 𝐿2(𝐾, 𝜇), where 𝑓
𝑘
= 1/𝜈

2

𝑘
∫
𝐾

𝑓𝐴
𝑘
𝑑𝜇,
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𝑘 ≥ 0 and therefore 𝑓
𝑘
= (1/𝜈

2

𝑘
) ∫

𝐾

(𝑓−𝑃
𝑠𝑘−1

) ⋅𝐴
𝑘
𝑑𝜇 (because

deg(𝐴
𝑘
) = 𝑠

𝑘
). Since |𝑓

𝑘
| ≤ (1/𝜈

2

𝑘
) ∫

𝐾

|𝑓 − 𝑃
𝑠𝑘−1

| ⋅ |𝐴
𝑘
|𝑑𝜇, we

obtain easily, using Bernstein-Walsh inequality and deHölder
inequality, that we have for any 𝜀 > 0

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 ⋅ 𝜈𝑘 ≤ 𝐶𝜀

⋅ (1 + 𝜀)
𝑠𝑘𝜋

𝑝

𝑠𝑘−1
(𝐾, 𝑓) (92)

for every 𝑘 ≥ 0.

Step 2. If 1 ≤ 𝑝 < 2, let 𝑝󸀠 such 1/𝑝 + 1/𝑝󸀠 = 1, then 𝑝󸀠 ≥ 2.
By the Hölder inequality we have

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜈

2

𝑘
≤
󵄩󵄩󵄩󵄩𝑓 − 𝑃𝑘−1

󵄩󵄩󵄩󵄩𝐿𝑝(𝐾,𝜇)

󵄩󵄩󵄩󵄩𝐴𝑘

󵄩󵄩󵄩󵄩𝐿𝑝
󸀠
(𝐾,𝜇)

. (93)

But ‖𝐴
𝑘
‖
𝐿
𝑝󸀠
(𝐸,𝜇)

≤ 𝐶‖𝐴
𝑘
‖
𝐾
= 𝐶𝑎

𝑘
(𝐾), therefore, by the (BM)

inequality, we have

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜈

2

𝑘
≤ 𝐶𝐶

𝜀
(1 + 𝜀)

𝑠𝑘
󵄩󵄩󵄩󵄩󵄩
𝑓 − 𝑃

𝑠𝑘−1

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐾,𝜇)

. (94)

Hence
󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜈

2

𝑘
≤ 𝐶

󸀠

𝜀
(1 + 𝜀)

𝑠𝑘𝜋
𝑝

𝑠𝑘

(𝐾, 𝑓) . (95)

Thus in both cases we have
󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 𝜈𝑘 ≤ 𝐴𝜀

(1 + 𝜀)
𝑠𝑘𝜋

𝑝

𝑠𝑘

(𝐾, 𝑓) , (96)

where𝐴
𝜀
is a constant which depends only on 𝜀. After passing

to the upper limit (96) gives

lim sup
𝑘→+∞

log[𝑝−1] (𝑘)
log[𝑞−1] ((−1/𝑘) log (𝜋𝑝

𝑘
(𝐾, 𝑓)))

≥ lim sup
𝑘→+∞

log[𝑝−1] (𝑠
𝑘
)

log[𝑞−1] ((−1/𝑠
𝑘
) log (󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
))
.

(97)

To prove the other inequality we consider the polynomial of
degree 𝑠

𝑘

𝑃
𝑠𝑘
(𝑧) =

𝑗=𝑘

∑

𝑗=0

𝑓
𝑗
𝐴

𝑗
, (98)

then

𝜋
𝑝

𝑠𝑘−1
(𝐾, 𝑓) ≤

+∞

∑
𝑠𝑗=𝑠𝑘

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴

𝑗

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝐾,𝜇)

≤ 𝐶
0

+∞

∑

𝑠𝑗=𝑠𝑘+1

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝐴

𝑗

󵄩󵄩󵄩󵄩󵄩𝐾
.

(99)

By the Bernstein-Walsh inequality we have

𝜋
𝑝

𝑘
(𝐾, 𝑓) ≤ 𝐶

𝜀

+∞

∑
𝑠𝑗=𝑠𝑘

(1 + 𝜀)
𝑠𝑗
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨
𝜈
𝑗 (100)

for 𝑘 ≥ 0 and 𝑝 ≥ 1. If we take as a common factor (1+𝜀)𝑠𝑘𝜈
𝑘
,

the other factor is convergent, thus we have

𝜋
𝑝

𝑘
(𝐾, 𝑓) ≤ 𝐶(1 + 𝜀)

𝑠𝑘 ⋅ 𝜈
𝑘

(101)

and by (39) of Lemma 6 we have then

𝜋
𝑝

𝑘
(𝐾, 𝑓) ≤ 𝐶(1 + 𝜀)

𝑠𝑘 ⋅
󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 ⋅ 𝜏

𝑠𝑘

𝑘
. (102)

We then deduce that

lim sup
𝑘→+∞

log[𝑝−1] (𝑘)
log[𝑞−1] ((−1/𝑘) log (𝜋𝑝

𝑘
(𝐾, 𝑓)))

≤ lim sup
𝑘→+∞

log[𝑝−1] (𝑠
𝑘
)

log[𝑞−1] ((−1/𝑠
𝑘
) log (󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
))
.

(103)

This inequality is a direct consequence of (102) and the
inequality on coefficients |𝑓

𝑘
| given by

󵄨󵄨󵄨󵄨𝑓𝑘
󵄨󵄨󵄨󵄨 ⋅ 𝜏

𝑠𝑘

𝑘
≤ exp (−𝑠

𝑘
exp[𝑞−2] (ln[𝑝−2](𝑠

𝑘
)
1/(𝜌+𝜀)

)) . (104)

Applying the above lemma we get the following main
result.

Theorem 13. Let 𝑓 be an element of 𝐿𝑝(𝐾, 𝜇), then

(1) 𝑓 is 𝜇−𝑎 ⋅ 𝑠 the restriction to𝐾 of an entire function in
C𝑛 of finite (𝐾, 𝑝, 𝑞)-order 𝜌 if and only if

𝜌
1
(𝑝, 𝑞) = lim sup

𝑘→+∞

log[𝑝−1] (𝑘)
log[𝑞−1] ((−1/𝑘) log (𝜋𝑝

𝑘
(𝐾, 𝑓)))

< +∞

(105)

and 𝜌 = 𝐿(𝜌
1
(𝑝, 𝑞)).

(2) 𝑓 is 𝜇− 𝑎 ⋅ 𝑠 the restriction to𝐾 of an entire function of
(𝐾, 𝑝, 𝑞)-order 𝜌 (𝛽 < 𝜌 < +∞) and of (𝐾, 𝑝, 𝑞)-type
𝜎 (0 < 𝜎 < +∞) if and only if

𝜎
1
(𝑝, 𝑞) = lim sup

𝑘→+∞

log[𝑝−2] (𝑘)

(log[𝑞−2] ((−1/𝑘) log (𝜋𝑝
𝑘
(𝐾, 𝑓))))

𝜌−𝐶

< +∞

(106)

and 𝜎 = 𝑀(𝑝, 𝑞)(𝜎
1
(𝑝, 𝑞))

𝜌−𝐶, where 𝐶 = 0 if (𝑝, 𝑞) =
(2, 2) and 𝐶 = 1 if 𝑝 = 𝑞 = 2.

Proof. Suppose that 𝑓 is 𝜇-a.s the restriction to𝐾 of an entire
function 𝑔 of (𝐾, 𝑝, 𝑞)-order 𝜌 (𝛽 < 𝜌 < +∞) and show
that 𝜌 = 𝐿(𝜌

1
(𝑝, 𝑞)). We have 𝑔 ∈ 𝐿

𝑝

(𝐾, 𝜇), 𝑝 ≥ 2 and 𝑔 =
∑

𝑘≥0
𝑔
𝑘
⋅ 𝐴

𝑘
in 𝐿2(𝐾, 𝜇), where 𝑔

𝑘
= (1/𝜈

𝑘
) ∫

𝐾

𝑓𝐴
𝑘
𝑑𝜇, 𝑘 ≥ 0.

From (40) of Theorem 7 we get 𝜌 = 𝑃
1
(𝐿(𝑝, 𝑞)), where

𝐿 (𝑝, 𝑞) = lim sup
𝑘→+∞

log[𝑝−1] (𝑠
𝑘
)

log[𝑞−1] ((−1/𝑠
𝑘
) log 󵄨󵄨󵄨󵄨𝑔𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
(𝐸))

.

(107)

But 𝑔 = 𝑓 on 𝐾, thus by Lemma 11 we have 𝜌 =

𝐿(𝜌
1
(𝑝, 𝑞)).
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Conversely, suppose now that 𝑓 is a function of 𝐿𝑝(𝐾, 𝜇)
such that the relation (105) holds.

(1) Let 𝑝 ≥ 2, then we have 𝑓 = ∑
𝑘≥0

𝑓
𝑘
𝐴

𝑘
because

𝑓 ∈ 𝐿
2

(𝐾, 𝜇), (𝐿𝑝(𝐾, 𝜇) ⊂ 𝐿
2

(𝐾, 𝜇)) and (𝐴
𝑘
)
𝑘
is a basis of

𝐿
2

(𝐾, 𝜇) as in Section 3. Consider in C𝑛 the series ∑𝑓
𝑘
𝐴

𝑘
.

By (90) of Lemma 12 one may easily check that this series
converges normally on every compact subset of C𝑛 to an
entire function denoted𝑓

1
(this result is a direct consequence

of the inequality (BM) and the inequality on coefficients |𝑓
𝑘
|).

We have obviously 𝑓
1
= 𝑓𝜇-a.s on 𝐾, and byTheorem 8, the

(𝐾, 𝑝, 𝑞)-order of 𝑓
1
is

𝜌 (𝑓
1
, 𝑝, 𝑞) = lim sup

𝑘→+∞

log[𝑝−1] (𝑠
𝑘
)

log[𝑞−1] ((−1/𝑠
𝑘
) log 󵄨󵄨󵄨󵄨𝑓𝑘

󵄨󵄨󵄨󵄨 ⋅ 𝜏
𝑠𝑘

𝑘
)
.

(108)

By Lemma 12 we check that 𝜌(𝑓
1
, 𝑝, 𝑞) = 𝜌 so the proof is

completed for 𝑝 ≥ 2.
(2) Now let 𝑝 ∈ [1, 2[ and 𝑓 ∈ 𝐿

𝑝

(𝐾, 𝜇), by (BM)
inequality andHölder inequality we have again the inequality
(96) and (102), and by the previous arguments we obtain the
result.

The proof of the second assertion follows in a similar
way of the proof of the first assertion with the help of
Theorem 8 and the arguments discussed above, hence we
omit the details.

Remark 14. (1) If 𝑛 = 1 and (𝑝, 𝑞) = (2, 1), using the results of
Theorem 13 we obtain the result of Winiarski (see [6]):

lim sup
𝑘→+∞

𝑘(𝜋
𝑝

𝑘
(𝐾, 𝑓))

𝜌/𝑘

= (𝑒𝜌𝜎) (cap (𝐾))𝜌. (109)

(2) If 𝑛 = 1, 𝑝 > 2, and 𝑞 = 1, using the results of
Theorem 13 we obtain the result of Nguyen (see [13]):

lim sup
𝑘→+∞

log[𝑝−2] (𝑘) (𝜋𝑝
𝑘
(𝐾, 𝑓))

𝜌/𝑘

= 𝜎(cap (𝐾))𝜌. (110)

Remark 15. The above result holds for 0 < 𝑝 < 1 (see [14]).
Let 0 < 𝑝 < 1; of course, for 0 < 𝑝 < 1, the 𝐿𝑝-norm does

not satisfy the triangle inequality. But our relations (92) and
relation (102) are also satisfied for 0 < 𝑝 < 1, because by using
Holder’s inequality we have, for some𝑀 > 0 and all 𝑟 > 𝑝 (𝑝
fixed),

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐸,𝜇) ≤ 𝑀

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑟(𝐸,𝜇). (111)

Using the inequality

∫
𝐸

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑝

𝑑𝜇 ≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑝−𝑟

𝐸
∫
𝐸

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨
𝑟

𝑑𝜇 (112)

we get
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝐸,𝜇) ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
1−(𝑟/𝑝)

𝐸

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
𝑟/𝑝

𝐿
𝑟(𝐸,𝜇)

. (113)

We deduce that (𝐸, 𝜇) satisfies the Bernstein-Markov inequal-
ity. For 𝜖 > 0 there is a constant 𝐶 = 𝐶(𝜖, 𝑝) > 0 such that for
all (analytic) polynomials 𝑃 we have

‖𝑃‖
𝐸
≤ 𝐶(1 + 𝜖)deg(𝑃)‖𝑃‖𝐿𝑝(𝐸,𝜇). (114)

Thus if (𝐸, 𝜇) satisfies the Bernstein-Markov inequality
for one 𝑝 > 0, then (92) and (95) are satisfied for all 𝑝 > 0.
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