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We study the basis properties of systems of eigenfunctions and associated functions for one kind
of generalized spectral problems for a second-order ordinary differential operator.

1. Introduction

Let us consider the partial differential equation with involution

wt(t, x) = αwxx(t, x) +wxx(t,−x), −1 < x < 1, t > 0. (1.1)

If the initial conditions

w(0, x) = f(x) (1.2)

and the boundary conditions

αjwx(t,−1) + βjwx(t, 1) + αj1w(t,−1) + βj1w(t, 1) = 0, j = 1, 2 (1.3)

are given, then the solving of this equation by Fourier’s method leads to the problem of
expansion of function f(x) into series of eigenfunctions of spectral problem

−u′′(−x) + αu′′(x) = λu(x),

αju
′(−1) + βju

′(1) + αj1u(−1) + βju(1) = 0, j = 1, 2.
(1.4)
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If the function f(x) ∈ L2(−1, 1), then the question about basis property of eigenfunctions
of spectral problem for second-order ordinary differential operator with involution
raises.

Work of many researchers is devoted to the study of differential equations [1–5].
Various aspects of functionally differential equations with involution are studied in [6, 7]. The
spectral problems for the double differentiation operator with involution are studied in [8–
11] and the issues Riesz basis property of eigenfunctions in terms of coefficients of boundary
conditions were considered.

This kind of spectral problems arises in the theory of solvability of differential
equations in partial derivatives with an involution [7, page 265].

Results presented below are a continuation of studies of one of the authors in [9–11].

2. General Boundary Value Problem

In this paper, we study the spectral problem of the form

Lu ≡ −u′′(−x) + αu′′(x) + βu′(x) + γu′(−x) + ηu(−x) = λu(x), (2.1)

α1u
′(−1) + β1u

′(1) + α11u(−1) + β11u(1) = 0,

α2u
′(−1) + β2u

′(1) + α21u(−1) + β21u(1) = 0,
(2.2)

where α, β, γ, η, αi, βi, αij , βij are some complex numbers.
By direct calculation, one can verify that the square of the operator is in the form

L2u =
(
1 + α2

)
uIV (x) − 2αuIV (−x) + 2αγu′′′(−x) + 2αβu′′′(x) + 2αηu′′(−x)

+
(
−2η + β2 − γ2

)
u′′(x) + η2u(x).

(2.3)

Since it is assumed that Lu belongs to domain of operator L also, then function Lu
satisfies boundary-value conditions (2.2)

α1(Lu)′(−1) + β1(Lu)′(1) + α11(Lu)(−1) + β11(Lu)(1) = 0,

α2(Lu)′(−1) + β2(Lu)′(1) + α21(Lu)(−1) + β21(Lu)(1) = 0.
(2.4)

That is, the operator L2 is generated by previous differential expression and boundary-value
conditions (2.2) and (2.4).

The expression L2u is an ordinary differential expression for α = 0.
Therefore, applying the method in [8–10] we can obtain the following statement (the

result).
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Theorem 2.1. If α = 0, then the eigenfunctions of the generalized spectral problem (2.1) and (2.2)
form a Riesz basis of the space L2(−1, 1) in the following cases:

(1) α1β2 − α2β1 /= 0;

(2) α1β2 − α2β1 = 0, |α1| + |β1| > 0, α2
1 /= β22, α

2
21 /= β221,

(3) α1 = β1 = α2 = β2 = 0; α11β21 − α21β11 /= 0.

The root vectors of operators A and A2 coincide under some conditions (see, for
instance, [10]). Therefore, we can consider the square of the operator L which is an ordinary
differential operator. It is well known [12–14] that eigenfunctions of ordinary differential
operator of even order with strongly regular boundary value conditions form a Riesz basis.
As in [10], from here it is possible to deduce correctness of Theorem 2.1.

This technique is not applicable for a = 0 since L2u is not an ordinary differential
operator. Therefore, we consider this case separately.

3. General Solution of Special Type Equation

Let the operator L be given by the differential expression with an involution

Lu = −u′′(−x) + αu′′(x), (3.1)

and boundary conditions (2.2).
We consider the spectral problem Lu = λu(x) with periodic, antiperiodic boundary

conditions, with the boundary conditions of Dirichlet and Sturm type. In these cases, it
is possible to compute all the eigenvalues and eigenfunctions explicitly. The basis of our
statements is the following.

Theorem 3.1. If a2 /= 1, then the general solution of equation

−u′′(−x) + αu′′(x) = λu(x), (3.2)

where λ is the spectral parameter, has the form

u(x) = A cos

√
λ

1 − α
x + B sin

√
λ

−1 − α
x, (3.3)

where A and B are arbitrary complex numbers.

If α2 = 1 and λ/= 0, then (3.2) has only the trivial solution.

Proof. It is easy to see that functions (3.3) are solutions of (3.2). Let us prove the absence of
other solutions.
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Any function u(x) can be represented as a sum of even and odd functions. Substituting
this representation into (3.2) and into −u′′(x) + αu′′(−x) = λu(−x), we conclude that the
functions u1(x) and

−(1 − α)u′′
1(x) = λu1(x),

−(−1 − α)u′′
2(x) = λu2(x).

(3.4)

4. The Dirichlet Problem

Consider the spectral problem (3.2) a2 /= 1 with boundary conditions

u(−1) = 0, u(1) = 0. (4.1)

Note that the spectral problem (3.2) and (4.1) is self-adjoint for real α. We calculate the
eigenvalues and eigenfunctions of the Dirichlet problem (3.2) and (4.1). Using Theorem 3.1,
it is easy to see that the spectral problem (3.2) and (4.1) has two sequences of simple
eigenvalues.

If α /∈ {(8k2 + 4k + 1)/(4k + 1) : k ∈ Z}, then corresponding eigenfunctions are given
by the formulas

uk1(x) = cos
(π
2
+ kπ

)
x, k = 0, 1, 2, . . . , uk2(x) = sin kπx, k = 1, 2, . . . . (4.2)

If α /∈ (8k2 + 4k + 1)/(4k + 1) for some k0 ∈ Z, then the eigenfunctions of the spectral problem
(3.2) and (4.1) are given by

uk1(x) = cos
(π
2
+ kπ

)
x, k = 0, 1, 2, . . . , uk2(x) = sin kπx, k = 1, 2, . . . , k /= k0,

uk01(x) = cos
(π
2
+ k0π

)
x + sin

√
1 − α

−1 − α

(π
2
+ k0π

)
x,

uk02(x) = sin k0πx + cos

√
−1 − α

1 − α
k0πx.

(4.3)

Theorem 4.1. If a2 /= 1, then the system of eigenfunctions of the spectral problem (3.2) and (4.1),
which is given above, forms an orthonormal basis of the space L2(−1, 1).

Proof. For real values of α, the spectral problem (3.2) and (4.1) is self-adjoint. Therefore,
the system (4.1), as a system of eigenfunctions self-adjoint operator, is an orthonormal.
Analogously, the case α = (8k2

0 + 4k0 + 1)/(4k0 + 1), k0 ∈ Z, is considered. Also note that
every orthonormal basis is automatically a Riesz basis.

The system (4.2) does not depend on α, hence Theorem 4.1 is proved.
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5. Periodic and Antiperiodic Problem

Now consider the spectral problem (3.2) with the periodic boundary conditions

u(−1) = u(1), u′(−1) = u′(1). (5.1)

It follows immediately from Theorem 3.1 that the eigenfunctions of the spectral problem (3.2)
and (5.1) are given by

(λk1)
2 = −(1 + α)k2π2, (λk2)

2 = (1 − α)k2π2. (5.2)

They are simple and correspond to the eigenfunctions

uk1(x) = sin kπx, k = 0, 1, 2, . . . , uk2(x) = cos kπx, k = 0, 1, 2, . . . . (5.3)

Similarly, the eigenvalues and eigenfunctions of the spectral problem with antiperiodic
boundary conditions

u(−1) = −u(1), u′(−1) = −u′(1) (5.4)

are calculated.
In this case, there are two series of eigenvalues also

(λk1)
2 = (1 − α)

(π
2
+ kπ

)
, k = 0, 1, 2, . . . ,

(λk2)
2 = (−1 − α)

(π
2
+ kπ

)
, k = 0, 1, 2, . . . .

(5.5)

They correspond to the eigenfunctions

uk1 = cos
(π
2
+ kπ

)
x, k = 1, 2, . . . , uk2 = sin

(π
2
+ kπ

)
x, k = 0, 1, 2, . . . . (5.6)

Theorem 5.1. If α2 /= 1, then the systems of eigenfunctions of the spectral problem (3.2) with periodic
or antiperiodic boundary conditions form orthonormal bases of the space L2(−1, 1).

The proof is analogous to the proof of Theorem 4.1. Also note that for periodic
conditions the eigenfunctions form the classical orthonormal basis of L2(−1, 1).

Analogously, it is possible to check that the eigenfunctions of spectral problems (3.2),
α2 /= 1, with boundary conditions of Sturm type

u′(−1) = 0, u′(1) = 0 (5.7)
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and with nonself-adjoint boundary conditions

u(−1) = 0, u′(−1) = u′(1) (5.8)

form orthonormal bases of L2(−1, 1).
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