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The integral-differential equation of the parabolic type in a Banach space is considered. The unique
solvability of this equation is established. The stability estimates for the solution of this equation
are obtained. The difference scheme approximately solving this equation is presented. The stability
estimates for the solution of this difference scheme are obtained.

1. Introduction

We consider the integral-differential equation

du(t)
dt

+ sgn(t)Au(t) =
∫ t
−t
B(s)u(s)ds + f(t), −1 ≤ t ≤ 1 (1.1)

in an arbitrary Banach space E with unbounded linear operators A and B(t) in E with dense
domain D(A) ⊂ D(B(t)) and

∥∥∥B(t)A−1
∥∥∥
E→E

≤M, −1 ≤ t ≤ 1. (1.2)

A function u(t) is called a solution of (1.1) if the following conditions are satisfied:

(i) u(t) is continuously differentiable on [−1, 1]. The derivatives at the endpoints are
understood as the appropriate unilateral derivatives.



2 Abstract and Applied Analysis

(ii) The element u(t) belongs to D(A) for all t ∈ [−1, 1], and the functions Au(t) and
B(t)u(t) are continuous on [−1, 1].

(iii) u(t) satisfies (1.1).

A solution of (1.1) defined in this manner will from now on be referred to as a solution
of (1.1) in the space C(E) = C([−1, 1], E) of all continuous functions ϕ(t) defined on [−1, 1]
with values in E equipped with the norm

∥∥ϕ∥∥C(E) = max
−1≤t≤1

∥∥ϕ(t)∥∥E. (1.3)

We consider (1.1) under the assumption that the operator −A generates an analytic
semigroup exp{−tA}(t ≥ 0), that is, the following estimates hold:

∥∥∥e−tA
∥∥∥
E→E

≤M,
∥∥∥tAe−tA

∥∥∥
E→E

≤M, 0 ≤ t ≤ 1. (1.4)

Integral inequalities play a significant role in the theory of differential and integral-
differential equations. They are useful to investigate some properties of the solutions of
equations, such as existence, uniqueness and stability, see for instance [1–11].

Mathematical modelling of real-life phenomena is widely used in various applied
fields of science. This is based on the mathematical description of real-life processes and
the subsequent solving of the appropriate mathematical problems on the computer. The
mathematical models of many real-life problems lead to already known or new differential
and integral-differential equations. In most of the cases it is difficult to find the exact solutions
of the differential and integral-differential equations. For this reason discrete methods play
a significant role, especially with the appearance of highly efficient computers. A well-
known and widely applied method of approximate solutions for differential and integral-
differential equations is the method of difference schemes. Modern computers allow us to
implement highly accurate difference schemes. Hence, the task is to construct and investigate
highly accurate difference schemes for various types of differential and integral-differential
equations. The investigation of stability and convergence of these difference schemes is based
on the discrete analogues of integral inequalities.

Gronwall in 1919 showed the following result [12].

Lemma 1.1. If M = const > 0, δ = const > 0, and continuous function x(t) ≥ 0 satisfies the
inequalities

x(t) ≤ δ +M
∫ t
0
x(s)ds, 0 ≤ t ≤ T, (1.5)

then

x(t) ≤ δ exp[Mt], 0 ≤ t ≤ T. (1.6)

A number of different generalizations of Gronwall’s integral inequality with one and
two dependent limits have been obtained, see for instance [13, 14].
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In numerical analysis literature, see for instance [15, 16], one can find the following
discrete analogue of Lemma 1.1.

Lemma 1.2. If xj , j = 0, . . . ,N is a sequence of real numbers with

|xi| ≤ δ + hM
i−1∑
j=0

∣∣xj∣∣, i = 1, . . . ,N, (1.7)

whereM = const > 0 and δ = const > 0, then

|xi| ≤ (hM|x0| + δ) exp[Mih], i = 1, . . . ,N. (1.8)

In the current paper, we will derive the discrete analogue of generalization of the
Gronwall’s integral inequality. It is used to obtain the generalization of Gronwall’s integral
inequality with two dependent limits. We will consider the applications of these inequalities
to the integral-differential equation (1.1) of the parabolic type with two dependent limits in a
Banach space E. The unique solvability of this equation is established. The stability estimates
for the solution of this equation are obtained. The difference scheme approximately solving
this equation is presented. The stability estimates for the solution of this difference scheme
are obtained.

2. Gronwall’s Type Integral Inequality with Two Dependent Limits and
Its Discrete Analogue

First of all, let us obtain the theorems on the Gronwall’s type integral inequalities with two
dependent limits and their discrete analogues. We will use these results in the remaining part
of the paper.

Theorem 2.1. Assume that vi ≥ 0, ai ≥ 0, δi ≥ 0, i = −N, . . . ,N + 2M are the sequences of real
numbers and the inequalities

vi ≤ δi + h
⎛
⎝ |i−M|+M−1∑

j=−|i−M|+M+1

ajvj − aMvM
⎞
⎠, i = −N, . . . ,N + 2M (2.1)

hold. Then for vi the inequalities

vM−1 ≤ δM−1, vM+1 ≤ δM+1, vM ≤ δM + h(aM−1δM−1 + aM+1δM+1), (2.2)

vi ≤ δi + h
|i−M|+M−1∑
j=M+1

(
ajδj + a2M−jδ2M−j

)
B|i−M|+M−1,j , i = −N, . . . ,M − 2,M + 2, . . . ,N + 2M

(2.3)
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are satisfied, where

Bk,j =

⎧⎪⎨
⎪⎩

k∏
n=j+1

[1 + h(an + a2M−n)], if j =M + 1, . . . , k − 1,

1, if j = k.
(2.4)

Proof. By putting i = M − 1,M + 1,M directly in (2.1), we obtain the inequalities (2.2),
correspondingly. Let us prove (2.3). We denote

yi = h

⎛
⎝ |i−M|+M−1∑

j=−|i−M|+M+1

ajvj − aMvM
⎞
⎠, i = −N, . . . ,N + 2M. (2.5)

Then (2.1) gets the form

vi ≤ δi + yi, i = −N, . . . ,N + 2M. (2.6)

Moreover, we have

y2M−i = h

⎛
⎝ |M−i|+M−1∑

j=−|M−i|+M+1

ajvj − aMvM
⎞
⎠ = yi, i = −N, . . . ,N + 2M. (2.7)

Then, using (2.5)–(2.7) for i =M + 1, . . . ,N + 2M − 1, we obtain

yi+1 − yi = h
⎛
⎝ i∑

j=2M−i
ajvj − aMvM

⎞
⎠ − h

⎛
⎝ i−1∑

j=2M−i+1
ajvj − aMvM

⎞
⎠

= h(aivi + a2M−iv2M−i)

≤ hai
(
yi + δi

)
+ ha2M−i

(
y2M−i + δ2M−i

)
= h(ai + a2M−i)yi + h(aiδi + a2M−iδ2M−i).

(2.8)

So,

yi+1 ≤ [1 + h(ai + a2M−i)]yi + h(aiδi + a2M−iδ2M−i), i =M + 1, . . . ,N + 2M − 1. (2.9)

Then by induction we can prove that

yi ≤
i−M−1∏
n=1

[1 + h(aM+n + aM−n)]yM+1 +
i−1∑

j=M+1

h
(
ajδj + a2M−jδ2M−j

)
Bi−1,j (2.10)

hold for i = M + 2, . . . ,N + 2M. Since yM+1 = 0, using (2.6), we obtain (2.3) for i = M +
2, . . . ,N + 2M.
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Let us prove (2.3) for i = −N, . . . ,M− 2. Using (2.5)–(2.7) for i = −N + 1, . . . ,M− 1, we
have

yi−1 − yi = h
⎛
⎝2M−i∑

j=i

ajvj − aMvM
⎞
⎠ − h

⎛
⎝2M−i−1∑

j=i+1

ajvj − aMvM
⎞
⎠

= h(aivi + a2M−iv2M−i)

≤ hai
(
yi + δi

)
+ ha2M−i

(
y2M−i + δ2M−i

)
= h(ai + a2M−i)yi + h(aiδi + a2M−iδ2M−i).

(2.11)

So,

yi−1 ≤ [1 + h(ai + a2M−i)]yi + h(aiδi + a2M−iδ2M−i), i = −N + 1, . . . ,M − 1. (2.12)

Then by induction we can prove that

yi ≤
M−i−1∏
n=1

[1 + h(aM+n + aM−n)]yM−1 +
2M−i−1∑
j=M+1

h
(
ajδj + a2M−jδ2M−j

)
B2M−i−1,j (2.13)

hold for i = −N, . . . ,M − 2. Since yM−1 = 0, using (2.6), we obtain (2.3) for i = −N, . . . ,M − 2.
The proof of Theorem 2.1 is complete.

By putting M = 0, δi ≡ const, ai ≡ const, i = −N, . . . ,N, and using the inequality
1 + x < exp[x] for x > 0 in the Theorem 2.1, we get the following result.

Theorem 2.2. Assume that vi ≥ 0, i = −N, . . . ,N is the sequence of real numbers and the
inequalities

vi ≤ δ + Lh

⎛
⎝ |i|−1∑

j=−|i|+1
vj − v0

⎞
⎠, i = −N, . . . ,N (2.14)

hold. Then for vi the inequalities

v0 ≤ δ exp[2Lh], vi ≤ δ exp[2Lh(|i| − 1)], i = −N, . . . ,−1, 1, . . . ,N (2.15)

are satisfied.

By puttingNh = 1, 2Mh = T and passing to limit h → 0 in the Theorem 2.1, we obtain
the following generalization of Gronwall’s integral inequality with two dependent limits.
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Theorem 2.3. Assume that v(t) ≥ 0, δ(t) ≥ 0 are the continuous functions on [−1, 1 + T] and
a(t) ≥ 0 is an integrable function on [−1, 1 + T] and the inequalities

v(t) ≤ δ(t) + sgn
(
t − T

2

)∫ t
T−t

a(s)v(s)ds, −1 ≤ t ≤ 1 + T (2.16)

hold. Then for v(t) the inequalities

v(t)

≤ δ(t) +
∫ t
T/2

(a(s)δ(s) + a(T − s)δ(T − s)) exp
[∫ t

s

(a(τ) + a(T − τ))dτ
]
ds,

T

2
≤ t ≤ 1 + T,

v(t)

≤ δ(t) +
∫T−t
T/2

(a(s)δ(s) + a(T − s)δ(T − s)) exp
[∫T−t

s

(a(τ) + a(T − τ))dτ
]
ds, −1 ≤ t < T

2
(2.17)

are satisfied.

Finally, by putting δ(t) ≡ const, a(t) ≡ const, −1 ≤ t ≤ 1, and T = 0 in the Theorem 2.3,
we get the following result.

Theorem 2.4. Assume that v(t) ≥ 0 is a continuous function on [−1, 1] and the inequalities

v(t) ≤ C + L sgn(t)
∫ t
−t
v(s)ds, −1 ≤ t ≤ 1 (2.18)

hold, where C = const ≥ 0 and L = const ≥ 0. Then for v(t) the inequalities

v(t) ≤ C exp(2L|t|), −1 ≤ t ≤ 1 (2.19)

are satisfied.

3. The Integral-Differential Equation of the Parabolic Type

Now, we consider the application of the generalizations of Gronwall’s integral inequality
with two dependent limits and their discrete analogues to the integral-differential equation
(1.1) of the parabolic type with two dependent limits in a Banach space E.

First of all, let us give one theorem that will be needed below.
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Theorem 3.1. Suppose that F(t) ∈ C([−1, 1], E), K(t, s) ∈ C([−1, 1], E). Then there is a unique
solution of the integral equation

z(t) = F(t) + sgn(t)
∫ t
−t
K(t, s)z(s)ds, −1 ≤ t ≤ 1. (3.1)

Proof. The proof of this theorem is based on a fixed-point theorem. It is easy to see that the
operator

Bz(t) = F(t) + sgn(t)
∫ t
−t
K(t, s)z(s)ds, −1 ≤ t ≤ 1 (3.2)

maps C([−1, 1], E) into C([−1, 1], E). By using a special value of λ in the norm

‖v‖C∗([−1,1],E) = max
−1≤t≤1

e−λ|t|‖v(t)‖E, (3.3)

we can prove that A is the contracting operator on C∗([−1, 1], E). Indeed, we have

e−λ|t|‖Bz(t) − Bu(t)‖E ≤
∫ |t|

−|t|
‖K(t, s)‖E→Ee

−λ(|t|−|s|)e−λ|s|‖z(s) − u(s)‖Eds

≤ max
−1≤s,t≤1

‖K(t, s)‖E→E

∫ |t|

−|t|
e−λ(|t|−|s|)‖z − u‖C∗([−1,1],E)ds

= 2 max
−1≤s,t≤1

‖K(t, s)‖E→E

∫ |t|

0
e−λ(|t|−s)ds‖z − u‖C∗([−1,1],E)

= 2 max
−1≤s,t≤1

‖K(t, s)‖E→E‖z − u‖C∗([−1,1],E)
1 − e−λ|t|

λ

≤ ‖z − u‖C∗([−1,1],E)
2
(
1 − e−λ)
λ

max
−1≤s,t≤1

‖K(t, s)‖E→E

(3.4)

for any t ∈ [−1, 1]. So,

‖Bz − Bu‖C∗([−1,1],E) ≤ ‖z − u‖C∗([−1,1],E)αλ, (3.5)

where αλ = (2(1− e−λ)/λ)max−1≤s,t≤1‖K(t, s)‖E→E and αλ → 0 when λ → ∞. Finally, we note
that the norms

‖v‖C∗([−1,1],E) = max
−1≤t≤1

e−λ|t|‖v(t)‖E,

‖v‖C([−1,1],E) = max
−1≤t≤1

‖v(t)‖E
(3.6)

are equivalent in C([−1, 1], E). The proof of Theorem 3.1 is complete.
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Theorem 3.2. Suppose that assumptions (1.2) and (1.4) for the operators A and B(t) hold. Assume
that f(t) is continuously differentiable on [−1, 1] function. Then there is a unique solution of (1.1)
and stability inequality

max
−1≤t≤1

∥∥∥∥du(t)dt

∥∥∥∥
E

+ max
−1≤t≤1

‖Au(t)‖E ≤M∗
[∥∥f(0)∥∥E +

∫1

−1

∥∥f ′(s)
∥∥
Eds

]
(3.7)

holds, whereM∗ does not depend on f(t) and t.

Proof. The proof of the existence and uniqueness of the solution of (1.1) is based on the
following formula:

u(t) = sgn(t)A−1f(t) − sgn(t)e−|t|AA−1f(0) − sgn(t)
∫ t
0
e−(|t|−|s|)AA−1f ′(s)ds

+ sgn(t)
∫ t
−t

[
I − e−(|t|−|s|)A

]
A−1B(s)u(s)ds, −1 ≤ t ≤ 1

(3.8)

and the Theorem 3.1.
First, we note that the solution of (1.1) satisfies u(0) = 0. Indeed, assume that u(t) is

the solution of (1.1)with B ≡ 0. Then

u′(t) +Au(t) = f(t), 0 < t ≤ 1,

u′(t) −Au(t) = f(t), −1 ≤ t < 0,
(3.9)

and from the continuity of f, u′(t), and Au at t = 0 we get

u′(0) +Au(0) = f(0),

u′(0) −Au(0) = f(0).
(3.10)

This leads to 2Au(0) = 0, and it follows that u(0) = 0.
Let us now prove (3.8). First, we consider the case when 0 ≤ t ≤ 1. It is well known

that the Cauchy problem

du(t)
dt

+Au(t) = F(t), 0 ≤ t ≤ 1,

u(0) = 0
(3.11)

for differential equations in an arbitrary Banach space E with positive operator A has the
unique solution

u(t) =
∫ t
0
e−(t−s)AF(s)ds, 0 ≤ t ≤ 1 (3.12)
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for smooth F(t). By putting

F(t) =
∫ t
−t
B(s)u(s)ds + f(t), (3.13)

we have

u(t) =
∫ t
0
e−(t−s)Af(s)ds +

∫ t
0
e−(t−s)A

∫s
−s
B(τ)u(τ)dτ ds, 0 ≤ t ≤ 1. (3.14)

Since

∫ t
0

∫s
−s
e−(t−s)AB(τ)u(τ)dτ ds =

∫ t
0

∫ t
τ

e−(t−s)AB(τ)u(τ)dsdτ

+
∫0

−t

∫ t
−τ
e−(t−s)AB(τ)u(τ)dsdτ

=
∫ t
0

(
I − e−(t−τ)A

)
A−1B(τ)u(τ)dτ

+
∫0

−t

(
I − e−(t+τ)A

)
A−1B(τ)u(τ)dτ

=
∫ t
−t

(
I − e−(t−|s|)A

)
A−1B(s)u(s)ds,

∫ t
0
e−(t−s)Af(s)ds = A−1f(t) − e−tAA−1f(0) −

∫ t
0
e−(t−s)AA−1f ′(s)ds,

(3.15)

we obtain (3.8) for 0 ≤ t ≤ 1.
Now, let −1 ≤ t ≤ 0. Then we consider the problem

du(t)
dt

−Au(t) = F(t), −1 ≤ t ≤ 0,

u(0) = 0
(3.16)

for differential equations in an arbitrary Banach space E with positive operator A, which has
the unique solution

u(t) = −
∫0

t

e(t−s)AF(s)ds, −1 ≤ t ≤ 0. (3.17)

By putting

F(t) =
∫ t
−t
B(s)u(s)ds + f(t), (3.18)
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we have

u(t) = −
∫0

t

e(t−s)Af(s)ds +
∫0

t

e(t−s)A
∫−s

s

B(τ)u(τ)dτ ds, −1 ≤ t ≤ 0. (3.19)

Since

∫0

t

∫−s

s

e(t−s)AB(τ)u(τ)dτ ds =
∫−t

0

∫−τ

t

e(t−s)AB(τ)u(τ)dsdτ

+
∫0

t

∫ τ
t

e(t−s)AB(τ)u(τ)dsdτ

=
∫−t

0

(
I − e(t+τ)A

)
A−1B(τ)u(τ)dτ

+
∫0

t

(
I − e(t−τ)A

)
A−1B(τ)u(τ)dτ

=
∫−t

t

(
I − e−(−t−|s|)A

)
A−1B(s)u(s)ds,

∫0

t

e(t−s)Af(s)ds = A−1f(t) − etAA−1f(0) +
∫0

t

e−(−t+s)AA−1f ′(s)ds,

(3.20)

we obtain (3.8) for −1 ≤ t ≤ 0.
From (3.8) it follows that

Au(t) = sgn(t)f(t) − sgn(t)e−|t|Af(0) − sgn(t)
∫ t
0
e−(|t|−|s|)Af ′(s)ds

+ sgn(t)
∫ t
−t

[
I − e−(|t|−|s|)A

]
B(s)u(s)ds, −1 ≤ t ≤ 1.

(3.21)

Applying the triangle inequality and assumptions (1.2) and (1.4), we get

‖Au(t)‖E ≤ ∥∥f(t)∥∥E +
∥∥∥e−|t|A

∥∥∥
E→E

∥∥f(0)∥∥E +
∫ |t|

−|t|

∥∥∥e−(|t|−|s|)A
∥∥∥
E→E

∥∥f ′(s)
∥∥
Eds

+
∫ |t|

−|t|

[
1 +
∥∥∥e−(|t|−|s|)A

∥∥∥
E→E

]∥∥∥B(s)A−1
∥∥∥
E→E

‖Au(s)‖Eds

≤ (M + 1)

[∥∥f(0)∥∥E +
∫1

−1

∥∥f ′(s)
∥∥
Eds

]

+ sgn(t)M(M + 1)
∫ t
−t
‖Au(s)‖Eds, −1 ≤ t ≤ 1.

(3.22)
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Then, using the Theorem 2.4, we have

‖Au(t)‖E ≤ (M + 1)

[∥∥f(0)∥∥E +
∫1

−1

∥∥f ′(s)
∥∥
Eds

]
e2M(M+1)|t|

≤ (M + 1)e2M(M+1)

[∥∥f(0)∥∥E +
∫1

−1

∥∥f ′(s)
∥∥
Eds

]
, −1 ≤ t ≤ 1.

(3.23)

So,

max
−1≤t≤1

‖Au(t)‖E ≤ (M + 1)e2M(M+1)

[∥∥f(0)∥∥E +
∫1

−1

∥∥f ′(s)
∥∥
Eds

]
. (3.24)

By applying the triangle inequality in (1.1) and assumptions (1.2) and (1.4), we obtain

∥∥∥∥du(t)dt

∥∥∥∥
E

≤ ‖Au(t)‖E +
∫ |t|

−|t|

∥∥∥B(s)A−1
∥∥∥
E→E

‖Au(s)‖Eds +
∥∥f(t)∥∥E

≤ (2M + 1)max
−1≤t≤1

‖Au(t)‖E +
∥∥f(0)∥∥E +

∫1

−1

∥∥f ′(s)
∥∥
Eds, −1 ≤ t ≤ 1.

(3.25)

So,

max
−1≤t≤1

∥∥∥∥du(t)dt

∥∥∥∥
E

≤ (2M + 1)max
−1≤t≤1

‖Au(t)‖E +
∥∥f(0)∥∥E +

∫1

−1

∥∥f ′(s)
∥∥
Eds. (3.26)

Then using (3.24), we have

max
−1≤t≤1

∥∥∥∥du(t)dt

∥∥∥∥
E

+ max
−1≤t≤1

‖Au(t)‖E ≤ 2(M + 1)max
−1≤t≤1

‖Au(t)‖E +
∥∥f(0)∥∥E +

∫1

−1

∥∥f ′(s)
∥∥
Eds

≤
(
2(M + 1)2e2M(M+1) + 1

)[∥∥f(0)∥∥E +
∫1

−1

∥∥f ′(s)
∥∥
Eds

]
.

(3.27)

So, stability inequality (3.7) holds withM∗ = 2(M+1)2e2M(M+1) +1. The proof of Theorem 3.2
is complete.

Note that it does not hold, generally speaking

max
−1≤t≤1

∥∥∥∥du(t)dt

∥∥∥∥
E

+ max
−1≤t≤1

‖Au(t)‖E ≤M∗max
−1≤t≤1

∥∥f(t)∥∥E (3.28)

in an arbitrary Banach space E for the general strong positive operatorA, see [17, Section 1.5,
Chapter 1]. Nevertheless, we can establish the following theorem.
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Theorem 3.3. Suppose that assumptions (1.4) for the operator A hold and

∥∥∥B(t)A−1
∥∥∥
Eα →Eα

≤M, −1 ≤ t ≤ 1. (3.29)

Assume that f(t) is a continuous on [−1, 1] function. Then there is a unique solution of (1.1) and
stability inequality

max
−1≤t≤1

∥∥∥∥du(t)dt

∥∥∥∥
Eα

+ max
−1≤t≤1

‖Au(t)‖Eα ≤M∗(α)max
−1≤t≤1

∥∥f(t)∥∥Eα (3.30)

holds, where M∗(α) does not depend on f(t) and t. Here the fractional spaces Eα = Eα(E,A) (0 <
α < 1), consisting of all v ∈ E for which the following norms are finite:

‖v‖Eα = sup
0<z

z1−α
∥∥A exp{−zA}v∥∥E. (3.31)

Proof. First, we rewrite (3.8) as

u(t) =
∫ t
0
e−(|t|−|s|)Af(s)ds + sgn(t)

∫ t
−t

[
I − e−(|t|−|s|)A

]
A−1B(s)u(s)ds, −1 ≤ t ≤ 1. (3.32)

The proof of the existence and uniqueness of the solution of (1.1) is based on the formula
(3.32) and an analogue of the Theorem 3.1. Let us prove (3.30). From (3.32) it follows that

Au(t) =
∫ t
0
Ae−(|t|−|s|)Af(s)ds + sgn(t)

∫ t
−t

[
I − e−(|t|−|s|)A

]
B(s)u(s)ds, −1 ≤ t ≤ 1. (3.33)

Applying the triangle inequality, the definition of the norm of the space Eα and assumptions
(1.4) and (3.29), we obtain

‖Au(t)‖Eα ≤
∥∥∥∥∥
∫ |t|

−|t|
Ae−(|t|−|s|)Af(s)ds

∥∥∥∥∥
Eα

+
∫ |t|

−|t|

[
1 +
∥∥∥e−(|t|−|s|)A

∥∥∥
E→E

]∥∥∥B(s)A−1
∥∥∥
Eα →Eα

‖Au(s)‖Eαds

≤
∥∥∥∥∥
∫ |t|

−|t|
Ae−(|t|−|s|)Af(s)ds

∥∥∥∥∥
Eα

+ sgn(t)M(M + 1)
∫ t
−t
‖Au(s)‖Eαds.

(3.34)

By [17, Chapter 1, Theorem 4.1], we obtain

∥∥∥∥∥
∫ |t|

−|t|
Ae−(|t|−|s|)Af(s)ds

∥∥∥∥∥
Eα

≤ M

α(1 − α) max
−1≤t≤1

∥∥f(t)∥∥Eα . (3.35)
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So,

‖Au(t)‖Eα ≤
M

α(1 − α) max
−1≤t≤1

∥∥f(t)∥∥Eα + sgn(t)M(M + 1)
∫ t
−t
‖Au(s)‖Eαds (3.36)

for −1 ≤ t ≤ 1. Then, using the Theorem 2.4, we have

‖Au(t)‖Eα ≤
M

α(1 − α) max
−1≤t≤1

∥∥f(t)∥∥Eαe2M(M+1)|t|, −1 ≤ t ≤ 1. (3.37)

So,

max
−1≤t≤1

‖Au(t)‖Eα ≤
M

α(1 − α) max
−1≤t≤1

∥∥f(t)∥∥Eαe2M(M+1). (3.38)

Then, using the triangle inequality in (1.1) yields

max
−1≤t≤1

∥∥∥∥du(t)dt

∥∥∥∥
Eα

≤ M(M + 1)
α(1 − α) max

−1≤t≤1

∥∥f(t)∥∥Eαe2M(M+1). (3.39)

Combining last two inequalities, we obtain (3.30)withM∗(α) = (M(M+2)/α(1−α))e2M(M+1).
The proof of Theorem 3.3 is complete.

Now, we consider the Rothe difference scheme for approximate solutions of (1.1).

uk − uk−1
τ

+Auk =
k−1∑

i=−k+1
Biuiτ + ϕk, k = 1, . . . ,N,

uk − uk−1
τ

−Auk−1 = −
−k∑
i=k

Biuiτ + ϕk, k = −N + 1, . . . , 0,

Bk = B(tk), tk = kτ, k = −N, . . . ,N,

u0 = 0.

(3.40)

Theorem 3.4. Suppose that the requirements of the Theorem 3.2 are satisfied. Then for the solution of
difference scheme (3.40), the following stability inequalities

max
k=−N+1,...,N

∥∥∥∥uk − uk−1τ

∥∥∥∥
E

+ max
k=−N,...,N

‖Auk‖E ≤M∗
[∥∥ϕ0

∥∥
E +

N∑
k=−N+1

∥∥ϕk − ϕk−1∥∥E
]

(3.41)

hold, whereM∗ does not depend on ϕk, k = −N, . . . ,N.

Proof. By induction we can prove that the initial value problem

uk − uk−1
τ

+Auk = ψk, k = 1, . . . ,N, u0 = 0 (3.42)
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for difference equations in an arbitrary Banach space Ewith positive operatorA has a unique
solution

uk =
k∑
i=1

Rk−i+1ψiτ, k = 1, . . . ,N, (3.43)

where R = (I + τA)−1. By putting ψk =
∑k−1

i=−k+1 Biuiτ + ϕk, we obtain

Auk = A
k∑
i=1

Rk−i+1ϕiτ +A
k∑
i=1

Rk−i+1
i−1∑

j=−i+1
Bjujτ

2, k = 1, . . . ,N. (3.44)

Using

τ
k∑

i=±j+1
Rk−i+1

= τ
(
R + R2 + · · · + Rk∓j

)
= τR(I − R)−1

(
I − Rk∓j

)
= A−1

(
I − Rk∓j

)
, k = 1, . . . ,N,

(3.45)

we have

A
k∑
i=1

Rk−i+1
i−1∑

j=−i+1
Bjujτ

2 = A
0∑

j=−k+1
τ

k∑
i=−j+1

Rk−i+1Bjujτ +A
k−1∑
j=1

τ
k∑

i=j+1

Rk−i+1Bjujτ

= A
0∑

j=−k+1
A−1
(
I − Rk+j

)
Bjujτ +A

k−1∑
j=1

A−1
(
I − Rk−j

)
Bjujτ

=
k−1∑

i=−k+1

[
I − Rk−|i|

]
Biuiτ.

(3.46)

Furthermore,

A
k∑
i=1

Rk−i+1ϕiτ =
k∑
i=1

(I − R)Rk−iϕi

=
k∑
i=1

Rk−iϕi −
k∑
i=1

Rk−i+1ϕi

=
k+1∑
i=2

Rk−i+1ϕi−1 −
k∑
i=1

Rk−i+1ϕi
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=
k∑
i=1

Rk−i+1ϕi−1 − Rkϕ0 + ϕk −
k∑
i=1

Rk−i+1ϕi

= ϕk − Rkϕ0 −
k∑
i=1

Rk−i+1(ϕi − ϕi−1).

(3.47)

Putting (3.46)-(3.47) in (3.44), we get

Auk = ϕk − Rkϕ0 −
k∑
i=1

Rk−i+1(ϕi − ϕi−1) +
k−1∑

i=−k+1
i /= 0

[
I − Rk−|i|

]
Biuiτ (3.48)

for k = 1, . . . ,N.
Since

Rk = (I + τA)−k =
1

(k − 1)!

∫∞

0
tk−1e−te−τtAdt, k = 1, . . . ,N, (3.49)

applying estimates (1.4) gives

∥∥∥Rk
∥∥∥
E→E

≤ M

(k − 1)!

∫∞

0
tk−1e−tdt =M, k = 1, . . . ,N. (3.50)

Then, applying the triangle inequality and the estimate (1.2) in (3.48), we obtain

‖Auk‖E ≤ ∥∥ϕk∥∥E +
∥∥∥Rk
∥∥∥
E→E

∥∥ϕ0
∥∥
E +

k∑
i=1

∥∥∥Rk−i+1
∥∥∥
E→E

∥∥ϕi − ϕi−1∥∥E

+
k−1∑

i=−k+1
i /= 0

(
1 +
∥∥∥Rk−|i|

∥∥∥
E→E

)∥∥∥BiA−1
∥∥∥
E→E

‖Aui‖Eτ

≤
∥∥∥∥∥

k∑
i=1

(
ϕi − ϕi−1

)
+ ϕ0

∥∥∥∥∥
E

+M
∥∥ϕ0
∥∥
E +M

k∑
i=1

∥∥ϕi − ϕi−1∥∥E +M(M + 1)
k−1∑

i=−k+1
i /= 0

‖Aui‖Eτ

≤ (M + 1)
N∑

i=−N+1

∥∥ϕi − ϕi−1∥∥E + (M + 1)
∥∥ϕ0
∥∥
E

+M(M + 1)
k−1∑

i=−k+1
i /= 0

‖Aui‖Eτ, k = 1, . . . ,N.

(3.51)
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So, for k = 1, . . . ,N,

‖Auk‖E ≤ M̃
(∥∥ϕ0

∥∥
E +

N∑
i=−N+1

∥∥ϕi − ϕi−1∥∥E
)

+M(M + 1)
k−1∑

i=−k+1
i /= 0

‖Aui‖Eτ (3.52)

holds, where M̃ = max{M(1 + τ(M + 1)),M + 1}.
In a similar way, we can prove that the initial value problem

uk − uk−1
τ

−Auk−1 = −
−k∑
i=k

Biuiτ + ϕk, k = −N + 1, . . . , 0, u0 = 0 (3.53)

for difference equations in an arbitrary Banach space Ewith positive operatorA has a unique
solution and inequalities

‖Auk‖E ≤ M̃
(∥∥ϕ0

∥∥
E +

N∑
i=−N+1

∥∥ϕi − ϕi−1∥∥E
)

+M(M + 1)
−k−1∑
i=k+1
i /= 0

‖Aui‖Eτ (3.54)

hold for k = −N . . . , 0.
Now, the proof of this theorem is based on the Theorem 2.2 and the inequalities (3.52)

and (3.54). The proof of Theorem 3.4 is complete.

Note that it does not hold, generally speaking

max
k=−N+1,...,N

∥∥∥∥uk − uk−1τ

∥∥∥∥
E

+ max
k=−N,...,N

‖Auk‖E ≤M∗ max
k=−N,...,N

∥∥ϕk∥∥E (3.55)

in the arbitrary Banach space E for the general strong positive operator A, see [17, 18].
This approach and theory of difference schemes of [17] permit us to obtain the

following two theorems on stability estimates for the solution of difference scheme (3.40).

Theorem 3.5. Suppose that the requirements of the Theorem 3.2 are satisfied. Then for the solution of
difference scheme (3.40) the following stability inequalities

max
k=−N+1,...,N

∥∥∥∥uk − uk−1τ

∥∥∥∥
E

+ max
k=−N,...,N

‖Auk‖E

≤M∗ min
{
ln

1
τ
, 1 + |ln ‖A‖E→E|

}
max

k=−N,...,N

∥∥ϕk∥∥E
(3.56)

hold, whereM∗ does not depend on ϕk, k = −N, . . . ,N.
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Theorem 3.6. Suppose that the requirements of the Theorem 3.3 are satisfied. Then for the solution of
difference scheme (3.40), the following stability inequalities

max
k=−N+1,...,N

∥∥∥∥uk − uk−1τ

∥∥∥∥
E′
α

+ max
k=−N,...,N

‖Auk‖E′
α
≤M∗(α) max

k=−N,...,N

∥∥ϕk∥∥E′
α

(3.57)

hold, where M∗(α) does not depend on ϕk, k = −N, . . . ,N. Here the fractional spaces E′
α =

E′
α(E,A) (0 < α < 1), consisting of all v ∈ E for which the following norms are finite:

‖v‖E′
α
= sup

0<z
zα
∥∥∥A(z +A)−1v

∥∥∥
E
. (3.58)

Stability estimates could be also proved for the more general Pade difference schemes
of the high order of accuracy, see [17, 19].

4. Conclusion

In this paper, the integral-differential equation of the parabolic type with two dependent
limits in a Banach space is studied. The unique solvability of this equation is established. The
stability estimates for the solution of this equation are obtained. The Rothe difference scheme
approximately solving this equation is presented. The stability estimates for the solution of
this difference scheme are obtained.
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