
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 590781, 5 pages
doi:10.1155/2012/590781

Research Article
Spectral Properties of
Non-Self-Adjoint Perturbations for
a Spectral Problem with Involution

Asylzat A. Kopzhassarova,1 Alexey L. Lukashov,2, 3

and Abdizhakhan M. Sarsenbi1

1 Department of Mathematics, M. Auezov South Kazakhstan State University,
Tauke Han av., 5, 160012 Shymkent, Kazakhstan

2 Department of Mathematics, Fatih University, Buyukcekmece, 34500 Istanbul, Turkey
3 Department of Mechanics and Mathematics, N.G. Chernyshevsky Saratov State University,
Astrakhanskaya, 83, 410012 Saratov, Russia

Correspondence should be addressed to Alexey L. Lukashov, alexey.lukashov@gmail.com

Received 15 May 2012; Accepted 8 July 2012

Academic Editor: Ravshan Ashurov

Copyright q 2012 Asylzat A. Kopzhassarova et al. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Full description of Riesz basis property for eigenfunctions of boundary value problems for first
order differential equations with involutions is given.

1. Introduction

Differential equations with involutions were considered firstly in [1]. They are a particular
case of functional differential equations that appear in several applications (see, for instance,
monographs [2, 3] and papers [4–6]). Different spectral problems for equations of this form
were considered in [7, 8].

In particular, main questions about the following spectral problem:

u′(x) = λu(−x), −1 < x < 1, (1.1)

u(−1) = γu(1), (1.2)

were solved in [7]. Namely, (1.1)-(1.2) is a Volterra operator if and only if γ2 = −1;
furthermore, (1.1)-(1.2) is self-adjoint if and only if γ is a real number. For γ2 /= − 1, the
system of eigenfunctions for (1.1)-(1.2) is a Riesz basis in L2(−1, 1). Observe also that for
γ2 /= − 1, (1.1)-(1.2) has no associated functions, that is, all eigenvalues are simple. Note that
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problem (1.1)-(1.2) is an example of a generalized spectral problem of the form Au = λSu,
with A = d/dx and (Sf)(x) = f(−x). In general, they were considered in [9] when A and S
are operators in a Banach space. Equiconvergence questions for two different perturbations of
(1.1)-(1.2)were deeply studied in [10]. The main goal of the paper is to study questions about
Riesz basis property of eigenfunctions for the following non-self-adjoint spectral problem:

u′(−x) + αu′(x) = λu(x), −1 < x < 1, (1.3)

u(−1) = γu(1). (1.4)

Also note that problems similar to (1.3)-(1.4) appear when the Fourier method
is applied for solving boundary value problems for partial differential equations with
involution (see, for example, [11] and the bibliography therein).

2. Results

Theorem 2.1. If α2 /= 1, γ /=α ±
√
α2 − 1, then the eigenfunctions system for (1.3)-(1.4) is a Riesz

basis in L2(−1, 1).

Proof. Before the proof, we need several facts about (1.3)-(1.4). First of all, it is easy to see
that the general solution of (1.3)-(1.4)with α2 /= 1 is given by the following formula:

u(x) = C

(√
1 + α cos

λx√
1 − α2

+
√
1 − α sin

λx√
1 − α2

)
. (2.1)

Next, we observe that for α2 /= 1, γ2 /= 1 eigenvalues are equal to

λk =
√
1 − α2

[
kπ + arctan

1 − γ

1 + γ

√
1 + α√
1 − α

]
, k = 0,±1, . . . (2.2)

The related eigenfunctions are given by the following formula:

uk(x) =
√
1 + α cos

[
kπ + arctan

1 − γ

1 + γ

√
1 + α√
1 − α

]
x

+
√
1 − α sin

[
kπ + arctan

1 − γ

1 + γ

√
1 + α√
1 − α

]
x, k = 0,±1, . . .

(2.3)

Observe also that for γ = 1, the eigenvalues are

λk =
√
1 − α2 kπ, k = 0,±1,±2, . . . (2.4)

The corresponding eigenfunctions are

uk(x) =
√
1 + α cos(kπx) +

√
1 − α sin(kπx), k = 0,±1,±2, . . . ; (2.5)
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and for γ = −1, the eigenvalues are

λk =
√
1 − α2

(
kπ +

π

2

)
, k = 0,±1, . . . , (2.6)

and the corresponding eigenfunctions are

uk(x) =
√
1 + α cos

(
kπ +

π

2

)
x +

√
1 − α sin

(
kπ +

π

2

)
x, k = 0,±1, . . . (2.7)

We introduce the differential operator L by

Lu = u′(−x) + αu′(x), −1 < x < 1, (2.8)

and by the boundary condition (1.4). Suppose that Lu belongs to the domain of L, Lu ∈ D(L).
Then we consider

L2u = L
(
u′(−x) + αu′(x)

)
= −

(
1 − α2

)
u′′(x). (2.9)

From the boundary condition (1.4), for Lu we deduce that L2 is the second order
differential operator generated by the following relations:

L2u = −
(
1 − α2

)
u′′(x), −1 < x < 1, (2.10)

(
α − γ

)
u′(−1) + (

1 − αγ
)
u′(1) = 0,

u(−1) − γu(1) = 0.
(2.11)

Spectral problem (2.10)-(2.11) is a typical spectral problem for an ordinary second
order differential operator. These problems are studied very well and they have numerous
applications (see, for example, [12–14].) Recall [12, Chapter 2] that the following boundary
conditions:

a1u
′(−1) + b1u

′(1) + c1u(−1) + d1u(1) = 0,

c0u(−1) + d0u(1) = 0,
(2.12)

for an ordinary second order differential operator are regular if b1c0 + a1d0 /= 0; and they are
strongly regular if additionally θ2

0 /= 4θ−1θ1, where

θ−1 = θ1 = b1c0 + a1d0,

θ0 = 2(a1c0 + b1d0).
(2.13)

Since a1 = (α − γ), b1 = (1 − αγ), c0 = 1, d0 = −γ , we obtain θ−1 = θ1 = γ2 − 2αγ + 1, θ0 =
2(α − 2γ + αγ2). It follows from α2 /= 1, γ2 /= 1 and γ /=α ±

√
α2 − 1 that the boundary conditions
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(2.11) are strongly regular. It is known [12, 13] that the eigenfunctions of an operator with
strongly regular boundary conditions constitute a Riesz basis in L2(−1, 1). By (2.2) numbers
−λk cannot be eigenvalues of L, hence any eigenfunction of L2 which corresponds to λ2

k
will

be an eigenfunction Lwhich corresponds to λk as

(
L2 − λ2kE

)
uk = (L + λkE)(L − λkE)uk = 0. (2.14)

Finally, we deduce the assertion of Theorem 2.1 in the case γ2 /= 1.
For the case γ2 = 1 the explicit representations of eigenfunctions (2.5) and (2.7) give

the Riesz basis property for these systems directly.

Remark 2.2. If α = 0, then (1.3)-(1.4) coincide with the unperturbed problem (1.1)-(1.2)which
is a Volterra operator for γ2 = −1, that is, γ = α ±

√
α2 − 1. If α/= 0 and γ = α ±

√
α2 − 1, then

the boundary conditions (2.7)–(2.10) are nonregular and hence the system of eigenfunctions
is incomplete [12, 13]. Finally, for α2 = 1, (1.3) has only trivial solution.

Now, we consider other types of non-selfadjoint perturbations of (1.1)-(1.2).

Theorem 2.3. If γ2 /= ± 1, then the eigenfunctions of the following spectral problem:

u′(−x) + αu(−x) = λu(x), −1 < x < 1,

u(−1) = γu(1),
(2.15)

constitute a Riesz basis of L2(−1, 1).

Proof. The proof is analogous to the proof of Theorem 2.1. It uses the following spectral
problem:

−u′′(x) + α2u(x) = λu(x), −1 < x < 1, (2.16)

γu′(−1) − u′(1) + α
(
γ2 − 1

)
u(1) = 0,

u(−1) − γu(1) = 0.
(2.17)

Boundary conditions (2.17) are regular for γ2 = −1, and nonregular for γ2 = 1. Then,
basis property for eigenfunctions of an ordinary differential second order operator with
constant coefficients gives the result for γ2 = 1.

For γ2 /= ± 1, boundary conditions (2.17) are strongly regular and the proof terminates
analogously to the proof of Theorem 2.1.

Remark 2.4. The perturbation u′(−x)+αu(x) = λu(x) of (1.1)-(1.2) has the same form after the
substitution λ−α = μ. Hence, the result of [7] gives full description of basis properties for the
following spectral problem:

u′(−x) + αu(x) = λu(x), −1 < x < 1,

u(−1) = λu(1).
(2.18)



Abstract and Applied Analysis 5

References

[1] C. Babbage, “An essay towards the calculus of calculus of functions, Part II,” Philosophical Transactions
of the Royal Society B, vol. 106, pp. 179–256, 1816.

[2] D. Przeworska-Rolewicz, Equations with Transformed Argument, An Algebraic Approach, Elsevier-
PWN, Amsterdam, The Netherlands, 1973.

[3] J. Wiener, Generalized Solutions of Functional-Differential Equations, World Scientific Publishing,
Singapore, 1993.

[4] W. Watkins, “Modified Wiener equations,” International Journal of Mathematics and Mathematical
Sciences, vol. 27, no. 6, pp. 347–356, 2001.

[5] M. Sh. Burlutskaya, V. P. Kurdyumov, A. S. Lukonina, and A. P. Khromov, “A functional-differential
operator with involution,” Doklady Mathematics, vol. 75, pp. 399–402, 2007.

[6] W. T.Watkins, “Asymptotic properties of differential equations with involutions,” International Journal
of Pure and Applied Mathematics, vol. 44, no. 4, pp. 485–492, 2008.

[7] M.A. Sadybekov andA.M. Sarsenbi, “Solution of fundamental spectral problems for all the boundary
value problems for a first-order differential equation with a deviating argument,” Uzbek Mathematical
Journal, no. 3, pp. 88–94, 2007 (Russian).

[8] A. M. Sarsenbi, “Unconditional bases related to a nonclassical second-order differential operator,”
Differential Equations, vol. 46, no. 4, pp. 506–511, 2010.

[9] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, Germany, 1966.
[10] M. Sh. Burlutskaya and A. P. Khromov, “On an equiconvergence theorem on the whole interval

for functional-differential operators,” Proceedings of Saratov University, vol. 9:4, no. 1, pp. 3–12, 2009
(Russian).

[11] M. Sh. Burlutskaya and A. P. Khromov, “Classical solution of a mixed problem with involution,”
Doklady Mathematics, vol. 82, pp. 865–868, 2010.

[12] M. A. Naimark, Linear Differential Operators. Part I: Elementary Theory of Linear Differential Operators,
Frederick Ungar, New York, NY, USA, 1967.

[13] N. Dunford and J. T. Schwartz, Linear Operators. Part III, Spectral Operators, John Wiley & Sons, New
York, NY, USA, 1988.

[14] V. A. Il’in and L. V. Kritskov, “Properties of spectral expansions corresponding to non-self-adjoint
differential operators,” Journal of Mathematical Sciences, vol. 116, no. 5, pp. 3489–3550, 2003.


