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Some new existence theorems concerning approximate coincidence point property and approximate fixed point property for
nonlinearmaps inmetric spaceswithout global completeness are established in this paper. By exploiting these results, we prove some
new coincidence point and fixed point theorems which generalize and improve Berinde-Berinde’s fixed point theorem,Mizoguchi-
Takahashi’s fixed point theorem, Kikkawa-Suzuki’s fixed point theorem, and some well known results in the literature. Moreover,
some applications of our results to the existence of coupled coincidence point and coupled fixed point are also presented.

1. Introduction

Let us begin with some basic definitions and notations that
will be needed in this paper. The symbols N and R are used
to denote the sets of positive integers and real numbers,
respectively. Let (𝑋, 𝑑) be a metric space. Denote by N(𝑋)

the family of all nonempty subsets of 𝑋, 𝐶(𝑋) the class of
all nonempty closed subsets of 𝑋, and 𝐶𝐵(𝑋) the family of
all nonempty closed and bounded subsets of 𝑋. For each
𝑥 ∈ 𝑋 and 𝐴 ⊆ 𝑋, let 𝑑(𝑥, 𝐴) = inf𝑦∈𝐴𝑑(𝑥, 𝑦). A function
H : 𝐶𝐵(𝑋) × 𝐶𝐵(𝑋) → [0,∞) defined by

H (𝐴, 𝐵) = max{sup
𝑥∈𝐵

𝑑 (𝑥, 𝐴) , sup
𝑥∈𝐴

𝑑 (𝑥, 𝐵)} (1)

is said to be the Hausdorff metric on 𝐶𝐵(𝑋) induced by the
metric 𝑑 on𝑋.

Let 𝑔 : 𝑋 → 𝑋 be a self-map and 𝑇 : 𝑋 → N(𝑋) be
a multivalued map. A point 𝑣 in 𝑋 is said to be a coincidence
point (see, for instance, [1–4]) of 𝑔 and 𝑇 if 𝑔𝑣 ∈ 𝑇𝑣. The set
of coincidence points of 𝑔 and 𝑇 is denoted by 𝐶𝑂𝑃(𝑔, 𝑇).
If 𝑣 ∈ 𝑇𝑣, then 𝑣 is called a fixed point of 𝑇. The set of
fixed points of 𝑇 is denoted by F(𝑇). The maps 𝑔 and 𝑇 are
said to have an approximate coincidence point property [1, 4]

on 𝑋 provided inf𝑥∈𝑋𝑑(𝑔𝑥, 𝑇𝑥) = 0. The map 𝑇 is said to
have the approximate fixed point property [1–5] on𝑋 provided
inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0.

It is obvious that 𝐶𝑂𝑃(𝑔, 𝑇) ̸= 0 (resp.,F(𝑇) ̸= 0) implies
that𝑇 has the approximate coincidence point property (resp.,
𝑇 has the approximate fixed point property). Hussain et al.
[1, Theorem 2.6] showed that a generalized multivalued
almost contraction 𝑇 in a metric space (𝑋, 𝑑) haveF(𝑇) ̸= 0

provided either (𝑋, 𝑑) is compact and the function 𝑓(𝑥) =

𝑑(𝑥, 𝑇𝑥) is l.s.c. or 𝑇 is closed and compact. In [1, Lemma
2.2], the authors had also shown that every generalized
multivalued almost contraction in a metric space (𝑋, 𝑑) has
the approximate fixed point property.

The rapid growth of fixed point theory and its applications
over the past decades has led to a number of scholarly essays
that examine its nature and its importance in nonlinear
analysis, applied mathematical analysis, economics, game
theory, and so forth; see [1–47] and references therein. Many
authors devoted their attention to investigate its generaliza-
tions in various different directions of the celebrated Banach
contraction principle. In 2008, Suzuki [6] presented a new
type of generalization of the celebrated Banach contraction
principle and does characterize the metric completeness.
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Theorem 1 (Suzuki [6]). Define a nonincreasing function 𝜃

from [0, 1) onto (1/2, 1] by

𝜃 (𝑟) =

{{{{{{

{{{{{{

{

1, if 0 ≤ 𝑟 ≤
1

2
(√5 − 1) ,

1 − 𝑟

𝑟2
, if 1

2
(√5 − 1) ≤ 𝑟 ≤

1

√2
,

1

1 + 𝑟
, if 1

√2
≤ 𝑟 < 1.

(2)

Then for a metric space (𝑋, 𝑑), the following are equivalent:

(1) 𝑋 is complete.
(2) Every mapping 𝑇 on 𝑋 satisfying the following has a

fixed point:

there exists 𝑟 ∈ [0, 1) such that 𝜃(𝑟)𝑑(𝑥, 𝑇𝑥) ≤

𝑑(𝑥, 𝑦) implies 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑦) for all 𝑥,
𝑦 ∈ 𝑋.

(3) There exists 𝑟 ∈ [0, 1) such that every mapping 𝑇 on𝑋

satisfying the following has a fixed point:

(1/10000)𝑑(𝑥, 𝑇𝑥) ≤ 𝑑(𝑥, 𝑦) implies 𝑑(𝑇𝑥,

𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋.

Remark 2 (see [6]). For every 𝑟 ∈ [0, 1), 𝜃(𝑟) is the best con-
stant.

Later, Kikkawa and Suzuki [8] proved an interesting
generalization of both Theorem 1 and the Nadler fixed point
theorem [9] which is an extension of the Banach contraction
principle to multivalued maps.

Theorem 3 (Kikkawa and Suzuki [8]). Define a strictly de-
creasing function 𝜂 from [0, 1) onto (1/2, 1] by

𝜂 (𝑟) =
1

1 + 𝑟
. (3)

Let (𝑋, 𝑑) be a complete metric space and let 𝑇 be a map from
𝑋 into 𝐶𝐵(𝑋). Assume that there exists 𝑟 ∈ [0, 1) such that

𝜂 (𝑟) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) implies H (𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑 (𝑥, 𝑦)

(4)

for all 𝑥, 𝑦 ∈ 𝑋. ThenF(𝑇) ̸= 0.

Let 𝑓 be a real-valued function defined on R. For 𝑐 ∈ R,
we recall that

lim sup
𝑥→𝑐+

𝑓 (𝑥) = inf
𝜀>0

sup
𝑐<𝑥<𝜀+𝑐

𝑓 (𝑥) . (5)

Definition 4 (see [3, 4, 10–19]). A function 𝜑 : [0,∞) →

[0, 1) is said to be an MT-function (or R-function) if
lim sup

𝑠→ 𝑡+
𝜑(𝑠) < 1 for all 𝑡 ∈ [0,∞).

It is obvious that if𝜑 : [0,∞) → [0, 1) is a nondecreasing
function or a nonincreasing function, then 𝜑 is an MT-
function. So the set ofMT-functions is a rich class.

In 1989, Mizoguchi and Takahashi [19] proved a famous
generalization of Nadler’s fixed point theorem which gives

a partial answer of Problem 9 in Reich [20]. It is worth to
mention that the primitive proof of Mizoguchi-Takahashi’s
fixed point theorem is quite difficult. Recently, Suzuki [21]
gave a very simple proof ofMizoguchi-Takahashi’s fixed point
theorem.

Theorem 5 (Mizoguchi and Takahashi [19]). Let (𝑋, 𝑑) be a
complete metric space, 𝛼 : [0,∞) → [0, 1) be aMT-function
and 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be a multivalued map. Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) , (6)

for all 𝑥, 𝑦 ∈ 𝑋. ThenF(𝑇) ̸= 0.

In 2007, M. Berinde and V. Berinde [22] proved the
following interesting fixed point theorem which generalized
and improved Mizoguchi-Takahashi’s fixed point theorem.

Theorem 6 (M. Berinde and V. Berinde [22]). Let (𝑋, 𝑑) be
a complete metric space, 𝛼 : [0,∞) → [0, 1) be a MT-
function, 𝑇 : 𝑋 → 𝐶𝐵(𝑋) be a multivalued map and 𝐿 ≥ 0.
Assume that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝛼 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) + 𝐿𝑑 (𝑦, 𝑇𝑥) , (7)

for all 𝑥, 𝑦 ∈ 𝑋. ThenF(𝑇) ̸= 0.

Very recently, Du et al. [4] studied the existence of the
approximate coincidence point property and the approximate
fixed point property for some new nonlinear maps and
applied them to metric fixed theory. Some new general-
izations of Kikkawa-Suzuki’s fixed point theorem, Berinde-
Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed
point theorem, and some well-known results in the literature
were established in [4]; for more detail, one can refer to [4].

The paper is organized as follows. In Section 3, we first
present some new existence theorems concerning approx-
imate coincidence point property, approximate fixed point
property, coincidence point and fixed point for various
types of nonlinear maps in metric spaces without global
completeness. Section 4 is dedicated to the study of some new
coincidence point, and fixed point theorems given by exploit-
ing our results.We establish some generalizations of Berinde-
Berinde’s fixed point theorem, Mizoguchi-Takahashi’s fixed
point theorem and others. Some applications of our results
to a generalizations of Kikkawa-Suzuki’s fixed point theorem
and the existence of coupled coincidence point and coupled
fixed point are also given in Section 5. Consequently, in this
paper, some of our results are original in the literature and we
obtain many results in the literature as special cases; see for
example, [4–10, 13, 14, 17–23, 30] and references therein.

2. Preliminaries

Recall that a function 𝑝 : 𝑋 × 𝑋 → [0,∞) is called a 𝑤-
distance [5, 7, 10, 14, 15, 24–29, 38–40], if the following are
satisfied:

(𝑤1) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) for any 𝑥, 𝑦, 𝑧 ∈ 𝑋;
(𝑤2) for any 𝑥 ∈ 𝑋, 𝑝(𝑥, ⋅) : 𝑋 → [0,∞) is l.s.c.;
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(𝑤3) for any 𝜀 > 0, there exists 𝛿 > 0 such that 𝑝(𝑧, 𝑥) ≤ 𝛿

and 𝑝(𝑧, 𝑦) ≤ 𝛿 imply 𝑑(𝑥, 𝑦) ≤ 𝜀.

A function 𝑝 : 𝑋×𝑋 → [0,∞) is said to be a 𝜏-function
[5, 10, 14, 15, 27–29], first introduced and studied by Lin and
Du, if the following conditions hold:

(𝜏1) 𝑝(𝑥, 𝑧) ≤ 𝑝(𝑥, 𝑦) + 𝑝(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋;
(𝜏2) if 𝑥 ∈ 𝑋 and {𝑦𝑛} in 𝑋 with lim𝑛→∞𝑦𝑛 = 𝑦 such

that 𝑝(𝑥, 𝑦𝑛) ≤ 𝑀 for some 𝑀 = 𝑀(𝑥) > 0, then
𝑝(𝑥, 𝑦) ≤ 𝑀;

(𝜏3) for any sequence {𝑥𝑛} in 𝑋 with lim𝑛→∞ sup{𝑝(𝑥𝑛,
𝑥𝑚) : 𝑚 > 𝑛} = 0, if there exists a sequence
{𝑦𝑛} in 𝑋 such that lim𝑛→∞𝑝(𝑥𝑛, 𝑦𝑛) = 0, then
lim𝑛→∞𝑑(𝑥𝑛, 𝑦𝑛) = 0;

(𝜏4) for 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑝(𝑥, 𝑦) = 0 and 𝑝(𝑥, 𝑧) = 0 imply
𝑦 = 𝑧.

Note that not either of the implications 𝑝(𝑥, 𝑦) = 0 ⇔

𝑥 = 𝑦 necessarily holds and 𝑝 is nonsymmetric in general.
It is well known that the metric 𝑑 is a 𝑤-distance and any 𝑤-
distance is a 𝜏-function, but the converse is not true; see [27,
29] for more detail.

Definition 7 (see [4]). Let (𝑋, 𝑑) be a metric space, 𝑝 be a 𝜏-
function, 𝑔 : 𝑋 → 𝑋 be a single-valued self-map and 𝑇 :

𝑋 → N(𝑋) be a multivalued map.

(1) The maps 𝑔 and 𝑇 are said to have the 𝑝-approximate
coincidence point property on𝑋 provided

inf
𝑥∈𝑋

𝑝 (𝑔𝑥, 𝑇𝑥) = 0. (8)

(2) The map 𝑇 is said to have the 𝑝-approximate fixed
point property on𝑋 provided

inf
𝑥∈𝑋

𝑝 (𝑥, 𝑇𝑥) = 0. (9)

The following results are crucial in this paper.

Lemma 8 (see [29, Lemma 2.1]). Let (𝑋, 𝑑) be a metric space
and 𝑝 : 𝑋 × 𝑋 → [0,∞) be a function. Assume that 𝑝 satis-
fies the condition (𝜏3). If a sequence {𝑥𝑛} in 𝑋 with
lim𝑛→∞ sup{𝑝(𝑥𝑛, 𝑥𝑚) : 𝑚 > 𝑛} = 0, then {𝑥𝑛} is a Cauchy
sequence in𝑋.

For each 𝑥 ∈ 𝑋 and 𝐴 ⊆ 𝑋, we denote 𝑝(𝑥, 𝐴) =

inf𝑦∈𝐴𝑝(𝑥, 𝑦).

Lemma 9 (see [10]). Let 𝐴 be a closed subset of a metric space
(𝑋, 𝑑) and 𝑝 : 𝑋×𝑋 → [0,∞) be any function. Suppose that
𝑝 satisfies (𝜏3) and there exists 𝑢 ∈ 𝑋 such that 𝑝(𝑢, 𝑢) = 0.
Then 𝑝(𝑢, 𝐴) = 0 if and only if 𝑢 ∈ 𝐴.

The concepts of 𝜏0-functions and 𝜏0-metrics were intro-
duced in [10] as follows.

Definition 10 (see [10]). Let (𝑋, 𝑑) be a metric space. A func-
tion 𝑝 : 𝑋 × 𝑋 → [0,∞) is called a 𝜏0-function if it is a
𝜏-function on𝑋 with 𝑝(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑋.

Remark 11. If 𝑝 is a 𝜏0-function, then, from (𝜏4), 𝑝(𝑥, 𝑦) = 0

if and only if 𝑥 = 𝑦.

Example 12 (see [10]). Let 𝑋 = R with the metric 𝑑(𝑥, 𝑦) =

|𝑥−𝑦| and 0 < 𝑎 < 𝑏. Define the function𝑝 : 𝑋×𝑋 → [0,∞)

by

𝑝 (𝑥, 𝑦) = max {𝑎 (𝑦 − 𝑥) , 𝑏 (𝑥 − 𝑦)} . (10)

Then 𝑝 is nonsymmetric and hence 𝑝 is not ametric. It is easy
to see that 𝑝 is a 𝜏0-function.

Definition 13 (see [10]). Let (𝑋, 𝑑) be a metric space and 𝑝 be
a 𝜏0-function. For any 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), define a functionD𝑝 :
𝐶𝐵(𝑋) × 𝐶𝐵(𝑋) → [0,∞) by

D𝑝 (𝐴, 𝐵) = max {𝛿𝑝 (𝐴, 𝐵) , 𝛿𝑝 (𝐵, 𝐴)} , (11)

where 𝛿𝑝(𝐴, 𝐵) = sup
𝑥∈𝐴

𝑝(𝑥, 𝐵), then D𝑝 is said to be the
𝜏0-metric on 𝐶𝐵(𝑋) induced by 𝑝.

Clearly, any Hausdorff metric is a 𝜏0-metric, but the
reverse is not true.

Lemma 14 (see [10]). Let (𝑋, 𝑑) be a metric space andD𝑝 be
a 𝜏0-metric on 𝐶𝐵(𝑋) induced by a 𝜏0-function 𝑝. Then every
𝜏0-metricD𝑝 is a metric on 𝐶𝐵(𝑋).

The following characterizations ofMT-functions is quite
useful for proving our main results.

Lemma 15 (see [18]). Let 𝜑 : [0,∞) → [0, 1) be a function.
Then the following statements are equivalent.

(a) 𝜑 is anMT-function.
(b) For each 𝑡 ∈ [0,∞), there exist 𝑟(1)

𝑡
∈ [0, 1) and 𝜀(1)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(1)
𝑡

for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(1)
𝑡

).
(c) For each 𝑡 ∈ [0,∞), there exist 𝑟(2)

𝑡
∈ [0, 1) and 𝜀(2)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(2)
𝑡

for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀(2)
𝑡

].
(d) For each 𝑡 ∈ [0,∞), there exist 𝑟(3)

𝑡
∈ [0, 1) and 𝜀(3)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(3)
𝑡

for all 𝑠 ∈ (𝑡, 𝑡 + 𝜀(3)
𝑡

].
(e) For each 𝑡 ∈ [0,∞), there exist 𝑟(4)

𝑡
∈ [0, 1) and 𝜀(4)

𝑡
> 0

such that 𝜑(𝑠) ≤ 𝑟(4)
𝑡

for all 𝑠 ∈ [𝑡, 𝑡 + 𝜀(4)
𝑡

).
(f) For any nonincreasing sequence {𝑥𝑛}𝑛∈N in [0,∞), one

has 0 ≤ sup
𝑛∈N𝜑(𝑥𝑛) < 1.

(g) 𝜑 is a function of contractive factor [12]; that is, for any
strictly decreasing sequence {𝑥𝑛}𝑛∈N in [0,∞), one has
0 ≤ sup

𝑛∈N𝜑(𝑥𝑛) < 1.

3. New Nonlinear Conditions for
𝑝-Approximate Coincidence Point Property

In Section 3, we will establish some new existence theorems
concerning approximate coincidence point property, approx-
imate fixed point property, coincidence point and fixed point
for various types of nonlinear maps in metric spaces without
global completeness.
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Theorem 16. Let (𝑋, 𝑑) be a metric space, 𝑝 be a 𝜏0-function,
𝑇 : 𝑋 → N(𝑋) be a multivalued map, and 𝑓 : 𝑋 → 𝑋 be a
self-map. Suppose that

(S1) there exist a nondecreasing function 𝜏 : [0,∞) →

[0,∞) and anMT-function𝜑 : [0,∞) → [0, 1) such
that for each 𝑥 ∈ 𝑋, if 𝑦 ∈ 𝑋 with 𝑓𝑦 ̸= 𝑓𝑥 and
𝑓𝑦 ∈ 𝑇𝑥, then it holds

𝑝 (𝑓𝑦, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦) . (12)

(S2) 𝑇(𝑋) = ⋃
𝑥∈𝑋

𝑇(𝑥) ⊆ 𝑓(𝑋).

Then the following statements hold.

(a) There exists a sequence {𝑥𝑛}𝑛∈N in𝑋 such that

inf
𝑛∈N

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = lim
𝑛→∞

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

= lim
𝑛→∞

𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

= inf
𝑛∈N

𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = 0.

(13)

(b) inf𝑥∈𝑋𝑝(𝑓𝑥, 𝑇𝑥) = inf𝑥∈𝑋𝑑(𝑓𝑥, 𝑇𝑥) = 0; that is, 𝑓
and 𝑇 have the 𝑝-approximate coincidence point prop-
erty and approximate coincidence point property on𝑋.

(c) If one further assumes the following conditions hold:

(L1) 𝑓(𝑋) is a complete subspace of𝑋,
(L2) for each sequence {𝑥𝑛} in𝑋with𝑓𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝑛 ∈

N and lim𝑛→∞𝑓𝑥𝑛 = 𝑓𝑤, one has𝑇𝑤 as a closed
subset of𝑋 and lim𝑛→∞𝑝(𝑓𝑥𝑛, 𝑇𝑤) = 0,

then 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0.

Proof. Let 𝑥1 ∈ 𝑋. By (S2), there exists 𝑥2 ∈ 𝑋 such that
𝑓𝑥2 ∈ 𝑇𝑥1. If 𝑓𝑥1 = 𝑓𝑥2, then 𝑓𝑥1 ∈ 𝑇𝑥1 and so

inf
𝑥∈𝑋

𝑝 (𝑓𝑥, 𝑇𝑥) ≤ 𝑝 (𝑓𝑥1, 𝑇𝑥1) ≤ 𝑝 (𝑓𝑥1, 𝑓𝑥1) = 0, (14)

which implies inf𝑥∈𝑋𝑝(𝑓𝑥, 𝑇𝑥) = 0. Clearly, inf𝑥∈𝑋𝑑(𝑓𝑥,
𝑇𝑥) = 0. Let 𝑤𝑛 = 𝑥1 for all 𝑛 ∈ N. Then

lim
𝑛→∞

𝑝 (𝑓𝑤𝑛, 𝑓𝑤𝑛+1) = inf
𝑛∈N

𝑝 (𝑓𝑤𝑛, 𝑓𝑤𝑛+1) = 𝑝 (𝑓𝑥1, 𝑓𝑥1)=0,

lim
𝑛→∞

𝑑 (𝑓𝑤𝑛, 𝑓𝑤𝑛+1) = inf
𝑛∈N

𝑑 (𝑓𝑤𝑛, 𝑓𝑤𝑛+1) = 𝑑 (𝑓𝑥1, 𝑓𝑥1)=0.

(15)

So, the conclusions (a) and (b) hold in this case. Otherwise,
if 𝑓𝑥2 ̸= 𝑓𝑥1, since 𝑝 is a 𝜏0-function, 𝑝(𝑓𝑥1, 𝑓𝑥2) > 0. Let
𝜇 : [0,∞) → [0, 1) be defined by 𝜇(𝑡) = (1+𝜑(𝑡))/2. Clearly,
0 ≤ 𝜑(𝑡) < 𝜇(𝑡) < 1 for all 𝑡 ∈ [0,∞). By [3, Lemma 2.1], we
know that 𝜇 is also anMT-function. From (S1), we get

𝑝 (𝑓𝑥2, 𝑇𝑥2) ≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥1, 𝑓𝑥2))) 𝑝 (𝑓𝑥1, 𝑓𝑥2)

< 𝜇 (𝜏 (𝑝 (𝑓𝑥1, 𝑓𝑥2))) 𝑝 (𝑓𝑥1, 𝑓𝑥2) .
(16)

Since 𝜇(𝜏(𝑝(𝑓𝑥1, 𝑓𝑥2)))𝑝(𝑓𝑥1, 𝑓𝑥2) > 0, there exists 𝜉 ∈ 𝑇𝑥2
such that

𝑝 (𝑓𝑥2, 𝜉) < 𝜇 (𝜏 (𝑝 (𝑓𝑥1, 𝑓𝑥2))) 𝑝 (𝑓𝑥1, 𝑓𝑥2) . (17)

Using (S2) again, there exists 𝑥3 ∈ 𝑋 such that𝑓𝑥3 = 𝜉 ∈ 𝑇𝑥2.
Hence, from (17), we have

𝑝 (𝑓𝑥2, 𝑓𝑥3) < 𝜇 (𝜏 (𝑝 (𝑓𝑥1, 𝑓𝑥2))) 𝑝 (𝑓𝑥1, 𝑓𝑥2) . (18)

If 𝑓𝑥2 = 𝑓𝑥3 ∈ 𝑇𝑥2, then, following a similar argument as
above, we can prove the conclusions (a) and (b). Otherwise,
if 𝑓𝑥3 ̸= 𝑓𝑥2, then there exists 𝑥4 ∈ 𝑋 such that 𝑓𝑥4 ∈ 𝑇𝑥3
and

𝑝 (𝑓𝑥3, 𝑓𝑥4) < 𝜇 (𝜏 (𝑝 (𝑓𝑥2, 𝑓𝑥3))) 𝑝 (𝑓𝑥2, 𝑓𝑥3) . (19)

By induction, we can obtain a sequences {𝑥𝑛} in𝑋 satisfying

𝑓𝑥𝑛+1 ∈ 𝑇𝑥𝑛, (20)

𝑝 (𝑓𝑥𝑛+1, 𝑓𝑥𝑛+2) < 𝜇 (𝜏 (𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1))) 𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) ,

for each 𝑛 ∈ N.

(21)

Since 𝜇(𝑡) < 1 for all 𝑡 ∈ [0,∞), we deduces from the
inequality (21) that the sequence {𝑝(𝑓𝑥𝑛,𝑓𝑥𝑛+1)}𝑛∈N is strictly
decreasing in [0,∞). Hence

lim
𝑛→∞

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = inf
𝑛∈N

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) ≥ 0 exists.
(22)

Since 𝜏 is nondecreasing, {𝜏(𝑝(𝑓𝑥𝑛, 𝑓𝑥𝑛+1))}𝑛∈N is a nonin-
creasing sequence in [0,∞). Since 𝜇 is an MT-function, by
(f) of Lemma 15, we have

0 ≤ sup
𝑛∈N

𝜇 (𝜏 (𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1))) < 1. (23)

Let 𝛾 := sup
𝑛∈N 𝜇(𝜏(𝑝(𝑓𝑥𝑛, 𝑓𝑥𝑛+1))). So 𝛾 ∈ [0, 1). Put 𝜆 :=

(1 + 𝛾)/2. Then 0 ≤ 𝛾 < 𝜆 < 1. By (21), we get

𝑝 (𝑓𝑥𝑛+1, 𝑓𝑥𝑛+2) < 𝜇 (𝜏 (𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1))) 𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

≤ 𝛾𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

< 𝜆𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

< ⋅ ⋅ ⋅

< 𝜆
𝑛
𝑝 (𝑓𝑥1, 𝑓𝑥2) for each 𝑛 ∈ N.

(24)

Since 𝜆 ∈ (0, 1), lim𝑛→∞𝜆
𝑛 = 0 and hence it follows from

(24) that

lim
𝑛→∞

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = 0. (25)

According to (22) and (25), we obtain

inf
𝑛∈N

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = lim
𝑛→∞

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = 0. (26)



Abstract and Applied Analysis 5

Next, we verify that {𝑓𝑥𝑛} is a Cauchy sequence in 𝑓(𝑋).
Let 𝑣𝑛 := 𝑓𝑥𝑛 for all 𝑛 ∈ N. We claim that lim𝑛→∞ sup{𝑝(𝑣𝑛,
𝑣𝑚) : 𝑚 > 𝑛} = 0. Put

𝛼𝑛 = (
𝜆𝑛−1

1 − 𝜆
)𝑝 (𝑣1, 𝑣2) , 𝑛 ∈ N. (27)

Then 𝛼𝑛 > 0 for all 𝑛 ∈ N. For 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛, by
(24), we have

𝑝 (𝑣𝑛, 𝑣𝑚) ≤

𝑚−1

∑
𝑗=𝑛

𝑝 (𝑣𝑗, 𝑣𝑗+1) < 𝛼𝑛. (28)

Since 𝜆 ∈ (0, 1), lim𝑛→∞𝛼𝑛 = 0 and hence

lim
𝑛→∞

sup {𝑝 (𝑣𝑛, 𝑣𝑚) : 𝑚 > 𝑛} = 0. (29)

By Lemma 8, {𝑣𝑛} is a Cauchy sequence in 𝑓(𝑋). Hence

lim
𝑛→∞

𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = lim
𝑛→∞

𝑑 (𝑣𝑛, 𝑣𝑛+1) = 0. (30)

Since inf𝑛∈N𝑑(𝑓𝑥𝑛, 𝑓𝑥𝑛+1) ≤ 𝑑(𝑓𝑥𝑚, 𝑓𝑥𝑚+1) for all𝑚 ∈ N and
lim𝑚→∞𝑑(𝑓𝑥𝑚, 𝑓𝑥𝑚+1) = 0, one also obtain

lim
𝑛→∞

𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = inf
𝑛∈N

𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = 0. (31)

Hence (a) is proved. To see (b), since 𝑓𝑥𝑛+1 ∈ 𝑇𝑥𝑛 for each
𝑛 ∈ N, we have

inf
𝑥∈𝑋

𝑝 (𝑓𝑥, 𝑇𝑥) ≤ 𝑝 (𝑓𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) ,

inf
𝑥∈𝑋

𝑑 (𝑓𝑥, 𝑇𝑥) ≤ 𝑑 (𝑓𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) ,
(32)

for all 𝑛 ∈ N. Since lim𝑛→∞𝑝(𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = lim𝑛→∞𝑑(𝑓𝑥𝑛,
𝑓𝑥𝑛+1) = 0, combining (32), we get

inf
𝑥∈𝑋

𝑝 (𝑓𝑥, 𝑇𝑥) = inf
𝑥∈𝑋

𝑑 (𝑓𝑥, 𝑇𝑥) = 0. (33)

Moreover, if we further assume that conditions (L1) and (L2)
hold, we want to show 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0. Since {𝑣𝑛} is a Cauchy
sequence in 𝑓(𝑋), by (L1), there exists 𝑣 ∈ 𝑋 such that
𝑣𝑛 ≡ 𝑓𝑥𝑛 → 𝑓𝑣 as 𝑛 → ∞. So, by (L2), we have 𝑇𝑣

is a closed subset of 𝑋 and lim𝑛→∞𝑝(𝑣𝑛, 𝑇𝑣) = 0. Since
lim𝑛→∞ sup{𝑝(𝑣𝑛, 𝑣𝑚) : 𝑚 > 𝑛} = 0, there exists {𝑎𝑛} ⊂ {𝑣𝑛}

with lim𝑛→∞ sup{𝑝(𝑎𝑛, 𝑎𝑚) : 𝑚 > 𝑛} = 0 and {𝑏𝑛} ⊂ 𝑇𝑣 such
that lim𝑛→∞𝑝(𝑎𝑛, 𝑏𝑛) = 0. By (𝜏3), lim𝑛→∞𝑑(𝑎𝑛, 𝑏𝑛) = 0.
Since 𝑎𝑛 → 𝑓𝑣 as 𝑛 → ∞ and 𝑑(𝑏𝑛, 𝑓𝑣) ≤ 𝑑(𝑏𝑛, 𝑎𝑛) + 𝑑(𝑎𝑛,

𝑓𝑣), it implies 𝑏𝑛 → 𝑓𝑣 as 𝑛 → ∞. By the closedness of 𝑇𝑣,
we have 𝑓𝑣 ∈ 𝑇𝑣 or 𝑣 ∈ 𝐶𝑂𝑃(𝑓, 𝑇). The proof is com-
pleted.

Theorem 17. In Theorem 16, if 𝑓 ≡ 𝑖𝑑 is the identity map on
𝑋, then the following statements hold.

(a) There exists a sequence {𝑥𝑛}𝑛∈N in𝑋 such that

inf
𝑛∈N

𝑝 (𝑥𝑛, 𝑥𝑛+1) = lim
𝑛→∞

𝑝 (𝑥𝑛, 𝑥𝑛+1) = lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥𝑛+1)

= inf
𝑛∈N

𝑑 (𝑥𝑛, 𝑥𝑛+1) = 0.

(34)

(b) inf𝑥∈𝑋𝑝(𝑥, 𝑇𝑥) = inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0; that is, 𝑇 has
the 𝑝-approximate fixed point property and approxi-
mate fixed point property on 𝑋.

(c) If one further assumes the following conditions hold:

(L1) 𝑓(𝑋) is a complete subspace of 𝑋,
(L3) for each sequence {𝑥𝑛} in𝑋 with 𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝑛 ∈

N and lim𝑛→∞𝑥𝑛 = 𝑤, one has 𝑇𝑤 as a closed
subset of𝑋 and lim𝑛→∞𝑝(𝑥𝑛, 𝑇𝑤) = 0,

thenF(𝑇) ̸= 0.

As an application of Theorems 16, we can establish the
following new existence of approximate coincidence point
property easily.

Theorem 18. Let (𝑋, 𝑑) be a metric space, 𝑝 be a 𝜏
0-function,

D𝑝 be a 𝜏0-metric on𝐶𝐵(𝑋) induced by𝑝,𝑇 : 𝑋 → 𝐶𝐵(𝑋) be
amultivaluedmap and𝑓 : 𝑋 → 𝑋 be a self-map. Suppose that
(S2) as in Theorem 16 is satisfied and 𝑇 further satisfies one of
the following conditions:

(H1) there exist a nondecreasing function 𝜏 : [0,∞) →

[0,∞), an MT-function 𝜑 : [0,∞) → [0, 1) and
a function 𝐿 : 𝑋 × 𝑋 → [0,∞) such that

D𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)

+ 𝐿 (𝑓𝑥, 𝑓𝑦) 𝑝 (𝑓𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋,

(35)

(H2) there exist a nondecreasing function 𝜏 : [0,∞) → [0,

∞), an MT-function 𝜑 : [0,∞) → [0, 1) and a
function 𝐿 : 𝑋 × 𝑋 → [0,∞) such that

𝑝 (𝑓𝑦, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)

+ 𝐿 (𝑓𝑥, 𝑓𝑦) 𝑝 (𝑓𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋.
(36)

Then the following statements hold.

(a) There exists a sequence {𝑥𝑛}𝑛∈N in𝑋 such that

inf
𝑛∈N

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = lim
𝑛→∞

𝑝 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

= lim
𝑛→∞

𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

= inf
𝑛∈N

𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1) = 0.

(37)

(b) inf𝑥∈𝑋𝑝(𝑓𝑥, 𝑇𝑥) = inf𝑥∈𝑋𝑑(𝑓𝑥, 𝑇𝑥) = 0.
(c) If one further assumes the following conditions hold:

(L1) 𝑓(𝑋) is a complete subspace of 𝑋,
(L2) for each sequence {𝑥𝑛} in 𝑋 with 𝑓𝑥𝑛+1 ∈ 𝑇𝑥𝑛,

𝑛 ∈ N and lim𝑛→∞𝑓𝑥𝑛 = 𝑓𝑤, one has 𝑇𝑤 as a
closed subset of𝑋 and lim𝑛→∞𝑝(𝑓𝑥𝑛, 𝑇𝑤) = 0,

then 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0.
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Proof. Suppose that (H1) holds. We first notice that for each
𝑥 ∈ 𝑋, by (S2), the set {𝑦 ∈ 𝑋 : 𝑓𝑦 ∈ 𝑇𝑥} ̸= 0. Let 𝑥 ∈ 𝑋 be
given and let 𝑦 ∈ 𝑋 with 𝑓𝑦 ∈ 𝑇𝑥 be arbitrary. Since 𝑝(𝑓𝑦,

𝑇𝑥) = 0, we have

𝑝 (𝑓𝑦, 𝑇𝑦) ≤ D𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦) .

(38)

Hence (H1) implies (S1). Therefore the conclusion follows
from Theorem 16. Similarly, we can prove that (H2) implies
(S1) and the desired result follows also fromTheorem 16.

Theorem 19. In Theorem 18, if 𝑓 ≡ 𝑖𝑑 is the identity map on
𝑋, then the conclusion following statements hold.

(a) There exists a sequence {𝑥𝑛}𝑛∈N in𝑋 such that

inf
𝑛∈N

𝑝 (𝑥𝑛, 𝑥𝑛+1) = lim
𝑛→∞

𝑝 (𝑥𝑛, 𝑥𝑛+1) = lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥𝑛+1)

= inf
𝑛∈N

𝑑 (𝑥𝑛, 𝑥𝑛+1) = 0.

(39)

(b) inf𝑥∈𝑋𝑝(𝑥, 𝑇𝑥) = inf𝑥∈𝑋𝑑(𝑥, 𝑇𝑥) = 0.
(c) If one further assumes the following conditions hold:

(L1) 𝑓(𝑋) is a complete subspace of𝑋,
(L3) for each sequence {𝑥𝑛} in𝑋 with 𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝑛 ∈

N and lim𝑛→∞𝑥𝑛 = 𝑤, one has 𝑇𝑤 as a closed
subset of𝑋 and lim𝑛→∞𝑝(𝑥𝑛, 𝑇𝑤) = 0,

thenF(𝑇) ̸= 0.

4. New Generalizations of Berinde-Berinde’s
Fixed Point Theorem and Mizoguchi-
Takahashi’s Fixed Point Theorem

In this section, we will establish some new coincidence point
theorems which generalize and improve Berinde-Berinde’s
fixed point theorem, Mizoguchi-Takahashi’s fixed point the-
orem and some main results in [10, 14, 17–19, 22].

Theorem 20. Let (𝑋, 𝑑) be a metric space, 𝑝 be a 𝜏
0-function,

D𝑝 be a 𝜏0-metric on 𝐶𝐵(𝑋) induced by 𝑝, 𝑇 : 𝑋 → 𝐶𝐵(𝑋)

be a multivalued map and 𝑓 : 𝑋 → 𝑋 be a self-map. Suppose
that

(i) 𝑇(𝑋) = ⋃
𝑥∈𝑋

𝑇(𝑥) ⊆ 𝑓(𝑋),
(ii) 𝑓(𝑋) is a complete subspace of 𝑋,
(iii) there exists a nondecreasing function 𝜏 : [0,∞) →

[0,∞), an MT-function 𝜑 : [0,∞) → [0, 1) and a
function ℎ : 𝑋 → [0,∞) such that

D𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)

+ ℎ (𝑦) 𝑑 (𝑓𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋,
(40)

then 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0.

Moreover, if we further assume that 𝑓𝑤 = 𝑓𝑓𝑤 for any
𝑤 ∈ 𝐶𝑂𝑃(𝑓, 𝑇), then 𝑇 and 𝑓 have a common fixed point in
𝑋.

Proof. Let 𝑥 ∈ 𝑋 be given. Let 𝑦 ∈ 𝑋 with 𝑓𝑦 ∈ 𝑇𝑥 be arbi-
trary. Since 𝑑(𝑓𝑦, 𝑇𝑥) = 0, we have

𝑝 (𝑓𝑦, 𝑇𝑦) ≤ D𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦) .

(41)

Hence (iii) implies (S1). So, following the same argument as
the proof of Theorem 16, we can obtain two sequences {𝑥𝑛}
and {𝑣𝑛} in𝑋 satisfying the following:

(i) 𝑓𝑥𝑛+1 ∈ 𝑇𝑥𝑛 for each 𝑛 ∈ N;
(ii) 𝑣𝑛 := 𝑓𝑥𝑛 for all 𝑛 ∈ N;
(iii) 𝑝(𝑣1, 𝑣2) > 0;
(iv) There exists 𝜆 ∈ (0, 1) such that 𝑝(𝑣𝑛+1, 𝑣𝑛+2) ≤

𝜆𝑛𝑝(𝑣1, 𝑣2) for each 𝑛 ∈ N;
(v) 𝑝(𝑣𝑛, 𝑣𝑚) < 𝛼𝑛 for 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛, where 𝛼𝑛 =

(𝜆𝑛−1/(1 − 𝜆))𝑝(𝑣1, 𝑣2) > 0 for 𝑛 ∈ N;
(vi) lim𝑛→∞ sup{𝑝(𝑣𝑛, 𝑣𝑚) : 𝑚 > 𝑛} = 0;
(vii) {𝑣𝑛} is a Cauchy sequence in 𝑓(𝑋).

By (ii), there exists 𝑣 ∈ 𝑋 such that 𝑓𝑥𝑛 ≡ 𝑣𝑛 → 𝑓𝑣 as
𝑛 → ∞ or lim𝑛→∞𝑑(𝑣𝑛, 𝑓𝑣) = 0. Since 𝑝(𝑣𝑛, 𝑣𝑚) < 𝛼𝑛 for
𝑚, 𝑛 ∈ N with𝑚 > 𝑛, from (𝜏2), we have

𝑝 (𝑓𝑥𝑛, 𝑓𝑣) = 𝑝 (𝑣𝑛, 𝑓𝑣) ≤ 𝛼𝑛 ∀𝑛 ∈ N. (42)

So, for each 𝑛 ∈ N, it follows from (40) and (42) that

𝑝 (𝑣𝑛+1, 𝑇𝑣) = 𝑝 (𝑓𝑥𝑛+1, 𝑇𝑣)

≤ sup
𝑦∈𝑇𝑥

𝑛

𝑝 (𝑦, 𝑇𝑣)

≤ D𝑝 (𝑇𝑥𝑛, 𝑇𝑣)

≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥𝑛, 𝑓𝑣))) 𝑝 (𝑓𝑥𝑛, 𝑓𝑣)

+ ℎ (𝑣) 𝑑 (𝑓𝑣, 𝑇𝑥𝑛)

< 𝑝 (𝑓𝑥𝑛, 𝑓𝑣) + ℎ (𝑣) 𝑑 (𝑓𝑣, 𝑓𝑥𝑛+1)

≤ 𝛼𝑛 + ℎ (𝑣) 𝑑 (𝑓𝑣, 𝑓𝑥𝑛+1) .

(43)

The last inequality implies that there exists 𝑦𝑛+1 ∈ 𝑇𝑣 such
that

𝑝 (𝑣𝑛+1, 𝑦𝑛+1) < 𝛼𝑛 + ℎ (𝑣) 𝑑 (𝑓𝑣, 𝑓𝑥𝑛+1) for each 𝑛 ∈ N.

(44)

Since lim𝑛→∞𝛼𝑛 = lim𝑛→∞𝑑(𝑓𝑣, 𝑓𝑥𝑛+1) = 0, we get
lim𝑛→∞𝑝(𝑣𝑛+1, 𝑦𝑛+1) = 0. By (𝜏3), we have lim𝑛→∞𝑑(𝑣𝑛+1,
𝑦𝑛+1) = 0. Since

0 ≤ 𝑑 (𝑦𝑛+1, 𝑓𝑣) ≤ 𝑑 (𝑦𝑛+1, 𝑣𝑛+1) + 𝑑 (𝑣𝑛+1, 𝑓𝑣) ∀𝑛 ∈ N,

(45)
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we obtain lim𝑛→∞𝑑(𝑦𝑛+1, 𝑓𝑣) = 0 or 𝑦𝑛+1 → 𝑓𝑣 as 𝑛 →

∞. Since 𝑦𝑛+1 ∈ 𝑇𝑣 for all 𝑛 ∈ N and 𝑇𝑣 is closed, we have
𝑓𝑣 ∈ 𝑇𝑣 which means that 𝑣 ∈ 𝐶𝑂𝑃(𝑓, 𝑇). So 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0.

Moreover, if we further assume that 𝑓𝑤 = 𝑓𝑓𝑤 for all𝑤 ∈

𝐶𝑂𝑃(𝑓, 𝑇), then we have 𝑓𝑣 = 𝑓𝑓𝑣. For each 𝑛 ∈ N, by (40)
and (42) again, we have

𝑝 (𝑣𝑛+1, 𝑇𝑓𝑣) = 𝑝 (𝑓𝑥𝑛+1, 𝑇𝑓𝑣)

≤ D𝑝 (𝑇𝑥𝑛, 𝑇𝑓𝑣)

≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥𝑛, 𝑓𝑓𝑣))) 𝑝 (𝑓𝑥𝑛, 𝑓𝑓𝑣)

+ ℎ (𝑓𝑣) 𝑑 (𝑓𝑓𝑣, 𝑇𝑥𝑛)

< 𝑝 (𝑓𝑥𝑛, 𝑓𝑣) + ℎ (𝑓𝑣) 𝑑 (𝑓𝑣, 𝑓𝑥𝑛+1)

≤ 𝛼𝑛 + ℎ (𝑓𝑣) 𝑑 (𝑓𝑣, 𝑓𝑥𝑛+1) .

(46)

Therefore, there exists 𝑧𝑛+1 ∈ 𝑇𝑓𝑣 such that

𝑝 (𝑣𝑛+1, 𝑧𝑛+1) < 𝛼𝑛 + ℎ (𝑓𝑣) 𝑑 (𝑓𝑣, 𝑓𝑥𝑛+1) ∀𝑛 ∈ N.

(47)

By (47) and lim𝑛→∞𝛼𝑛 = lim𝑛→∞𝑑(𝑓𝑣, 𝑓𝑥𝑛+1) = 0, we have
lim𝑛→∞𝑝(𝑣𝑛+1, 𝑧𝑛+1) = 0. By (𝜏3), we get lim𝑛→∞𝑑(𝑣𝑛+1,
𝑧𝑛+1) = 0. Since

𝑑 (𝑓𝑣, 𝑧𝑛+1) ≤ 𝑑 (𝑓𝑣, 𝑣𝑛+1) + 𝑑 (𝑣𝑛+1, 𝑧𝑛+1) , (48)

we have lim𝑛→∞𝑑(𝑓𝑣, 𝑧𝑛+1) = 0. Since𝑇𝑓𝑣 is closed and 𝑧𝑛 ∈

𝑇𝑓𝑣 for all 𝑛 ∈ N, we get 𝑓𝑣 ∈ 𝑇𝑓𝑣. Therefore, 𝑓𝑣 = 𝑓𝑓𝑣 ∈

𝑇𝑓𝑣, which means that 𝑓𝑣 is a common fixed point of 𝑓 and
𝑇 in𝑋. The proof is completed.

Corollary 21. Let (𝑋, 𝑑) be a metric space, 𝑇 : 𝑋 → 𝐶𝐵(𝑋)

be a multivalued map and 𝑓 : 𝑋 → 𝑋 be a self-map. Suppose
that

(i) 𝑇(𝑋) = ⋃
𝑥∈𝑋

𝑇(𝑥) ⊆ 𝑓(𝑋),
(ii) 𝑓(𝑋) is a complete subspace of 𝑋,
(iii) there exists a nondecreasing function 𝜏 : [0,∞) →

[0,∞), an MT-function 𝜑 : [0,∞) → [0, 1) and a
function ℎ : 𝑋 → [0,∞) such that

H (𝑇𝑥, 𝑇𝑦)≤𝜑 (𝜏 (𝑑 (𝑓𝑥, 𝑓𝑦))) 𝑑 (𝑓𝑥, 𝑓𝑦)+ℎ (𝑦) 𝑑 (𝑓𝑦, 𝑇𝑥)

∀𝑥, 𝑦 ∈ 𝑋,

(49)

then 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0.

The following results are immediate consequences of
Theorem 20. They are generalizations of Berinde-Berinde’s
fixed point and Mizoguchi-Takahashi’s fixed point theorem.

Theorem 22. Let (𝑋, 𝑑) be a complete metric space, 𝑝 be a
𝜏0-function, D𝑝 be a 𝜏0-metric on 𝐶𝐵(𝑋) induced by 𝑝, 𝑇 :

𝑋 → 𝐶𝐵(𝑋) be a multivalued map, 𝜏 : [0,∞) → [0,∞)

be a nondecreasing function, 𝜑 : [0,∞) → [0, 1) be anMT-
function, and ℎ : 𝑋 → [0,∞) be a function. Suppose that

D𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑥, 𝑦))) 𝑝 (𝑥, 𝑦) + ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥)

∀𝑥, 𝑦 ∈ 𝑋,

(50)

thenF(𝑇) ̸= 0.

Corollary 23. Let (𝑋, 𝑑) be a complete metric space, 𝑇 : 𝑋 →

𝐶𝐵(𝑋) be a multivalued map, 𝜏 : [0,∞) → [0,∞) be a
nondecreasing function, 𝜑 : [0,∞) → [0, 1) be an MT-
function, and ℎ : 𝑋 → [0,∞) be a function. Suppose that

H (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑑 (𝑓𝑥, 𝑓𝑦))) 𝑑 (𝑥, 𝑦)

+ ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋,
(51)

thenF(𝑇) ̸= 0.

Remark 24. (a) It is worth to mention that Theorem 22 is
different from [10, Theorem 2.3]. Theorem 22 is comparable
to [10, Theorem 2.3] in the following aspects.

(1) In [10,Theorem2.3], themap𝑇was assumed to satisfy

D𝑝 (𝑇𝑥, 𝑇𝑦)≤𝜑 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦)+𝐿𝑝 (𝑦, 𝑇𝑥) ∀𝑥, 𝑦 ∈ 𝑋

(52)

where 𝜑 is anMT-function and 𝐿 is a given nonneg-
ative real number. But inTheorem 22, we assume that

D𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜑 (𝜏 (𝑝 (𝑥, 𝑦))) 𝑝 (𝑥, 𝑦) + ℎ (𝑦) 𝑑 (𝑦, 𝑇𝑥)

∀𝑥, 𝑦 ∈ 𝑋,

(53)

where 𝜏 is a nondecreasing function, 𝜑 is an MT-
function and ℎ : 𝑋 → [0,∞) is any function.

(2) Notice that in [10, Theorem 2.3], the author assumed
that 𝑇 further satisfies one of conditions (D1), (D2),
(D3), (D4), and (D5), where

(D1) 𝑇 is closed;
(D2) the map 𝑓 : 𝑋 → [0,∞) defined by
𝑓(𝑥) = 𝑝(𝑥, 𝑇𝑥) is l.s.c.;
(D3) the map 𝑔 : 𝑋 → [0,∞) defined by
𝑔(𝑥) = 𝑑(𝑥, 𝑇𝑥) is l.s.c.;
(D4) for any sequence {𝑥𝑛} in 𝑋 with 𝑥𝑛+1 ∈

𝑇𝑥𝑛, 𝑛 ∈ N and lim𝑛→∞𝑥𝑛 = 𝑣, we have
lim𝑛→∞𝑝(𝑥𝑛, 𝑇𝑣) = 0;
(D5) inf{𝑝(𝑥, 𝑧) + 𝑝(𝑥, 𝑇𝑥) : 𝑥 ∈ 𝑋} > 0 for
every 𝑧 ∉ F(𝑇).
ButTheorem 22 does not require the conditions
(D1)–(D5).

(b) If we take 𝜏(𝑡) = 𝑡, 𝑡 ∈ [0,∞) and ℎ(𝑡) = 0 for all
𝑥 ∈ 𝑋 in Theorem 22, then we obtain [17, Theorem 3.1].
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(c) Theorems 20 and 22, and Corollary 21 all generalize
Berinde-Berinde’s fixed point theorem, Mizoguchi-Taka-
hashi’s fixed point theorem, Nadler’s fixed point theorem,
Banach contraction principle and some main results in [10,
14, 18, 19, 22] and references therein.

Here, we give a simple example illustratingTheorem 20.

Example 25. Let 𝑋 = (−9876, −10) ∪ [0,∞) with the metric
𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| for 𝑥, 𝑦 ∈ 𝑋. Then (𝑋, 𝑑) is a metric space.
Let 𝑝 : 𝑋 × 𝑋 → [0,∞) be defined by

𝑝 (𝑥, 𝑦) = max {2 (𝑥 − 𝑦) , 3 (𝑦 − 𝑥)} , (54)

for all 𝑥, 𝑦 ∈ 𝑋. By Example 12, we know that 𝑝 is a 𝜏0-func-
tion. Let 𝜑 : [0,∞) → [0, 1) and 𝜏 : [0,∞) → [0,∞) be
defined by 𝜑(𝑡) = 1/2 and 𝜏(𝑡) = 5, respectively. Then 𝜑 is
an MT-function and 𝜏 is a nondecreasing function. Let 𝑓 :

𝑋 → 𝑋 be defined by

𝑓 (𝑥) := {
0, if 𝑥 ∈ (−9876, −10) ,

2𝑥, if 𝑥 ∈ [0,∞) .
(55)

Then 𝑓(𝑋) = [0,∞) is a proper complete subspace of 𝑋.
Define 𝑇 : 𝑋 → 𝐶𝐵(𝑋) by

𝑇 (𝑥) := {
{0} , if 𝑥 ∈ (−9876, −10) ,

[0, 𝑥] , if 𝑥 ∈ [0,∞) .
(56)

Clearly, 𝑇(𝑋) = ⋃
𝑥∈𝑋

𝑇(𝑥) ⊆ 𝑓(𝑋). Let ℎ : 𝑋 → [0,∞) be
defined by ℎ(𝑥) = 𝑒𝑥. We claim that

D𝑝 (𝑇𝑥, 𝑇𝑦)

≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)+ ℎ (𝑦) 𝑑 (𝑓𝑦, 𝑇𝑥) ,

(∗)

for all 𝑥, 𝑦 ∈ 𝑋. We consider the following six possible cases.

Case 1. Clearly, inequality (∗) holds for 𝑥 = 𝑦 ∈ 𝑋.

Case 2. If 𝑥, 𝑦 ∈ (−9876, −10), then D𝑝(𝑇𝑥, 𝑇𝑦) = 0 =

𝜑(𝜏(𝑝(𝑓𝑥, 𝑓𝑦)))𝑝(𝑓𝑥, 𝑓𝑦) + ℎ(𝑦)𝑑(𝑓𝑦, 𝑇𝑥).

Case 3. If 𝑥 ∈ (−9876, −10) and 𝑦 ∈ [0,∞), then 𝑇𝑥 = {0}

and 𝑇𝑦 = [0, 𝑦]. So

𝑝 (𝑓𝑥, 𝑓𝑦) = max {2 (𝑓𝑥 − 𝑓𝑦) , 3 (𝑓𝑦 − 𝑓𝑥)}

= max {−4𝑦, 6𝑦} = 6𝑦,

D𝑝 (𝑇𝑥, 𝑇𝑦) = max{sup
𝑧∈𝑇𝑥

𝑝 (𝑧, 𝑇𝑦) , sup
𝑧∈𝑇𝑦

𝑝 (𝑧, 𝑇𝑥)}

= 2𝑦 =
1

3
𝑝 (𝑓𝑥, 𝑓𝑦)

< 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)

+ ℎ (𝑦) 𝑑 (𝑓𝑦, 𝑇𝑥) .

(57)

Case 4. If 𝑥 ∈ [0,∞) and 𝑦 ∈ (−9876, −10), then 𝑇𝑥 = [0, 𝑥],
𝑇𝑦 = {0} and 𝑝(𝑓𝑦, 𝑇𝑥) = 0. Hence, we have

𝑝 (𝑓𝑥, 𝑓𝑦) = max {2 (𝑓𝑥 − 𝑓𝑦) , 3 (𝑓𝑦 − 𝑓𝑥)}

= max {4𝑥, −6𝑥} = 4𝑥,

D𝑝 (𝑇𝑥, 𝑇𝑦) = max{sup
𝑧∈𝑇𝑥

𝑝 (𝑧, 𝑇𝑦) , sup
𝑧∈𝑇𝑦

𝑝 (𝑧, 𝑇𝑥)}

= 2𝑥 =
1

2
𝑝 (𝑓𝑥, 𝑓𝑦)

= 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)

+ ℎ (𝑦) 𝑑 (𝑓𝑦, 𝑇𝑥) .

(58)

Case 5. If 0 ≤ 𝑥 < 𝑦, then 𝑇𝑥 = [0, 𝑥] and 𝑇𝑦 = [0, 𝑦]. So, we
have

𝑝 (𝑓𝑥, 𝑓𝑦) = max {2 (𝑓𝑥 − 𝑓𝑦) , 3 (𝑓𝑦 − 𝑓𝑥)} = 6 (𝑦 − 𝑥) ,

D𝑝 (𝑇𝑥, 𝑇𝑦) = max{sup
𝑧∈𝑇𝑥

𝑝 (𝑧, 𝑇𝑦) , sup
𝑧∈𝑇𝑦

𝑝 (𝑧, 𝑇𝑥)}

= 2 (𝑦 − 𝑥)

<
1

2
𝑝 (𝑓𝑥, 𝑓𝑦)

≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)

+ ℎ (𝑦) 𝑑 (𝑓𝑦, 𝑇𝑥) .

(59)

Case 6. If 0 ≤ 𝑦 < 𝑥, then 𝑇𝑥 = [0, 𝑥], 𝑇𝑦 = [0, 𝑦]. Thus we
obtain

𝑝 (𝑓𝑥, 𝑓𝑦) = max {2 (𝑓𝑥 − 𝑓𝑦) , 3 (𝑓𝑦 − 𝑓𝑥)} = 4 (𝑥 − 𝑦) ,

D𝑝 (𝑇𝑥, 𝑇𝑦) = max{sup
𝑧∈𝑇𝑥

𝑝 (𝑧, 𝑇𝑦) , sup
𝑧∈𝑇𝑦

𝑝 (𝑧, 𝑇𝑥)}

= 2 (𝑥 − 𝑦)

=
1

2
𝑝 (𝑓𝑥, 𝑓𝑦)

≤ 𝜑 (𝜏 (𝑝 (𝑓𝑥, 𝑓𝑦))) 𝑝 (𝑓𝑥, 𝑓𝑦)

+ ℎ (𝑦) 𝑑 (𝑓𝑦, 𝑇𝑥) .

(60)

By Cases 1–6, we verify that inequality (∗) holds for
all 𝑥, 𝑦 ∈ 𝑋. So all the hypotheses of Theorem 20 are
fulfilled. It is therefore possible to apply Theorem 20 to get
𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0. In fact, 𝐶𝑂𝑃(𝑓, 𝑇) = (−9876, −10) ∪ {0}.

Moreover, since 𝑓𝑤 = 𝑓𝑓𝑤 = 0 for any 𝑤 ∈ 𝐶𝑂𝑃(𝑓, 𝑇),
by Theorem 20 again, we know that 𝑓 and 𝑇 have a common
fixed point in𝑋 (precisely speaking, 0 is the unique common
fixed point of 𝑓 and 𝑇).
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5. Some Applications to New Coupled
Coincidence Point Theorems and
a Generalization of Kikkawa-Suzuki’s
Fixed Point Theorem

Let (𝑋, 𝑑) be ametric space.We endow the product space𝑋×

𝑋 with the metric 𝜌 defined by

𝜌 ((𝑥, 𝑦) , (𝑢, 𝑣)) = 𝑑 (𝑥, 𝑢) + 𝑑 (𝑦, 𝑣)

for any (𝑥, 𝑦) , (𝑢, 𝑣) ∈ 𝑋 × 𝑋.
(61)

Let 𝑔 : 𝑋 → 𝑋 be a self-map. Recall that an element
(𝑥, 𝑦) ∈ 𝑋 × 𝑋 is called a coupled coincidence point of the
maps 𝐹 and 𝑔 if

𝐹 (𝑥, 𝑦) = 𝑔𝑥, 𝐹 (𝑦, 𝑥) = 𝑔𝑦

when 𝐹 : 𝑋 × 𝑋 → 𝑋 is a single-valued map
(62)

or
𝑔𝑥 ∈ 𝐹 (𝑥, 𝑦) , 𝑔𝑦 ∈ 𝐹 (𝑦, 𝑥)

when 𝐹 : 𝑋 × 𝑋 → 𝑋 is a multivalued map.
(63)

In particular, if we take 𝑔 ≡ 𝑖𝑑 (the identity map) in (62)
and (63), then (𝑥, 𝑦) is called a coupled fixed point of 𝐹. The
existence of coupled coincidence point and coupled fixed
point has been investigated by several authors recently in
[4, 11, 12, 23, 30–37] and references therein.

As an interesting application of Corollary 21 (or
Theorem 20), we establish the following new coupled coin-
cidence point theorems. It is worth to mention that the
technique in the proof of Theorem 26 is quite different in the
well known literature.

Theorem 26. Let (𝑋, 𝑑) be a metric space, 𝐹 : 𝑋 × 𝑋 →

𝐶𝐵(𝑋) be a multivalued map and 𝑓 : 𝑋 → 𝑋 be a self-map
satisfying ⋃

𝑥∈𝑋
𝐹(𝑥, 𝑥) ⊆ 𝑓(𝑋) and 𝑓(𝑋) is a complete sub-

space of 𝑋. Assume that there exists an MT-function 𝜑 :

[0,∞) → [0, 1) such that for any (𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑋 × 𝑋,

H (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, 𝑣))

≤
1

2
𝜑 (𝜌 ((𝑓𝑥, 𝑓𝑦) , (𝑓𝑢, 𝑓𝑣))) 𝜌 ((𝑓𝑥, 𝑓𝑦) , (𝑓𝑢, 𝑓𝑣)) ,

(64)

where 𝜌((𝑥, 𝑦), (𝑢, 𝑣)) = 𝑑(𝑥, 𝑢) + 𝑑(𝑦, 𝑣) for (𝑥, 𝑦), (𝑢, 𝑣) ∈

𝑋 × 𝑋. Then there exists 𝑣 ∈ 𝑋 such that 𝑓𝑣 ∈ 𝐹(𝑣, 𝑣); that is,
(𝑣, 𝑣) ∈ 𝑋 × 𝑋 is a coupled coincidence point of 𝐹 and 𝑓.

Proof. Define 𝑇 : 𝑋 → 𝐶𝐵(𝑋) by

𝑇 (𝑥) = 𝐹 (𝑥, 𝑥) . (65)

Then 𝑇(𝑋) = ⋃
𝑥∈𝑋

𝑇(𝑥) ⊆ 𝑓(𝑋). Let 𝜏(𝑡) = 2𝑡, ∀𝑡 ∈ [0,∞)

and ℎ(𝑥) = 0, ∀𝑥 ∈ 𝑋. So the inequality (64) implies

H (𝑇 (𝑥) , 𝑇 (𝑢)) ≤ 𝜑 (2𝑑 (𝑓𝑥, 𝑓𝑢)) 𝑑 (𝑓𝑥, 𝑓𝑢)

= 𝜑 (𝜏 (𝑑 (𝑓𝑥, 𝑓𝑢))) 𝑑 (𝑓𝑥, 𝑓𝑢)

+ ℎ (𝑢) 𝑑 (𝑓𝑢, 𝑇𝑥) ∀𝑥, 𝑢 ∈ 𝑋.

(66)

Therefore, all the assumptions of Corollary 21 are fulfilled.
Hence we can apply Corollary 21 to show that there exists
𝑣 ∈ 𝑋 such that 𝑓𝑣 ∈ 𝑇𝑣 = 𝐹(𝑣, 𝑣).

The following conclusion is immediate fromTheorem 26
with 𝑓 ≡ 𝑖𝑑 (the identity map).

Corollary 27 (see [4]). Let (𝑋, 𝑑) be a complete metric space
and 𝐹 : 𝑋 × 𝑋 → 𝐶𝐵(𝑋) be a multivalued map. Assume that
there exists an MT-function 𝜑 : [0,∞) → [0, 1) such that
for any (𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑋 × 𝑋,

H (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, 𝑣))

≤
1

2
𝜑 (𝜌 ((𝑥, 𝑦) , (𝑢, 𝑣))) 𝜌 ((𝑥, 𝑦) , (𝑢, 𝑣)) ,

(67)

where 𝜌((𝑥, 𝑦), (𝑢, 𝑣)) = 𝑑(𝑥, 𝑢) + 𝑑(𝑦, 𝑣) for (𝑥, 𝑦), (𝑢, 𝑣) ∈

𝑋 × 𝑋. Then there exists 𝑣 ∈ 𝑋 such that 𝑣 ∈ 𝐹(𝑣, 𝑣); that is,
(𝑣, 𝑣) ∈ 𝑋 × 𝑋 is a coupled fixed point of 𝐹.

Applying Theorem 26, we obtain the following coupled
coincidence point theorem.

Theorem 28. Let (𝑋, 𝑑) be a metric space, 𝐹 : 𝑋×𝑋 → 𝑋 be
amap and𝑓 : 𝑋 → 𝑋 be a self-map satisfying⋃

𝑥∈𝑋
𝐹(𝑥, 𝑥) ⊆

𝑓(𝑋) and 𝑓(𝑋) is a complete subspace of𝑋. Assume that there
exists anMT-function 𝜑 : [0,∞) → [0, 1) such that for any
(𝑥, 𝑦), (𝑢, 𝑣) ∈ 𝑋 × 𝑋,

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, 𝑣))

≤
1

2
𝜑 (𝜌 ((𝑓𝑥, 𝑓𝑦) , (𝑓𝑢, 𝑓𝑣))) 𝜌 ((𝑓𝑥, 𝑓𝑦) , (𝑓𝑢, 𝑓𝑣)) .

(68)

Then there exists 𝑣 ∈ 𝑋 such that (𝑣, 𝑣) is the unique coupled
coincidence point of 𝐹 and 𝑓.

Proof. Applying Theorem 26, there exists 𝑣 ∈ 𝑋 such that
𝑓𝑣 = 𝐹(𝑣, 𝑣). To complete the proof, it suffices to show the
uniqueness of the coupled coincidence point of 𝐹 and 𝑓. On
the contrary, suppose that there exists (𝑥, 𝑦) ∈ 𝑋 × 𝑋, such
that 𝑓𝑥 = 𝐹(𝑥, 𝑦) and 𝑓𝑦 = 𝐹(𝑦, 𝑥). By (68), we have

𝑑 (𝑓𝑣, 𝑓𝑥) = 𝑑 (𝐹 (𝑣, 𝑣) , 𝐹 (𝑥, 𝑦))

<
1

2
[𝑑 (𝑓𝑣, 𝑓𝑥) + 𝑑 (𝑓𝑣, 𝑓𝑦)] ,

𝑑 (𝑓𝑣, 𝑓𝑦) = 𝑑 (𝐹 (𝑣, 𝑣) , 𝐹 (𝑦, 𝑥))

<
1

2
[𝑑 (𝑓𝑣, 𝑓𝑦) + 𝑑 (𝑓𝑣, 𝑓𝑥)] .

(69)

So, combining (69), we get

𝑑 (𝑓𝑣, 𝑓𝑥) + 𝑑 (𝑓𝑣, 𝑓𝑦) < 𝑑 (𝑓𝑣, 𝑓𝑥) + 𝑑 (𝑓𝑣, 𝑓𝑦) ,

(70)

which leads a contradiction. The proof is completed.
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Corollary 29 (see [4]). Let (𝑋, 𝑑) be a complete metric space
and 𝐹 : 𝑋 × 𝑋 → 𝑋 be a map. Assume that there exists an
MT-function 𝜑 : [0,∞) → [0, 1) such that for any (𝑥, 𝑦),

(𝑢, 𝑣) ∈ 𝑋 × 𝑋,

𝑑 (𝐹 (𝑥, 𝑦) , 𝐹 (𝑢, 𝑣))

≤
1

2
𝜑 (𝜌 ((𝑥, 𝑦) , (𝑢, 𝑣))) 𝜌 ((𝑥, 𝑦) , (𝑢, 𝑣)) .

(71)

Then there exists 𝑣 ∈ 𝑋 such that (𝑣, 𝑣) is the unique coupled
fixed point of 𝐹.

ApplyingTheorem 18, we can prove the following coinci-
dence point theorem which is a generalization of Kikkawa-
Suzuki’s fixed point theorem.

Theorem30. Define a strictly decreasing function 𝜂 from [0, 1)

onto (1/2, 1] by

𝜂 (𝑟) =
1

1 + 𝑟
. (72)

Let (𝑋, 𝑑) be ametric space,𝑇 : 𝑋 → 𝐶𝐵(𝑋) be amultivalued
map, and 𝑓 : 𝑋 → 𝑋 be an injective self-map such that
𝑇(𝑋) = ⋃

𝑥∈𝑋
𝑇(𝑥) ⊆ 𝑓(𝑋). Assume that

(KS) there exists 𝛾 ∈ [0, 1) such that

𝜂 (𝛾) 𝑑 (𝑓𝑥, 𝑇𝑥) ≤ 𝑑 (𝑓𝑥, 𝑓𝑦)

implies H (𝑇𝑥, 𝑇𝑦) ≤ 𝛾𝑑 (𝑓𝑥, 𝑓𝑦) ,
(73)

for all 𝑥, 𝑦 ∈ 𝑋.

Then𝑓 and𝑇 have the approximate coincidence property
on𝑋.

Moreover, if we further assume 𝑓(𝑋) is a complete
subspace of𝑋, then 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0.

Proof. Let 𝑥 ∈ 𝑋 be arbitrary. If 𝑓𝑥 ∈ 𝑇𝑥, then
𝑥 ∈ 𝐶𝑂𝑃(𝑓, 𝑇) and hence 𝑓 and 𝑇 have the approximate
coincidence property. So the theorem is finished in this case.
Suppose 𝑓𝑥 ∉ 𝑇𝑥. Let 𝜏 : [0,∞) → [0,∞) be defined by
𝜏(𝑡) = 𝑡. Then 𝜏 is a nondecreasing function. By (KS), we can
define an MT-function 𝜑 : [0,∞) → [0, 1) by 𝜑(𝑡) = 𝛾,
∀𝑡 ∈ [0,∞). Let 𝑦 ∈ 𝑋 with 𝑓𝑦 ̸= 𝑓𝑥 and 𝑓𝑦 ∈ 𝑇𝑥. Since

𝜂 (𝛾) 𝑑 (𝑓𝑥, 𝑇𝑥) ≤ 𝑑 (𝑓𝑥, 𝑇𝑥) ≤ 𝑑 (𝑓𝑥, 𝑓𝑦) . (74)

by (KS) again, we have

𝑑 (𝑓𝑦, 𝑇𝑦) ≤ H (𝑇𝑥, 𝑇𝑦) ≤ 𝛾𝑑 (𝑓𝑥, 𝑓𝑦)

= 𝜑 (𝜏 (𝑑 (𝑓𝑥, 𝑓𝑦))) 𝑑 (𝑓𝑥, 𝑓𝑦) ,
(75)

which shows that (H1) as in Theorem 18 holds. Therefore
𝑇 have the approximate coincidence property by applying
Theorem 18.

Now, suppose that 𝑓(𝑋) is a complete subspace of 𝑋.
We shall prove 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0. It suffices to prove that the
condition (L2) as in Theorem 18 holds. Let {𝑥𝑛} in 𝑋 with

𝑓𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝑛 ∈ N and lim𝑛→∞𝑓𝑥𝑛 = 𝑓𝑤. Clearly, 𝑇𝑤 is a
closed subset of𝑋. We will proceed with the following claims
to prove lim𝑛→∞𝑑(𝑓𝑥𝑛, 𝑇𝑤) = 0.

Claim 1. 𝑑(𝑓𝑤, 𝑇𝑥) ≤ 𝛾𝑑(𝑓𝑤, 𝑓𝑥) for all 𝑥 ∈ 𝑋 with 𝑓𝑥 ̸= 𝑓𝑤.
For 𝑥 ∈ 𝑋 with 𝑓𝑥 ̸= 𝑓𝑤, since lim𝑛→∞𝑓𝑥𝑛 = 𝑓𝑤, there

exists 𝑛0 ∈ N, such that

𝑑 (𝑓𝑤, 𝑓𝑥𝑛) ≤
1

3
𝑑 (𝑓𝑥, 𝑓𝑤) ∀𝑛 ∈ Nwith 𝑛 ≥ 𝑛0. (76)

For 𝑛 ∈ N with 𝑛 ≥ 𝑛0, it follows from (76) that

𝜂 (𝛾) 𝑑 (𝑓𝑥𝑛, 𝑇𝑥𝑛) ≤ 𝑑 (𝑓𝑥𝑛, 𝑇𝑥𝑛)

≤ 𝑑 (𝑓𝑥𝑛, 𝑓𝑥𝑛+1)

≤ 𝑑 (𝑓𝑥𝑛, 𝑓𝑤) + 𝑑 (𝑓𝑤, 𝑓𝑥𝑛+1)

≤
2

3
𝑑 (𝑓𝑥, 𝑓𝑤)

= 𝑑 (𝑓𝑥, 𝑓𝑤) −
1

3
𝑑 (𝑓𝑥, 𝑓𝑤)

≤ 𝑑 (𝑓𝑥, 𝑓𝑤) − 𝑑 (𝑓𝑥𝑛, 𝑓𝑤)

≤ 𝑑 (𝑓𝑥𝑛, 𝑓𝑥) .

(77)

By our hypothesis (KS), we have

𝑑 (𝑓𝑥𝑛+1, 𝑇𝑥) ≤ H (𝑇𝑥𝑛, 𝑇𝑥) ≤ 𝛾𝑑 (𝑓𝑥𝑛, 𝑓𝑥)

∀𝑛 ∈ Nwith 𝑛 ≥ 𝑛0.
(78)

Since lim𝑛→∞𝑓𝑥𝑛 = 𝑓𝑤, the last inequality implies

𝑑 (𝑓𝑤, 𝑇𝑥) ≤ 𝛾𝑑 (𝑓𝑤, 𝑓𝑥) ∀𝑥 ∈ 𝑋with 𝑓𝑥 ̸= 𝑓𝑤. (79)

Claim 2.H(𝑇𝑥, 𝑇𝑤) ≤ 𝛾𝑑(𝑓𝑥, 𝑓𝑤) for all 𝑥 ∈ 𝑋.
Let 𝑥 ∈ 𝑋. It is quite obvious that the desired inequality

holds if 𝑥 = 𝑤. Suppose 𝑥 ̸=𝑤. Since 𝑓 is one-to-one, we have
𝑓𝑥 ̸= 𝑓𝑤. For every 𝑛 ∈ N, there exists 𝑦𝑛 ∈ 𝑇𝑥 such that

𝑑 (𝑓𝑤, 𝑦𝑛) < 𝑑 (𝑓𝑤, 𝑇𝑥) +
1

𝑛
𝑑 (𝑥, 𝑤) . (80)

Using (80) and Claim 1, we obtain

𝑑 (𝑓𝑥, 𝑇𝑥) ≤ 𝑑 (𝑓𝑥, 𝑦𝑛)

≤ 𝑑 (𝑓𝑥, 𝑓𝑤) + 𝑑 (𝑓𝑤, 𝑦𝑛)

< 𝑑 (𝑓𝑥, 𝑓𝑤) + 𝑑 (𝑓𝑤, 𝑇𝑥) +
1

𝑛
𝑑 (𝑥, 𝑤)

≤ 𝑑 (𝑓𝑥, 𝑓𝑤) + 𝛾𝑑 (𝑓𝑤, 𝑓𝑥) +
1

𝑛
𝑑 (𝑥, 𝑤)

= (1 + 𝛾) 𝑑 (𝑓𝑥, 𝑓𝑤) +
1

𝑛
𝑑 (𝑥, 𝑤) ∀𝑛 ∈ N.

(81)

The last inequality implies

𝜂 (𝛾) 𝑑 (𝑓𝑥, 𝑇𝑥) =
1

1 + 𝛾
𝑑 (𝑓𝑥, 𝑇𝑥) ≤ 𝑑 (𝑓𝑥, 𝑓𝑤) . (82)
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By (KS), we get

H (𝑇𝑥, 𝑇𝑤) ≤ 𝛾𝑑 (𝑓𝑥, 𝑓𝑤) ∀𝑥 ∈ 𝑋. (83)

Claim 3. lim𝑛→∞𝑑(𝑓𝑥𝑛, 𝑇𝑤) = 0.
Since 𝑓𝑥𝑛+1 ∈ 𝑇𝑥𝑛, 𝑛 ∈ N and lim𝑛→∞𝑓𝑥𝑛 = 𝑓𝑤, apply-

ing Claim 2, we have

lim
𝑛→∞

𝑑 (𝑓𝑥𝑛+1, 𝑇𝑤) ≤ lim
𝑛→∞

H (𝑇𝑥𝑛, 𝑇𝑤)

≤ lim
𝑛→∞

𝛾𝑑 (𝑓𝑥𝑛, 𝑓𝑤) = 0,
(84)

which implies lim𝑛→∞𝑑(𝑓𝑥𝑛, 𝑇𝑤) = 0.
By our Claims, we prove that (L2) holds. Therefore, by

applyingTheorem 18, we prove 𝐶𝑂𝑃(𝑓, 𝑇) ̸= 0.

Take 𝑓 ≡ 𝑖𝑑 (the identity map) inTheorem 30, we obtain
the following existence theorem which is also a generalized
Kikkawa-Suzuki’s fixed point theorem.

Corollary 31. Define a strictly decreasing function 𝜂 from
[0, 1) onto (1/2, 1] by

𝜂 (𝑟) =
1

1 + 𝑟
. (85)

Let (𝑋, 𝑑) be a metric space and let 𝑇 be a map from 𝑋 into
𝐶𝐵(𝑋). Assume that there exists 𝛾 ∈ [0, 1) such that

𝜂 (𝛾) 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) implies H (𝑇𝑥, 𝑇𝑦) ≤ 𝛾𝑑 (𝑥, 𝑦) ,

(86)

for all 𝑥, 𝑦 ∈ 𝑋. Then 𝑇 has the approximate fixed property.

Moreover, if we further assume 𝑋 is complete, then
F(𝑇) ̸= 0.
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