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We study the stability and stabilization of complex fractional Lorenz system.The fractional calculus are taken in sense of the Caputo
derivatives. The technique is based on stability theory of fractional-order systems. Numerical solutions are imposed.

1. Introduction

Chaos theory is a new branch of mathematics and physics.
It provided a new method to understand the behavior of
the processes in the world. Chaotic behaviors virtue in
different areas of science and engineering such as mechanics,
physics, electronics, medicine, biology, ecology, economy. In
1963, Lorenz discovered the chaotic system [1]. A dynamical
system is called chaotic if it is deterministic, has long-term
aperiodic behavior, and exhibits sensitive dependence on the
initial conditions. If the system has one positive Lyapunov
exponent, then it is called chaotic. The Lorenz system is
a system of ordinary differential equations that imposing
chaotic solutions for certain parameter values and initial
conditions. Researches along this line ultimately led to the
ruling of different classes of relevant chaotic systems. The
Lorenz system has advantages, it presents a symmetry, and
the equations are invariant under (𝑥, 𝑦) → (−𝑥, −𝑦). Also
the system is dissipative with a value of the divergence and
therefore the volume in phase space always contracts under
the flow. Moreover the Lorenz system is bounded.

This system was widely considered over the course of the
1970s, 1980s, and 1990s (see [2–5]) as a paradigmatic chaotic
problem. In 1994, Sprott defined the diffusionless Lorenz
system (a one-parameter version of Lorenz system) [6]. In
1999, Chen and Ueta established an interesting system [7],
which is the dual system to the Lorenz system [1], in the sense
defined by Vaněček and Čelikovský [8, 9]. Later, Lü and Chen
[10] furthermore introduced a chaotic system, which refers

to the transition between the Lorenz and the Chen systems.
In 2005, Čelikovský and Chen described another generalized
Lorenz canonical form [11]. More systems are posed in 2006-
2007; a unified Lorenz-type system is recognized by Yang et
al. [12, 13]. In 2009, Huang and Yang found a new chaotic
system, which contains special cases as the modified Lorenz
system and conjugate Chen system [14].

Recently, the Lorenz system has got many studies and
attentions from researchers. Zhang et al. considered the syn-
chronization of two identical hyperchaotic Lorenz systems
with time delay only by a single linear controller [15], while
Shi and Wang investigated a class of new synchronization
(hybrid synchronization) coexisting in the same system [16].
Camargo et al. considered a system of two identical linearly
coupled Lorenz oscillators presenting synchronization of
chaotic motion for a specified range of the coupling strength.
They verified the existence of global synchronization and
antisynchronization attractors with intermingled basins of
attraction, such that the basin of one attractor is riddled with
holes belonging to the basin of the other attractor and vice
versa [17]. Finally, Li et al. concerned withmodel-free control
of the Lorenz chaotic system, where only the online input
and output are available, while the mathematic model of the
system is unknown [18].

Fractional-order chaotic systems have been studied
widely in current years in many fields such as chaotic
phenomena, chaotic control, chaotic synchronization, and
other related studies. It has been provided that many
fractional-order dynamical systems, as some well-known
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integer-order systems, can be displayed complex bifurca-
tion and chaotic phenomena. For example, the fractional-
order Lorenz system, the fractional-order Chen system, the
fractional-order Lü system, and the fractional-order unified
system also exhibit chaotic behavior.

Čelikovský and Chen (2002) generalized a new Lorenz
canonical form of one parameter [19, 20]. The dynamics of
the fractional-order Lorenz model was also investigated by
I. Grigorenko and E. Grigorenko (2003) [21]. Li and Peng
(2004) studied the time-domain algorithm to compute the
chaotic attractor of the fractional differential system, which
is completely different from the frequency-domain one [22].
Yan and Li (2007) [23] considered chaos synchronization of
fractional-order Lorenz, Rossler, and Chen systems taking
one as master and second one as slave. Zhou and Cheng
(2008) [24] discussed a synchronization between different
fractional-order chaotic systems, namely, Rossler and Chen
systems andChua andChen systems. Based on the qualitative
theory, the existence and uniqueness of solutions for a
class of fractional-order Lorenz chaotic systems have been
investigated theoretically by Yu et al. (2009) [25]. Fractional-
order diffusion less Lorenz system has been investigated
numerically by Sun and Sprott (2009) [26], and results have
shown that the system has complex dynamics with inter-
esting characteristics. Recently, Agrawal et al., synchronized
fractional-order chaotic systems using active control method
[27]. Xu et al., investigated the phenomenon of diffusionless
Lorenz system with fractional-order [28]. Zhou and Ding
studied the stability and stabilizations of equilibrium points
of the fractional-order Lorenz chaotic system [29]. Finally,
Si et al. employed an uncertain complex network with four
fractional-order Lorenz systems to verify the effectiveness of
the proposed approach [30].

In current years, researchers introduced and studied
several types of chaotic nonlinear systems with complex vari-
ables. These systems which involving complex variables are
employed to describe the physics of a detuned laser, rotating
fluids, disk dynamos, electronic circuits, and particle beam
dynamics in high-energy accelerators. As special model, the
chaotic complex Lorenz system which is used to describe
and simulate the physics of detuned lasers and thermal
convection of liquid flows. The complex Lorenz model is,
in fact, the outcome of the study of Baroclinic models. This
model corresponds to the equilibrium state of the atmosphere
in which surfaces of constant density are not parallel to the
surface of constant gravitational potential. In 1982, Fowler et
al. defined and studied a complex Lorenz as a generalization
of the real Lorenz system [31, 32]. The complex variables of
Lorenz system are related, respectively, to electric field, the
atomic polarization amplitudes, and the population inversion
in a ring laser system of two-level atoms; for more details,
see [33, 34]. Later Rauh et al. (1996) [35] introduced a set
of equations to model such a system. This has the same
structure as that of Lorenz equations, but it occurs in the
complex domain. Panchev and Vitanov (2005) [36] studied
asymptotic properties of some complex Lorenz-like systems,
while other properties and chaotic synchronization of the
complex Lorenz model are studied byMahmoud et al. (2007)

[37]. Further studies are introduced due to Mahmoud et
al.; they constructed the new hyperchaotic complex Lorenz
systems by extending the ideas of adding state feedback
controls and introducing the complex periodic forcing [38,
39], while G. M. Mahmoud and E. E. Mahmoud (2010)
[40] investigated complete synchronization of n-dimensional
chaotic complex systems with uncertain parameters. Li et al.
(2012) [41] considered the distributed robust control prob-
lems of uncertain linear multiagent systems with undirected
communication topologies. It was assumed that the agents
have identical nominal dynamics while subject to different
norm-bounded parameter uncertainties, leading to weakly
heterogeneous multiagent systems. Mahmoud (2012) [42]
introduced a new hyperchaotic complex Lorenz system. This
hyperchaotic complex system was constructed by adding
a linear controller to the second equation of the chaotic
complex Lorenz system. Finally, El-Sayed et al. [43] studied
the dynamic properties of the continuous dynamical system
of the fractional equations of complex variables. The five-
dimensional complex Lorenz model is often used to explain
and simulate the physics of tuned lasers. These studies have
their origin in the shaping expression by Haken [44] of the
isomorphism between the three equations of the real Lorenz
model and the three real equations for a single-mode laser
operatingwith its resonant cavity tuned to resonancewith the
material transition. Furthermore, analytic studies of model
systems can be found in [45–47].

In this paper, we study the stability and stabilization of
fractional complex Lorenz model. The fractional calculus are
taken in sense of the Caputo derivatives. Caputo initial value
problem holds for both homogeneous and nonhomogeneous
conditions. For this reason choice Caputo derivative is better
than other fractional derivatives.The technique based on sta-
bility theory of fractional-order systems. Numerical solutions
are imposed.

2. Fractional Calculus

The idea of the fractional calculus (i.e., calculus of integrals
and derivatives of any arbitrary real or complex order)
was planted over 300 years ago. Abel in 1823 investigated
the generalized tautochrone problem and for the first time
applied fractional calculus techniques in a physical problem.
Later Liouville applied fractional calculus to problems in
potential theory. Since that time the fractional calculus has
haggard the attention of many researchers in all area of
sciences. Recently, the theory of fractional calculus has found
interesting applications in the theory of analytic functions.
The classical definitions of fractional operators and their
generalizations have fruitfully been applied in obtaining,
for example, the characterization properties, coefficient esti-
mates, distortion inequalities, and convolution structures for
various subclasses of analytic functions and the works in the
research monographs [48–50]. This section concerns with
some preliminaries and notations regarding the fractional
calculus. Let us start with the Riemann-Liouville fractional
operators.
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Definition 1. The fractional (arbitrary) order integral of the
function 𝑓 of order 𝛼 > 0 is defined by

𝐼
𝛼

𝑎
𝑓 (𝑡) = ∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

Γ (𝛼)
𝑓 (𝜏) 𝑑𝜏. (1)

When 𝑎 = 0, we write 𝐼𝛼
𝑎
𝑓(𝑡) = 𝑓(𝑡) ∗ 𝜙

𝛼
(𝑡), where (∗)

denoted the convolution product, 𝜙
𝛼
(𝑡) = 𝑡𝛼−1/Γ(𝛼), 𝑡 > 0,

and 𝜙
𝛼
(𝑡) = 0, 𝑡 ≤ 0 and 𝜙

𝛼
→ 𝛿(𝑡), as 𝛼 → 0 where 𝛿(𝑡) is

the delta function.

Definition 2. The fractional (arbitrary) order derivative of the
function 𝑓 of order 0 ≤ 𝛼 < 1 is defined by

𝐷
𝛼

𝑎
𝑓 (𝑡) =

𝑑

𝑑𝑡
∫
𝑡

𝑎

(𝑡 − 𝜏)
−𝛼

Γ (1 − 𝛼)
𝑓 (𝜏) 𝑑𝜏 =

𝑑

𝑑𝑡
𝐼
1−𝛼

𝑎
𝑓 (𝑡) . (2)

Remark 3. From Definitions 1 and 2, 𝑎 = 0, we have

𝐷
𝛼

𝑡
𝜇

=
Γ (𝜇 + 1)

Γ (𝜇 − 𝛼 + 1)
𝑡
𝜇−𝛼

, 𝜇 > −1; 0 < 𝛼 < 1,

𝐼
𝛼

𝑡
𝜇

=
Γ (𝜇 + 1)

Γ (𝜇 + 𝛼 + 1)
𝑡
𝜇+𝛼

, 𝜇 > −1; 𝛼 > 0.

(3)

Definition 4. The Caputo fractional derivative of order 𝜇 > 0

is defined, for a smooth function 𝑓(𝑡) by

𝑐

𝐷
𝜇

𝑓 (𝑡) :=
1

Γ (𝑛 − 𝜇)
∫
𝑡

0

𝑓(𝑛) (𝜁)

(𝑡 − 𝜁)
𝜇−𝑛+1

𝑑𝜁, (4)

where 𝑛 = [𝜇] + 1, (the notation [𝜇] stands for the largest
integer not greater than 𝜇).

Remark 5. The following relations hold the following:

(i) Representation

𝑐

𝐷
𝜇

𝑓 (𝑡) = 𝐼
𝑛−𝜇

𝐷
𝑛

𝑓 (𝑡) , 𝑛 − 1 < 𝜇 < 𝑛. (5)

(ii) The Caputo fractional derivative of the power func-
tion

𝑐

𝐷
𝜇

𝑡
𝜇

=
Γ (𝜇 + 1)

Γ (𝜇 − 𝛼 + 1)
𝑡
𝜇−𝛼

= 𝐷
𝛼

𝑡
𝜇

. (6)

(iii)

𝐼
𝜇 𝑐

𝐷
𝜇

𝑓 (𝑡) = 𝑓 (𝑡) , 𝑓 (0) = 0, 𝜇 ∈ (0, 1) . (7)

(iv) Linearity

𝑐

𝐷
𝜇

(𝜆𝑓 (𝑧) + 𝑔 (𝑧)) = 𝜆
𝑐

𝐷
𝜇

𝑧
𝑓 (𝑡) +

𝑐

𝐷
𝜇

𝑔 (𝑡) . (8)

(v) Noncommutation

𝑐

𝐷
𝜇

𝐷
𝛼

𝑓 (𝑡) ̸=𝐷
𝛼 𝑐

𝐷
𝜇

𝑓 (𝑡) . (9)

3. Stability of Fractional Complex System

A complex Lorenz-like system has been found in Laser
Physics and while analyzing baroclinic instability of the
geophysical flows in the atmosphere which takes the form

𝜉
.

1
= −𝜎𝜉

1
+ 𝜎𝜉
2
, (10)

𝜉
.

2
= 𝜌𝜉
1
− 𝑎𝜉
2
− 𝜉
1
𝜉
3
, (11)

𝜉
.

3
= −𝑏𝜉

3
+
1

2
(𝜉
∗

1
𝜉
2
+ 𝜉
1
𝜉
∗

2
) , (12)

where 𝜉
1
and 𝜉

2
are complex variables; that is, 𝜉

1
= 𝑢
1
+

𝑖𝑢
2
, 𝜉∗
1
= 𝑢
1
− 𝑖𝑢
2
and 𝜉
2
= 𝑢
3
+ 𝑖𝑢
4
, 𝜉∗
2
= 𝑢
3
− 𝑖𝑢
4
, but 𝜉

3
:= 𝑢
5

is real variable, and 𝑎 = 1 − 𝑖ℓ, such that 𝜌, ℓ, 𝜎, and 𝑏 are real
parameters. It assumed that 𝑢

𝑘
, 𝑘 = 1, . . . , 5 is a function in 𝑡.

Here, we consider the following fractional complex
Lorenz system, in sense of the Caputo derivative:

𝑐

𝐷
𝜇
1𝜉
1
= −𝜎𝜉

1
+ 𝜎𝜉
2
,

𝑐

𝐷
𝜇
2𝜉
2
= 𝜌𝜉
1
− 𝑎𝜉
2
− 𝜉
1
𝜉
3
,

𝑐

𝐷
𝜇
3𝜉
3
= −𝑏𝜉

3
+
1

2
(𝜉
∗

1
𝜉
2
+ 𝜉
1
𝜉
∗

2
) 𝜉
3
,

(13)

where 0 < 𝜇
𝑗
≤ 1, 𝑗 = 1, 2, 3; in this note we shall take 𝜇

𝑗
≥

0.95. For real variables, system (13) reduces to the system of
the form

𝑐

𝐷
𝜇
1𝑢
1
= −𝜎𝑢

1
+ 𝜎𝑢
3
,

𝑐

𝐷
𝜇
1𝑢
2
= −𝜎𝑢

2
+ 𝜎𝑢
4
,

𝑐

𝐷
𝜇
2𝑢
3
= 𝜌𝑢
1
− 𝑢
3
− ℓ𝑢
4
− 𝑢
1
𝑢
5
,

𝑐

𝐷
𝜇
2𝑢
4
= 𝜌𝑢
2
+ ℓ𝑢
3
− 𝑢
4
− 𝑢
2
𝑢
5
,

𝑐

𝐷
𝜇
3𝑢
5
= −𝑏𝑢

5
+ (𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
) 𝑢
5
.

(14)

In this section, we shall discuss the stability of the system
(14). For this purpose we need the following preliminaries
which can be found in [51].

Definition 6. The zero solution of the equation 𝑐𝐷𝜇𝑢 =

𝑓(𝑡, 𝑢(𝑡)), 𝜇 ∈ (0, 1] is said to be stable if, for any initial values
𝑢
0
, there exists 𝜖 > 0 such that ‖𝑢(𝑡)‖ ≤ 𝜖, for all 𝑡 > 𝑡

0
.

The zero is said to be asymptotically stable if it is stable, and
‖𝑢(𝑡)‖ → 0, 𝑡 → ∞.

Lemma 7. Assume the system of the form
𝑐

𝐷
𝜇

𝑢 = 𝐴𝑢 (𝑡) + ℎ (𝑢 (𝑡)) , 𝜇 ∈ (0, 1] , (15)

where 𝑢(𝑡) = (𝑢
1
, . . . , 𝑢

𝑛
(𝑡))
𝑇

∈ R𝑛, 𝐴 ∈ R𝑛×𝑛. If
| arg( spec (𝐴))| > 𝜇𝜋/2, 𝜇‖𝐴‖ > 1, spec(𝐴) denotes
the eigenvalues of 𝐴, and ‖ ⋅ ‖ denotes the 𝑙

2
norm; and

lim
𝑢→0

(‖ℎ(𝑢(𝑡))‖/‖𝑢(𝑡)‖) = 0, then the system (15) is
asymptotically stable.

Lemma 8. Assume the controller system with the linear
feedback control input
𝑐

𝐷
𝜇

𝑢 = (𝐴 + 𝐵𝐾) 𝑢 (𝑡) + ℎ (𝑢 (𝑡)) , 𝜇 ∈ (0, 1] , (16)
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where 𝐾 ∈ R1×𝑛 is a feedback, 𝐵 ∈ R𝑛×1, 𝑢(𝑡) = (𝑢
1
, . . . ,

𝑢
𝑛
(𝑡))
𝑇

∈ R𝑛, and 𝐴 ∈ R𝑛×𝑛. If | arg( spec (𝐴))| > 𝜇𝜋/2,

𝜇‖𝐴 + 𝐵𝐾‖ > 1, and lim
𝑢→0

(‖ℎ(𝑢(𝑡))‖/‖𝑢(𝑡)‖) = 0, then the
system (16) is asymptotically stable.

Theorem 9. If 𝑏 > 0, 𝜎 > 0, then the system (14) is asymptoti-
cally stable at the equilibrium point 𝑝

0
= (0, 0, 0, 0, 0).

Proof. System (14) can be written in the form (15), where

𝐴 = (

−𝜎 0 𝜎 0 0

0 −𝜎 0 𝜎 0

𝜌 0 −1 −ℓ 0

0 𝜌 ℓ −1 0

0 0 0 0 −𝑏

), (17)

ℎ (𝑢) = (

0

0

−𝑢
1
𝑢
5

−𝑢
2
𝑢
5

(𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
) 𝑢
5

). (18)

It is obvious that ℎ(𝑢) satisfies

lim
𝑢→0

‖ℎ (𝑢 (𝑡))‖

‖𝑢 (𝑡)‖

= lim
𝑢→0

√(−𝑢
1
𝑢
5
)
2

+ (−𝑢
2
𝑢
5
)
2

+ (𝑢
5
)
2

(𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
)
2

√(𝑢
1
)
2

+ (𝑢
2
)
2

+ (𝑢
3
)
2

+ (𝑢
4
)
2

+ (𝑢
5
)
2

≤ lim
𝑢→0

√(−𝑢
1
𝑢
5
)
2

+ (−𝑢
2
𝑢
5
)
2

+ (𝑢
5
)
2

(𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
)
2

√𝑢2
5

= lim
𝑢→0

√𝑢2
1
+ 𝑢2
2
+ (𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
)
2

= 0.

(19)

Moreover the characteristic equation of the system is

(𝜆 + 𝑏) [((𝜎 + 𝜆) (1 + 𝜆) − 𝜌𝜎)
2

+ (𝜎 + 𝜆)
2

ℓ
2

] = 0 (20)

and when ℓ = 0, the eigenvalues are

𝜆
1
= −𝑏, 𝜆

2,3
=

− (𝜎 + 1) ± √(𝜎 + 1)
2

− 4𝜎 (1 − 𝜌)

2
,

(21)

where 𝜆
2,3

are of multiplicity 2. Since −(𝜎 + 1) < 0, therefore

arg (𝜆𝑖)
 >

𝜋

2
>

𝜋

2
𝜇, 𝜇 = max (𝜇

𝑖
, 𝑖 = 1, 2, 3) (22)

and for suitable choice of the parameters 𝑏, 𝜎, ℓ, and 𝜇
𝑖
we

have ‖𝐴‖𝜇 > 1, 𝜇 := min(𝜇
𝑖
). According to Lemma 7,

it implies that the equilibrium point 𝑝
0
of system (14) is

asymptotically stable. Now for ℓ ̸= 0 and 𝜌 = 0, the eigenval-
ues are

𝜆
1
= −𝑏, 𝜆

2,3
= −𝜎, 𝜆

4,5
= −1 ± 𝑖ℓ, (23)

hence relation (16) holds, and consequently the system (14) is
asymptotically stable. Finally, the case ℓ ̸= 0 and 𝜌 ̸= 0 (𝜌 > 1)

such that 𝜎 = 1, and ℓ2 > 2(𝜌 − 1) implies the eigenvalues of
multiplicity 2

𝜆
1
= −𝑏, 𝜆

2,3
=

−2 − (ℓ2 − 2𝜌) ± √(ℓ2 − 2𝜌)
2

− 4𝜌2

2
(24)

which yields that the system is asymptotically stable at 𝑝
0
.

Note that the other cases impose complex 𝜎. This completes
the proof.

The system (14) can be assumed in the form (16), we derive
the following result.

Theorem 10. If 𝑏 > 0, 𝜎 > 0, then the controlled system
(14) is asymptotically stable at the equilibrium point 𝑝

0
=

(0, 0, 0, 0, 0).

Proof. Applying control input 𝑣(𝑡) = 𝐵𝐾𝑢(𝑡) on (14), where
𝐵 = (−𝜎, 0, 0, 0, 0)

𝑇 and 𝐾 = (0, 0, 1, 0, 0) are taken in
which | arg(spec(𝐴 + 𝐵𝐾))| > 𝜇𝜋/2, where the characteristic
equation of the system is

(𝜆 + 𝑏) (𝜎 + 𝜆) [− (𝜎 + 𝜆) (𝜆 + 1)
2

+ 𝜎𝜌 (1 + 𝜆) − ℓ
2

(𝜎 + 𝜆)]

= 0.

(25)

Obviously, for ℓ = 0 the eigenvalues of the system are

𝜆
1
= −𝑏, 𝜆

2
= −𝜎, 𝜆

3
= −1, (26)

where 𝜆
2
and 𝜆

3
of multiplicity 2. Also when 𝜌 = 0, the

eigenvalues are

𝜆
1
= −𝑏, 𝜆

2
= −𝜎, 𝜆

3
= −1 ± 𝑖ℓ. (27)

Finally for ℓ ̸= 0, 𝜌 ̸= 0, and 𝜎 = 1, the system admits the
following eigenvalues:

𝜆
1
= −𝑏, 𝜆

2,3
= −1, 𝜆

4,5
= −1 ± √𝜌 − ℓ2. (28)

Furthermore, 𝜇‖𝐴 + 𝐵𝐾‖ > 1; hence in view of Lemma 8,
controlled system (14) is asymptotically stable at 𝑝

0
.

4. Stabilizing 𝑝
0

In this section, we design an evaluation controller for
fractional-order Lorenz chaotic system (14) via fractional-
order derivative. For this puropose we need the following
result which can be found in [52].
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Lemma 11. The fixed points of the following nonlinear com-
mensurate fractional-order autonomous system,

𝑐

𝐷
𝜇

𝑢 = 𝑓 (𝑢) , 𝜇 ∈ (0, 1) , (29)

are asymptotically stable if all eigenvalues (𝜆) of the Jacobian
matrix evaluated at the fixed points satisfy | arg 𝜆| > 0.5𝜋𝜇,
where 0 < 𝜇 < 1, 𝑢 ∈ 𝑅𝑛, 𝑓 : 𝑅𝑛 → 𝑅𝑛 are continu-
ous nonlinear vector functions, and the fixed points of this non-
linear commensurate fractional-order system are calculated by
solving equation 𝑓(𝑢) = 0.

We can obtain the following results.

Theorem 12. Assume the controlled fractional-order Lorenz
chaotic system

𝑐

𝐷
𝜇
1𝑢
1
= −𝜎𝑢

1
+ 𝜎𝑢
3
,

𝑐

𝐷
𝜇
1𝑢
2
= −𝜎𝑢

2
+ 𝜎𝑢
4
,

𝑐

𝐷
𝜇
2𝑢
3
= 𝜌𝑢
1
− 𝑢
3
− ℓ𝑢
4
− 𝑢
1
𝑢
5
+ 𝑓
1
(𝑢
1
),

𝑐

𝐷
𝜇
2𝑢
4
= 𝜌𝑢
2
+ ℓ𝑢
3
− 𝑢
4
− 𝑢
2
𝑢
5
,

𝑐

𝐷
𝜇
3𝑢
5
= −𝑏𝑢

5
+ (𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
) 𝑢
5
,

(30)

where 𝑓
1
(𝑢
1
) = −𝑘

11

𝑐𝐷𝜇1𝑢
1
− 𝑘
12
𝑢
1
is the fractional-order

controller, and 𝑘
1𝑖
, 𝑖 = 1, 2 is the feedback coefficient. For the

case ℓ = 0, if 𝑏 > 0, 𝜎 > 0,

1 + 𝑘
11
𝜎 > 0, 𝑘

12
= 𝜌 + 𝑘

11
𝜎, (31)

then system (30) will asymptotically converge to the unstable
equilibrium point 𝑝

0
. Furthermore, for the case ℓ ̸= 0, 𝜌 ̸= 0,

and 𝜎 = 1, if 𝑏 > 0 and 𝑘
11

> −3, then system (30) will
asymptotically converge to the unstable equilibrium point 𝑝

0
.

Proof. The Jacobi matrix of the controlled fractional-order
Lorenz chaotic system (30) at 𝑝

0
is

𝐽 = (

−𝜎 0 𝜎 0 0

0 −𝜎 0 𝜎 0

𝜌 + 𝑘
11
𝜎 − 𝑘
12

0 −1 − 𝑘
11
𝜎 −ℓ 0

0 𝜌 ℓ −1 0

0 0 0 0 −𝑏

). (32)

Since 𝑘
12

= 𝜌 + 𝑘
11
𝜎, we have

𝐽 = (

−𝜎 0 𝜎 0 0

0 −𝜎 0 𝜎 0

0 0 −1 − 𝑘
11
𝜎 −ℓ 0

0 𝜌 ℓ −1 0

0 0 0 0 −𝑏

). (33)

Thus the characteristic equation takes the form

(𝑏 + 𝜆) [(𝜎 + 𝜆)
2

(1 + 𝜆) (1 + 𝑘
11
𝜎 + 𝜆)

− (𝜎 + 𝜆) 𝜌𝜎 (1 + 𝑘
11
𝜎 + 𝜆) + (𝜎 + 𝜆)

2

ℓ
2

] = 0

(34)

which leads to the eigenvalues

𝜆
1
= −𝑏, 𝜆

2
= −𝜎, 𝜆

3
= −1 − 𝑘

11
𝜎,

𝜆
4,5

=
− (𝜎 + 1) ± √(𝜎 + 1)

2

− 4𝜎 (1 − 𝜌)

2

(35)

when ℓ = 0. And for 𝜌 = 0, we have

𝜆
1
= −𝑏, 𝜆

2,3
= −𝜎,

𝜆
4,5

=
− (2 + 𝑘

11
𝜎) ± √(2 + 𝑘

11
𝜎)
2

− 4 (ℓ2 + 𝑘
11
𝜎 + 1)

2
.

(36)

Since 𝑏 > 0, 𝜎 > 0, and 1 + 𝑘
11
𝜎 > 0, therefore,

arg 𝜆𝑖
 > 0.5𝜋𝜇, 𝑖 = 1, . . . , 5, (37)

where 𝜇 := max 𝜇
𝑗
, and 𝑗 = 1, 2, 3. According to Lemma 11,

it yields that the equilibrium point 𝑝
0
of system (30) is

asymptotically stable; that is, the unstable equilibrium point
𝑝
0
in fractional-order Lorenz system (30) can be stabilized

via fractional-order derivative. For the case ℓ ̸= 0, 𝜌 ̸= 0, and
𝜎 = 1, since 𝑘

11
> −3, then the characteristic equation

𝜆
3

+ (3 + 𝑘
11
) 𝜆
2

+ (3 + 2𝑘
11

− 𝜌 + ℓ
2

) 𝜆

+ (1 + 𝑘
11

− 𝜌 − 𝜌𝑘
11

+ ℓ
2

) = 0

(38)

has negative eigenvalues, and hence the system is asymptoti-
cally stable. The proof is completed.

Theorem 13. Assume the controlled fractional-order Lorenz
chaotic system

𝑐

𝐷
𝜇
1𝑢
1
= −𝜎𝑢

1
+ 𝜎𝑢
3
,

𝑐

𝐷
𝜇
1𝑢
2
= −𝜎𝑢

2
+ 𝜎𝑢
4
,

𝑐

𝐷
𝜇
2𝑢
3
= 𝜌𝑢
1
− 𝑢
3
− ℓ𝑢
4
− 𝑢
1
𝑢
5
,

𝑐

𝐷
𝜇
2𝑢
4
= 𝜌𝑢
2
+ ℓ𝑢
3
− 𝑢
4
− 𝑢
2
𝑢
5
+ 𝑓
2
(𝑢
2
),

𝑐

𝐷
𝜇
3𝑢
5
= −𝑏𝑢

5
+ (𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
) 𝑢
5
,

(39)

where 𝑓
2
(𝑢
2
) = −𝑘

21

𝑐𝐷𝜇1𝑢
2
− 𝑘
22
𝑢
2
is the fractional-order

controller, and 𝑘
2𝑖
, 𝑖 = 1, 2 is the feedback coefficient. For the

case ℓ = 0, if 𝑏 > 0, 𝜎 > 0,
1 + 𝑘
21
𝜎 > 0, 𝑘

22
= 𝜌 + 𝑘

21
𝜎, (40)

then system (39) will asymptotically converge to the unstable
equilibrium point 𝑝

0
. Furthermore, for the case ℓ ̸= 0, 𝜌 ̸= 0,

and 𝜎 = 1, if 𝑏 > 0 and 𝑘
21

> −3, then system (39) will
asymptotically converge to the unstable equilibrium point 𝑝

0
.

Proof. The Jacobi matrix of the controlled fractional-order
Lorenz chaotic system (39) at 𝑝

0
is

𝐽 = (

−𝜎 0 𝜎 0 0

0 −𝜎 0 𝜎 0

𝜌 0 −1 −ℓ 0

0 𝜌 + 𝑘
21
𝜎 − 𝑘
22

ℓ − (1 + 𝜎𝑘
21
) 0

0 0 0 0 −𝑏

). (41)
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Since 𝑘
22

= 𝜌 + 𝑘
21
𝜎, we have

𝐽 = (

−𝜎 0 𝜎 0 0

0 −𝜎 0 𝜎 0

𝜌 0 −1 −ℓ 0

0 0 ℓ − (1 + 𝜎𝑘
21
) 0

0 0 0 0 −𝑏

). (42)

Therefore, the characteristic equation is

(𝑏 + 𝜆) (𝜎 + 𝜆) [(𝜎 + 𝜆) (1 + 𝜆) (1 + 𝑘
21
𝜎 + 𝜆)

+𝜌𝜎 (1 + 𝑘
21
𝜎 + 𝜆) − (𝜎 + 𝜆) ℓ

2

] = 0

(43)

which yields the eigenvalues

𝜆
1
= −𝑏, 𝜆

2
= −𝜎, 𝜆

3
= −1 − 𝑘

21
𝜎,

𝜆
4,5

=
− (𝜎 + 1) ± √(𝜎 + 1)

2

− 4𝜎 (1 + 𝜌)

2

(44)

when ℓ = 0. while for 𝜌 = 0, we impose

𝜆
1
= −𝑏, 𝜆

2,3
= −𝜎,

𝜆
4,5

=
− (2 + 𝑘

21
𝜎) ± √(2 + 𝑘

21
𝜎)
2

− 4 (1 − ℓ2 + 𝑘
21
𝜎)

2
(45)

Since 𝑏 > 0, 𝜎 > 0, and 1 + 𝑘
21
𝜎 > 0, therefore,

arg 𝜆𝑖
 > 0.5𝜋𝜇, 𝑖 = 1, . . . , 5, (46)

where 𝜇 := max 𝜇
𝑗
, 𝑗 = 1, 2, 3. According to

Lemma 11, it yields that the equilibrium point 𝑝
0
of system

(39) is asymptotically stable; that is, the unstable equilib-
rium point 𝑝

0
in fractional-order Lorenz system (39) can

be stabilized via fractional-order derivative. For the case
ℓ ̸= 0, 𝜌 ̸= 0, and 𝜎 = 1, since 𝑘

21
> −3, then the characteris-

tic equation

𝜆
3

+ (3 + 𝑘
21
) 𝜆
2

+ (3 + 2𝑘
21

+ 𝜌 − ℓ
2

) 𝜆

+ (1 + 𝑘
21
(1 + 𝜌) − ℓ

2

) = 0

(47)

has negative eigenvalues, and hence the system is asymptoti-
cally stable. This completes the proof.

Theorem 14. Assume the controlled fractional-order Lorenz
chaotic system

𝑐

𝐷
𝜇
1𝑢
1
= −𝜎𝑢

1
+ 𝜎𝑢
3
+ 𝑓
3
(𝑢
3
),

𝑐

𝐷
𝜇
1𝑢
2
= −𝜎𝑢

2
+ 𝜎𝑢
4
,

𝑐

𝐷
𝜇
2𝑢
3
= 𝜌𝑢
1
− 𝑢
3
− ℓ𝑢
4
− 𝑢
1
𝑢
5
,

𝑐

𝐷
𝜇
2𝑢
4
= 𝜌𝑢
2
+ ℓ𝑢
3
− 𝑢
4
− 𝑢
2
𝑢
5
,

𝑐

𝐷
𝜇
3𝑢
5
= −𝑏𝑢

5
+ (𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
) 𝑢
5
,

(48)

where 𝑓
3
(𝑢
3
) = −𝑘

31

𝑐𝐷𝜇2𝑢
3
− 𝑘
32
𝑢
3
is the fractional-order

controller, and 𝑘
2𝑖
, 𝑖 = 1, 2 is the feedback coefficient. If ℓ =

0, 𝑏 > 0, 𝜎 > 0, 𝑘
32

= 𝜎 + 𝑘
31
, and 𝜎 + 𝜌𝑘

31
> 0, then system

(48) will asymptotically converge to the unstable equilibrium
point 𝑝

0
.

Proof. The Jacobi matrix of the controlled fractional-order
Lorenz chaotic system (48) at 𝑝

0
is

𝐽 = (

−𝜎 − 𝜌𝑘
31

0 𝜎 + 𝑘
31

− 𝑘
32

ℓ𝑘
31

0

0 −𝜎 0 𝜎 0

𝜌 0 −1 −ℓ 0

0 𝜌 ℓ −1 0

0 0 0 0 −𝑏

). (49)

Because ℓ = 0, 𝑘
32

= 𝜎 + 𝑘
31
𝜎, so we have

𝐽 = (

−𝜎 − 𝜌𝑘
31

0 0 0 0

0 −𝜎 0 𝜎 0

𝜌 0 −1 0 0

0 𝜌 0 −1 0

0 0 0 0 −𝑏

). (50)

The characteristic equation is

(𝑏 + 𝜆) (𝜎 + 𝜌𝑘
31

+ 𝜆) (1 + 𝜆) [(𝜎 + 𝜆) (1 + 𝜆) − 𝜌𝜎] = 0

(51)

which implies the eigenvalues

𝜆
1
= −𝑏, 𝜆

2
= −𝜎, 𝜆

3
= −1,

𝜆
4,5

=
− (𝜎 + 1) ± √(𝜎 + 1)

2

− 4𝜎 (1 − 𝜌)

2
.

(52)

By the assumptions of the theorem and in virtue of Lemma 11,
we obtain that system (48) will asymptotically converge to the
unstable equilibrium point 𝑝

0
.

In the samemanner ofTheorem 14, we have the following
result.

Theorem 15. Assume the controlled fractional-order Lorenz
chaotic system

𝑐

𝐷
𝜇
1𝑢
1
= −𝜎𝑢

1
+ 𝜎𝑢
3
,

𝑐

𝐷
𝜇
1𝑢
2
= −𝜎𝑢

2
+ 𝜎𝑢
4
+ 𝑓
4
(𝑢
4
),

𝑐

𝐷
𝜇
2𝑢
3
= 𝜌𝑢
1
− 𝑢
3
− ℓ𝑢
4
− 𝑢
1
𝑢
5
,

𝑐

𝐷
𝜇
2𝑢
4
= 𝜌𝑢
2
+ ℓ𝑢
3
− 𝑢
4
− 𝑢
2
𝑢
5
,

𝑐

𝐷
𝜇
3𝑢
5
= −𝑏𝑢

5
+ (𝑢
1
𝑢
3
+ 𝑢
2
𝑢
4
) 𝑢
5
,

(53)
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where 𝑓
4
(𝑢
4
) = −𝑘

41

𝑐𝐷𝜇2𝑢
4
− 𝑘
42
𝑢
4
is the fractional-order

controller, and 𝑘
2𝑖
, 𝑖 = 1, 2 is the feedback coefficient. If ℓ =

0, 𝑏 > 0, 𝜎 > 0, 𝑘
42

= 𝜎 + 𝑘
41
, and 𝜎 + 𝜌𝑘

41
> 0, then system

(53) will asymptotically converge to the unstable equilibrium
point 𝑝

0
.

5. Numerical Solution

In this section, we discuss the numerical solution of frac-
tional differential equations. All the numerical simulations
of fractional-order system in this paper are based on [22].
Set ℎ = 𝑇/𝑁, 𝑡

𝑛
= 𝑛ℎ, and 𝑛 = 1, . . . , 𝑁 with the initial

condition (𝑢
1
(0), . . . , 𝑢

5
(0)), therefore, the system (14) can be

described as follows:

𝑢
1
(𝑛 + 1)

= 𝑢
1
(0) +

ℎ𝜇1

Γ (𝜇
1
+ 2)

[

[

𝜎 (−𝑢
𝑝

1
(𝑛 + 1) + 𝑢

𝑝

3
(𝑛 + 1)) ,

+

𝑛

∑
𝑗=0

𝐴
1,𝑗,𝑛+1

× 𝜎 (−𝑢
1
(𝑗) + 𝑢

3
(𝑗))]

]

𝑢
2
(𝑛 + 1)

= 𝑢
2
(0) +

ℎ
𝜇
1

Γ (𝜇
1
+ 2)

[

[

𝜎 (−𝑢
𝑝

2
(𝑛 + 1) + 𝑢

𝑝

4
(𝑛 + 1)) ,

+

𝑛

∑
𝑗=0

𝐴
2,𝑗,𝑛+1

× 𝜎 (−𝑢
2
(𝑗) + 𝑢

4
(𝑗))]

]

𝑢
3
(𝑛 + 1)

= 𝑢
3
(0) +

ℎ𝜇2

Γ (𝜇
2
+ 2)

× [

[

(𝜌𝑢
𝑝

1
(𝑛 + 1) − 𝑢

𝑝

3
(𝑛 + 1)

−ℓ𝑢
𝑝

4
(𝑛 + 1) − 𝑢

𝑝

1
(𝑛 + 1) 𝑢

𝑝

5
(𝑛 + 1))

+

𝑛

∑
𝑗=0

𝐴
3,𝑗,𝑛+1

(𝜌𝑢
1
(𝑗)−𝑢

3
(𝑗)−ℓ𝑢

4
(𝑗)−𝑢

1
(𝑗) 𝑢
5
(𝑗))]

]

,

𝑢
4
(𝑛 + 1)

= 𝑢
4
(0) +

ℎ
𝜇
2

Γ (𝜇
2
+ 2)

× [

[

(𝜌𝑢
𝑝

2
(𝑛 + 1) − 𝑢

𝑝

4
(𝑛 + 1) + ℓ𝑢

𝑝

3
(𝑛 + 1)

−𝑢
𝑝

2
(𝑛 + 1) 𝑢

𝑝

5
(𝑛 + 1))

+

𝑛

∑
𝑗=0

𝐴
4,𝑗,𝑛+1

(𝜌𝑢
2
(𝑗)−𝑢

4
(𝑗)+ ℓ𝑢

3
(𝑗) −𝑢

2
(𝑗) 𝑢
5
(𝑗))]

]

,

𝑢
5
(𝑛 + 1)

= 𝑢
5
(0) +

ℎ
𝜇
3

Γ (𝜇
3
+ 2)

× [

[

(−𝑏𝑢
𝑝

5
(𝑛 + 1)

+(𝑢
𝑝

1
(𝑛+1) 𝑢

𝑝

3
(𝑛+1)+𝑢

𝑝

2
(𝑛+1) 𝑢

𝑝

4
(𝑛+1))

×𝑢
𝑝

5
(𝑛+1))+

𝑛

∑
𝑗=0

𝐴
5,𝑗,𝑛+1

× (−𝑏𝑢
5
(𝑗)+(𝑢

1
(𝑗) 𝑢
3
(𝑗)+𝑢

2
(𝑗) 𝑢
4
(𝑗)) 𝑢

5
(𝑗)) ]

]

,

(54)

where

𝑢
𝑝

1
(𝑛 + 1) = 𝑢

1
(0) +

𝑛

∑
𝑗=0

𝐵
1,𝑗,𝑛+1

× 𝜎 (−𝑢
1
(𝑗) + 𝑢

3
(𝑗)) ,

𝑢
𝑝

2
(𝑛 + 1) = 𝑢

2
(0) +

𝑛

∑
𝑗=0

𝐵
2,𝑗,𝑛+1

× 𝜎 (−𝑢
2
(𝑗) + 𝑢

4
(𝑗)) ,

𝑢
𝑝

3
(𝑛 + 1) = 𝑢

3
(0) +

𝑛

∑
𝑗=0

𝐵
3,𝑗,𝑛+1

× (𝜌𝑢
1
(𝑗) − 𝑢

3
(𝑗) − ℓ𝑢

4
(𝑗) − 𝑢

1
(𝑗) 𝑢
5
(𝑗)) ,

𝑢
𝑝

4
(𝑛 + 1) = 𝑢

4
(0) +

𝑛

∑
𝑗=0

𝐵
4,𝑗,𝑛+1

× (𝜌𝑢
2
(𝑗) − 𝑢

4
(𝑗) + ℓ𝑢

3
(𝑗) − 𝑢

2
(𝑗) 𝑢
5
(𝑗)) ,

𝑢
𝑝

5
(𝑛 + 1)

= 𝑢
5
(0) +

𝑛

∑
𝑗=0

𝐵
5,𝑗,𝑛+1

× (−𝑏𝑢
5
(𝑗) + (𝑢

1
(𝑗) 𝑢
3
(𝑗) + 𝑢

2
(𝑗) 𝑢
4
(𝑗)) 𝑢

5
(𝑗)) ,

(55)

and for 𝑘 = 1, . . . , 5

𝐴
𝑘,𝑗,𝑛+1

=

{{{{

{{{{

{

𝑛
𝜇+1 − (𝑛 − 𝜇) (𝑛 + 1)

𝜇

, 𝑗 = 0,

(𝑛 − 𝑗 + 2)
𝜇+1

+ (𝑛 − 𝑗)
𝜇+1

−2(𝑛 − 𝑗 + 2)
𝜇+1

, 1 ≤ 𝑗 ≤ 𝑛,

1, 𝑗 = 𝑛 + 1,

𝐵
𝑘,𝑗,𝑛+1

=
ℎ𝜇

𝜇
[(𝑛 − 𝑗 + 1)

𝜇

− (𝑛 − 𝑗)
𝜇

] , 0 ≤ 𝑗 ≤ 𝑛.

(56)
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Figure 1: Asymptotically stable at 𝑝
0
.

The error of this approximation can be computed as follows:
𝑢𝑖 (𝑡𝑛) − 𝑢

𝑖
(𝑛)

 = 𝑜 (ℎ
𝜇

) , 𝑝 = min (2, 1 +max 𝜇
1,2,3

) .

(57)

6. Synchronizing 𝑝
0

we consider a feedback controller for the fractional-order
Lorenz chaotic system (14) via fractional-order derivative and
obtain the controlled response system

𝑐

𝐷
𝜇
1𝑣
1
= −𝜎𝑣

1
+ 𝜎𝑣
3
,

𝑐

𝐷
𝜇
1𝑣
2
= −𝜎𝑣

2
+ 𝜎𝑣
4
,

𝑐

𝐷
𝜇
2𝑣
3
= 𝜌𝑣
1
− 𝑣
3
− ℓ𝑣
4
− 𝑣
1
𝑣
5
+ 𝑉,

𝑐

𝐷
𝜇
2𝑣
4
= 𝜌𝑣
2
+ ℓ𝑣
3
− 𝑣
4
− 𝑣
2
𝑣
5
,

𝑐

𝐷
𝜇
3𝑣
5
= −𝑏𝑣

5
+ (𝑣
1
𝑣
3
+ 𝑣
2
𝑣
4
) 𝑣
5
,

(58)

where

𝑉 = 𝑘
1
[
𝑐

𝐷
𝜇
1𝑣
1
− 𝐷
𝜇
1𝑢
1
] + 𝑘
2
(𝑣
1
− 𝑢
1
)

+ 𝑣
1
𝑣
5
− 𝜌𝑢
1
+ 𝑢
3
+ ℓ𝑢
4

(59)

is the fractional-order controller, and 𝑘
𝑖
, 𝑖 = 1, 2 is the

feedback coefficient. We need the following result which can
be found in [53].

Lemma 16. The following linear commensurate fractional-
order autonomous system,

𝑐

𝐷
𝜇

𝑢 = 𝐴𝑢, 𝜇 ∈ (0, 1) , (60)

is asymptotically stable if and only if | arg 𝜆| > 0.5𝜋𝜇 is satisfied
for all eigenvalues (𝜆) of matrix 𝐴. Also, this system is stable if
and only if | arg 𝜆| ≥ 0.5𝜋𝜇 is satisfied for all eigenvalues (𝜆) of
matrix𝐴, and those critical eigenvalues which satisfy | arg 𝜆| =
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.
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Figure 4: (10, 28, 8/3, 0).

Figure 5: (10, 28, 8/3, 1).

Figure 6: (10, 28, 8/3, 10).
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Figure 7: The phase plane of 𝑝
0
.
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Figure 8: Chaotic attractors of the proposed system.

0.5𝜋𝜇 have geometric multiplicity one, where 0 < 𝜇 < 1, 𝑢 ∈

𝑅𝑛, and 𝐴 ∈ 𝑅𝑛 × 𝑅𝑛.

We have the following theorem.

Theorem 17. If 𝑏 > 0, 𝜎 > 0, 𝑘
2
= −𝜌+𝑘

1
𝜎, and 𝜎(𝑘

1
+𝜌) < 1,

then the fractional-order Lorenz chaotic system (14) and the
controlled fractional-order Lorenz chaotic system (58) achieved
synchronization via fractional-order derivative.

Proof. Define the synchronization error variables as follows:

𝑒
𝑗
= 𝑣
𝑗
− 𝑢
𝑗
, 𝑗 = 1, . . . , 5. (61)

Therefore, we obtain the system

(

𝑐𝐷𝜇1𝑒
1

𝑐𝐷𝜇1𝑒
2

𝑐𝐷𝜇2𝑒
3

𝑐𝐷𝜇2𝑒
4

𝑐𝐷𝜇3𝑒
5

) = 𝐴(

𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑒
5

), (62)

where

𝐴

=(

(

−𝜎 0 𝜎 0 0

0 −𝜎 0 𝜎 0

𝜌−𝑘
1
𝜎+𝑘
2

0 −1+𝑘
1
𝜎 −ℓ 0

0 𝜌−𝑢
5

ℓ −1 −𝑣
2

𝑢
5
𝑢
3

𝑢
5
𝑢
4

𝑢
5
𝑣
1

𝑢
5
𝑣
2

−𝑏 + 𝑣
1
𝑣
3
+ 𝑣
2
𝑣
4

)

)

.

(63)

Consider 𝑢
𝑖
and 𝑣
𝑖
with 𝑘

2
= −𝜌 + 𝑘

1
𝜎, such that

𝐴 = (

(

−𝜎 0 𝜎 0 0

0 −𝜎 0 𝜎 0

0 0 −1 + 𝑘
1
𝜎 −ℓ 0

0 𝜌 ℓ −1 0

0 0 0 0 −𝑏

)

)

. (64)
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Thus, the characteristic equation is of the form

(𝑏 + 𝜆) (𝜎 + 𝜆) [(𝜎 + 𝜆) (1 + 𝜆) (𝑘
1
𝜎 − 𝜆 − 1)

−𝜌𝜎 (1 + 𝜆) (𝑘
1
𝜎 − 𝜆 − 1) − ℓ

2

(𝜎 + 𝜆)] = 0.

(65)

Because 𝜎(𝑘
1
+ 𝜌) < 1 yields that | arg 𝜆

𝑖
(𝐴)| > 𝜋/2 >

(𝜋/2)𝜇, 𝑖 = 1, . . . , 5. According to Lemma 16, it implies that
the equilibrium point 𝑝

0
of error system (60) is asymptot-

ically stable,and hence the fractional-order Lorenz chaotic
system (14) and the controlled fractional-order Lorenz
chaotic system (58) achieved synchronization via fractional-
order derivative. The proof is completed.

7. Conclusion and Discussion

The five-dimensional complex models are habitually used
to clarify and simulate the physics of tuned lasers. By
using fractional-order derivative (in sense of the Caputo
derivatives), we stabilized the unstable equilibrium points
of the complex fractional-order Lorenz chaotic system and
included chaos synchronization for the fractional-order
Lorenz chaotic system. Numerical solutions are computed for
these systems. Conditions are imposed to study the stability,
and several cases are discussed for these systems. Figure 1
shows the asymptotically stable at 𝑝

0
, such that 𝜎 > 0, 𝑏 >

0, and the values of 𝜌 are taken positive in (a) with the
initial values (4, 5, 6), negative in (b) with the initial values
(1, 1, 1), and for 𝜌 = 0 in (c), while in (d) the parameters
are valued as 𝜎 = 1, 𝜌 = 2, and 𝑏 = 3 with the initial
values (4, 5, 6). Figures 2 and 3 confirm the time evolution
at 𝑝
0
. Figures 4–6 show the affectedness of ℓ = 0, 1, 10,

where (𝜎, 𝜌, 𝑏, ℓ) = (10, 28, 8/3, 0) in Figure 4, (10, 28, 8/3, 1)
in Figure 5, and (10, 28, 8/3, 10) in Figure 6. Figure 7 shows
the phase plane of 𝑝

0
. Here we discuss the system for 𝜇

𝑖
=

0.998, 𝑖 = 1, 2, 3. Note that 𝑢
2
and 𝑢

4
are congruent on

𝑢
1
and 𝑢

3
, respectively. Finally, Figure 8 represents to the

chaotic attractors of the proposed systemwith the parameters
(𝜎, 𝜌, 𝑏, ℓ) = (10, 28, 8/3, 0) and (𝜎, 𝜌, 𝑏, ℓ) = (10, 8, 8/3, 0)

with the initial values (1, 2, 3), respectively.
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