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The nonlocal boundary value problem d2u(t)/dt2 +Au(t) = f(t) (0 ≤ t ≤ 1), i(du(t)/dt) +Au(t) =
g(t) (−1 ≤ t ≤ 0), u(0+) = u(0−), ut(0+) = ut(0−), Au(−1) = αu(μ) + ϕ, 0 < μ ≤ 1, for hyperbolic
Schrödinger equations in a Hilbert space H with the self-adjoint positive definite operator A is
considered. The stability estimates for the solution of this problem are established. In applications,
the stability estimates for solutions of the mixed-type boundary value problems for hyperbolic
Schrödinger equations are obtained.

1. Introduction

Methods of solutions of nonlocal boundary value problems for partial differential equations
and partial differential equations of mixed type have been studied extensively by many
researches (see, e.g., [1–12] and the references given therein).

In the present paper, the nonlocal boundary value problem

d2u(t)
dt2

+Au(t) = f(t) (0 ≤ t ≤ 1),

i
du(t)
dt

+Au(t) = g(t) (−1 ≤ t ≤ 0),

u(0+) = u(0−), ut(0+) = ut(0−),

Au(−1) = αu
(
μ
)
+ ϕ, 0 < μ ≤ 1

(1.1)

for differential equations of hyperbolic Schrödinger type in a Hilbert space H with self-
adjoint positive definite operator A is considered.
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It is known that various nonlocal boundary value problems for the hyperbolic
Schrödinger equations can be reduced to problem (1.1).

A function u(t) is called a solution of the problem (1.1) if the following conditions are
satisfied.

(i) u(t) is twice continuously differentiable on the interval (0,1] and continuously
differentiable on the segment [−1, 1]. The derivatives at the endpoints of the
segment are understood as the appropriate unilateral derivatives.

(ii) The element u(t) belongs to D(A) for all t ∈ [−1, 1], and the function Au(t) is
continuous on the segment [−1, 1].

(iii) u(t) satisfies the equations and nonlocal boundary condition (1.1).

In the present paper, the stability estimates for the solution of the problem (1.1) for
the hyperbolic Schrödinger equation are established. In applications, the stability estimates
for the solutions of the mixed-type boundary value problems for hyperbolic Schrödinger
equations are obtained.

Finally note that hyperbolic Schrödinger equations play important role in physics and
engineering (see, e.g., [13–16] and the references given therein).

Furthermore, the investigation of the numerical solution of initial value problems and
Schrödinger equations is the subject of extensive research activity during the last decade
(indicatively [17–25] and the references given therein).

2. The Main Theorem

Let H be a Hilbert space, and let A be a positive definite self-adjoint operator with A ≥ δI,
where δ > δ0 > 0. Throughout this paper, {c(t), t ≥ 0} is a strongly continuous cosine operator
function defined by

c(t) =
eitA

1/2
+ e−itA

1/2

2
. (2.1)

Then, from the definition of the sine operator function s(t)

s(t)u =
∫ t

0
c(s)uds, (2.2)

it follows that

s(t) = A−1/2 e
itA1/2 − e−itA

1/2

2i
. (2.3)

For the theory of cosine operator function, we refer to Fattorini [26] and Piskarev and Shaw
[27].

We begin with two lemmas that will be needed as follows.
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Lemma 2.1. The following estimates hold:

‖c(t)‖H→H ≤ 1,
∥
∥
∥A1/2s(t)

∥
∥
∥
H→H

≤ 1, t ≥ 0,
∥
∥
∥e±itA

∥
∥
∥
H→H

≤ 1, t ≥ 0.
(2.4)

Lemma 2.2. Let

|α| < δ√
1 + δ

. (2.5)

Then, the operator

I − α
[
A−1c

(
μ
)
+ is
(
μ
)]
eiA (2.6)

has an inverse

T =
(
I − α

[
A−1c

(
μ
)
+ is
(
μ
)]
eiA
)−1 , (2.7)

and the estimate

‖T‖H→H ≤ M (2.8)

holds, whereM does not depend on α and μ.

Proof. Actually, the proof of estimate (2.8) is based on the following estimate:

∥∥∥−α
[
A−1c

(
μ
)
+ is
(
μ
)]
eiA
∥∥∥
H→H

< 1. (2.9)

Using the definitions of cosine and sine operator functions, A ≥ δI, δ > 0 (positivity), and
A = A∗ (self-adjointness property), we obtain

∥∥−α[A−1c
(
μ
)
+ is
(
μ
)]
eiA
∥∥
H→H ≤ sup

δ≤ρ<∞

∣∣∣∣∣
−α
[
1
ρ
cos
(√

ρμ
)
+

i√
ρ
sin
(√

ρμ
)
]

eiρ
∣∣∣∣∣

≤ sup
δ≤ρ<∞

|α|
∣∣∣∣∣
1
ρ
cos
(√

ρμ
)
+

i√
ρ
sin
(√

ρμ
)
∣∣∣∣∣

∣∣∣eiρ
∣∣∣

≤ |α| sup
δ≤ρ<∞

√
1
ρ2

cos2
(√

ρμ
)
+
1
ρ
sin2(√ρμ

)

≤ |α|
√
1 + ρ

ρ
.

(2.10)
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Since

√
1 + ρ

ρ
≤

√
1 + δ

δ
, (2.11)

we have that

∥
∥
∥−α
[
A−1c

(
μ
)
+ is
(
μ
)]
eiA
∥
∥
∥
H→H

<
δ√
1 + δ

·
√
1 + δ

δ
= 1. (2.12)

Hence, Lemma 2.2 is proved.

Now, we will obtain the formula for solution of problem (1.1). It is known that for
smooth data of initial value problems

d2u(t)
dt2

+Au(t) = f(t) (0 ≤ t ≤ 1),

u(0) = u0, u′(0) = u′
0,

i
du(t)
dt

+Au(t) = g(t) (−1 ≤ t ≤ 0),

u(−1) = u−1,

(2.13)

there are unique solutions of problems (2.13), and following formulas hold:

u(t) = c(t)u(0) + s(t)u′(0) +
∫ t

0
s
(
t − y

)
f
(
y
)
dy, 0 ≤ t ≤ 1, (2.14)

u(t) = ei(t+1)Au−1 − i

∫ t

−1
ei(t−y)Ag

(
y
)
dy, −1 ≤ t ≤ 0. (2.15)

Using (2.14), (2.15), and (1.1), we can write

u(t) = [c(t) + iAs(t)]

{

eiAu−1 − i

∫0

−1
e−iAyg

(
y
)
dy

}

− is(t)g(0) +
∫ t

0
s
(
t − y

)
f
(
y
)
dy.

(2.16)

Now, using the nonlocal boundary condition

Au(−1) = αu
(
μ
)
+ ϕ, (2.17)
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we obtain the operator equation:
{
I − α

[
A−1c

(
μ
)
+ is
(
μ
)]
eiA
}
u−1

= α

{

−iA−1c
(
μ
)
∫0

−1
e−iAyg

(
y
)
dy

−s(μ)
[

iA−1g(0) −
∫0

−1
e−iAyg

(
y
)
dy

]

+A−1
∫μ

0
s
(
μ − y

)
f
(
y
)
dy

}

+A−1ϕ.

(2.18)

Since the operator
I − α

[
A−1c

(
μ
)
+ is
(
μ
)]
eiA (2.19)

has an inverse

T =
(
I − α

[
A−1c

(
μ
)
+ is
(
μ
)]
eiA
)−1

, (2.20)

for the solution of the operator equation (2.18), we have the formula

u−1 = T

(

α

{

−iA−1c
(
μ
)
∫0

−1
e−iAyg

(
y
)
dy

−s(μ)
[

iA−1g(0) −
∫0

−1
e−iAyg

(
y
)
dy

]

+A−1
∫μ

0
s
(
μ − y

)
f
(
y
)
dy

}

+A−1ϕ

)

(2.21)

Thus, for the solution of the nonlocal boundary value problem (1.1) we obtain (2.15),
(2.16), and (2.21).

Theorem 2.3. Suppose that ϕ ∈ D(A1/2), f(0) ∈ D(A1/2), and g(0) ∈ D(A1/2). Let f(t)
be continuously differentiable on [0, 1] and let g(t) be twice continuously differentiable on [−1, 0]
functions. Then, there is a unique solution of the problem (1.1) and the following stability inequalities

max
−1≤t≤1

‖u(t)‖H

≤ M

[∥∥∥A−1/2ϕ
∥∥∥
H
+
∥∥∥A−1/2g(0)

∥∥∥
H
+ max

−1≤t≤0

∥∥∥A−1g ′(t)
∥∥∥
H
+max

0≤t≤1

∥∥∥A−1/2f(t)
∥∥∥
H

]
,

(2.22)

max
−1≤t≤1

∥∥∥∥
du(t)
dt

∥∥∥∥
H

+ max
−1≤t≤1

∥∥∥A1/2u(t)
∥∥∥
H

≤ M

[∥∥ϕ
∥∥
H

+
∥∥g(0)

∥∥
H + max

−1≤t≤0

∥∥∥A−1/2g ′(t)
∥∥∥
H
+max

0≤t≤1

∥∥f(t)
∥∥
H

]
,

(2.23)

max
−1≤t≤0

∥∥∥∥
du(t)
dt

∥∥∥∥
H

+max
0≤t≤1

∥∥∥∥∥
d2u(t)
dt2

∥∥∥∥∥
H

+ max
−1≤t≤1

‖Au(t)‖H

≤ M

[∥∥∥A1/2f ′(t)
∥∥∥
∥∥∥A1/2ϕ

∥∥∥
H
+
∥∥∥A1/2g(0)

∥∥∥
H
+
∥∥g ′(0)

∥∥
H

+max
−1≤t≤0

∥∥g ′′(t)
∥∥
H +
∥∥∥A1/2f(0)

∥∥∥
H
+max

0≤t≤1

∥∥∥A1/2f ′(t)
∥∥∥
]

H

(2.24)

hold, whereM is independent of f(t), t ∈ [0, 1], g(t), t ∈ [−1, 0], and ϕ.
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Note that there are three inequalities in Theorem 2.3 on the stability of solution, stabil-
ity of first derivative of solution and stability of second derivative of solution. That means the
solution of problem (1.1) u(t) and its first and second derivatives are continuously dependent
on f(t), g(t) and ϕ.

Proof. First, estimate (2.22) will be obtained. Using formula (2.21) and integration by parts,
we obtain

u−1 = T

(

α

{

−A−2c
(
μ
)
[

g(0) − eiAg(−1) −
∫0

−1
e−iAyg ′(y

)
dy

]

+ iA−1s
(
μ
)
(

eiAg(−1) +
∫0

−1
e−iAyg ′(y

)
dy

)

+A−1
∫μ

0
s
(
μ − y

)
f
(
y
)
dy

}

+A−1ϕ

)

.

(2.25)

Using estimates (2.4), and (2.8), we get

‖u−1‖H ≤ M

[∥∥∥A−1/2ϕ
∥∥∥
H
+
∥∥∥A−1g(0)

∥∥∥
H
+ max

−1≤t≤0

∥∥∥A−1g ′(t)
∥∥∥
H
+max

0≤t≤1

∥∥∥A−1f(t)
∥∥∥
H

]
. (2.26)

Applying A1/2 to the formula (2.25) and using estimates (2.4) and (2.8), we can write

∥∥∥A1/2u−1
∥∥∥
H

≤ M

[∥∥ϕ
∥∥
H +
∥∥∥A−1/2g(0)

∥∥∥
H
+
∥∥∥A−1/2g ′(t)

∥∥∥
H
+max

0≤t≤1

∥∥∥A−1/2f(t)
∥∥∥
H

]
. (2.27)

Using formulas (2.15) and (2.16) and integration by parts, we obtain

u(t) = ei(t+1)Au−1 +A−1
[

g(t) − ei(t+1)Ag(−1) −
∫ t

−1
ei(t−y)Ag ′(y

)
dy

]

, −1 ≤ t ≤ 0,

u(t) = [c(t) + iAs(t)]

{

eiAu−1 +A−1
(

g(0) − eiAg(−1) −
∫0

−1
e−iAyg ′(y

)
dy

)}

− is(t)g(0) +
∫ t

0
s
(
t − y

)
f
(
y
)
dy, 0 ≤ t ≤ 1.

(2.28)

Using estimates (2.4) we get

‖u(t)‖H ≤ M

[
‖u−1‖H +

∥∥∥A−1g(0)
∥∥∥
H
+ max

−1≤t≤0

∥∥∥A−1g ′(t)
∥∥∥
H

]
, −1 ≤ t ≤ 0,

‖u(t)‖H ≤ M

[∥∥∥A1/2u−1
∥∥∥
H
+
∥∥∥A−1/2g(0)

∥∥∥
H
+ max

−1≤t≤0

∥∥∥A−1g ′(t)
∥∥∥
H
+ max

0≤t≤1

∥∥∥A−1/2f(t)
∥∥∥
H

]
,

1 ≤ t ≤ 1.
(2.29)

Then, from estimates (2.26), (2.27), and (2.29) it follows (2.22).
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Second, (2.23) will be obtained. Applying A1/2 to the formula (2.25) and using esti-
mates (2.4),and (2.8), we obtain

∥
∥
∥A1/2u−1

∥
∥
∥
H

≤ M

[∥
∥ϕ
∥
∥
H +
∥
∥
∥A−1/2g(0)

∥
∥
∥
H
+ max

−1≤t≤0

∥
∥
∥A−1/2g ′(t)

∥
∥
∥
H
+max

0≤t≤1

∥
∥
∥A−1/2f(t)

∥
∥
∥
H

]
.

(2.30)

Applying A to the formula (2.25) and using estimates (2.4), (2.8), we get

‖Au−1‖H ≤ M

[∥
∥
∥A1/2ϕ

∥
∥
∥
H
+
∥
∥g(0)

∥
∥
H + max

−1≤t≤0

∥
∥g ′(t)

∥
∥
H +max

0≤t≤1

∥
∥f(t)

∥
∥
H

]
. (2.31)

Applying A1/2 to the formulas (2.28), and using estimates (2.4)we can write

∥∥∥A1/2u(t)
∥∥∥
H

≤ M

[∥∥∥A1/2u−1
∥∥∥
H
+
∥∥∥A−1/2g(0)

∥∥∥
H
+ max

−1≤t≤0

∥∥∥A−1/2g ′(t)
∥∥∥
H

]
, −1 ≤ t ≤ 0,

∥∥∥A1/2u(t)
∥∥∥
H

≤ M

[
‖Au−1‖H +

∥∥g(0)
∥∥
H + max

−1≤t≤0

∥∥∥A−1/2g ′(t)
∥∥∥
H
+max

0≤t≤1

∥∥f(t)
∥∥
H

]
, 0 ≤ t ≤ 1.

(2.32)

Combining estimates (2.30), (2.31),and (2.32), we get estimate (2.23).
Third, estimate (2.24) will be obtained. Using formula (2.25) and integration by parts,

we obtain

u−1 =

⎛

⎜
⎝α

{

−A−2c
(
μ
)
(

g(0) − e−iAg(−1) − iA−1

×
[

g ′(0) − eiAg ′(−1) −
∫0

−1
e−iAyg ′′(y

)
dy

])

+ iA−1s
(
μ
)

×
[

eiAg(−1) + iA−1
(

g ′(0) − eiAg ′(−1) −
∫0

−1
e−iAyg ′′(y

)
dy

)]

−A−2
[
f
(
μ
)
+ c
(
μ
)
f(0) −

∫μ

0
c
(
μ − y

)
f ′(y

)
dy

]}
+A−1ϕ

⎞

⎟
⎠

(2.33)

Applying A to formula (2.33) and using estimates (2.4) and (2.8), we get

‖Au−1‖H ≤ M

[∥∥∥A1/2ϕ
∥∥∥
H

+
∥∥g(0)

∥∥
H +
∥∥∥A−1/2g ′(0)

∥∥∥
H

+max
−1≤t≤0

∥∥∥A−1/2g ′′(t)
∥∥∥
H
+
∥∥f(0)

∥∥
H +max

0≤t≤1

∥∥∥A−1/2f ′(t)
∥∥∥
H

]
.

(2.34)
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Applying A3/2 to formula (2.33) and using estimates (2.4), and (2.8) we can write

∥
∥
∥A3/2u−1

∥
∥
∥
H

≤ M

[∥
∥Aϕ

∥
∥
H +
∥
∥
∥A1/2g(0)

∥
∥
∥
H
+
∥
∥g ′(0)

∥
∥
H

+max
−1≤t≤0

∥
∥g ′′(t)

∥
∥
H +
∥
∥
∥A1/2f(0)

∥
∥
∥
H
+max

0≤t≤1

∥
∥f ′(t)

∥
∥
H

]
.

(2.35)

Using formulas (2.28), and integration by parts, we obtain

u(t) = ei(t+1)Au−1 +A−1
[

g(t) − ei(t+1)Ag(−1)

−iA−1
(

g ′(t) − ei(t+1)Ag ′(−1) −
∫ t

−1
ei(t−y)Ag ′′(y

)
dy

)]

, −1 ≤ t ≤ 0,

u(t) =
[
c(t) + iAs(t)

]{

eiAu−1 +A−1
(

g(0) − eiAg(−1)

−iA−1
[

g ′(0) − eiAg ′(−1) −
∫0

−1
e−iAyg ′′(y

)
dy

])}

− is(t)g(0) −A−1
[

f(t) − c(t)f(0) −
∫ t

0
c
(
t − y

)
f ′(y

)
dy

]

, 0 ≤ t ≤ 1.

(2.36)

Applying A to the formulas (2.36), and using estimates (2.4), we get

‖Au(t)‖H ≤ M

[
‖Au−1‖H +

∥∥∥A1/2g(0)
∥∥∥
H
+
∥∥g ′(0)

∥∥
H + max

−1≤t≤0

∥∥g ′′(t)
∥∥
H

]
, −1 ≤ t ≤ 0,

‖Au(t)‖H ≤ M

[∥∥∥A3/2u−1
∥∥∥
H

+
∥∥∥A1/2g(0)

∥∥∥
H
+
∥∥g ′(0)

∥∥
H

+max
−1≤t≤0

∥∥g ′′(t)
∥∥
H +
∥∥∥A1/2f(0)

∥∥∥
H
+max

0≤t≤1

∥∥∥A1/2f ′(t)
∥∥∥
H

]
, 0 ≤ t ≤ 1.

(2.37)

From (2.34) and (2.35) and estimates (2.37) it follows (2.24). This completes the proof of
Theorem 2.3.

Remark 2.4. We can obtain the same stability results for the solution of the following multi-
point nonlocal boundary value problem:

d2u(t)
dt2

+Au(t) = f(t) (0 ≤ t ≤ 1),

i
d(t)
dt

+Au(t) = g(t) (−1 ≤ t ≤ 0),

Au(−1) =
N∑

j=1

αju
(
μj

)
+ ϕ,

0 < μj ≤ 1, 1 ≤ j ≤ N,

(2.38)
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for differential equations of mixed type in a Hilbert spaceH with self-adjoint positive definite
operator A.

3. Applications

Initially, the mixed problem for the hyperbolic Schrödinger equation

vyy − (a(x)vx)x + δv = f
(
y, x
)
, 0 < y < 1, 0 < x < 1,

ivy − (a(x)vx)x + δv = g
(
y, x
)
, −1 < y < 0, 0 < x < 1,

−(a(x)vx(−1, x))x + δv(−1, x) = αv(1, x) + ϕ(x), 0 ≤ x ≤ 1,

v
(
y, 0
)
= v
(
y, 1
)
, vx

(
y, 0
)
= vx

(
y, 1
)
, −1 ≤ y ≤ 1,

v(0+, x) = v
(
0−, x

)
, vy(0+, x) = vy

(
0−, x

)
, 0 ≤ x ≤ 1,

|α| < δ√
1 + δ

(3.1)

is considered, where δ = const > 0. The problem (3.1) has a unique smooth solution v(y, x)
for smooth a(x) ≥ a > 0 (x ∈ (0, 1)), ϕ(x) (x ∈ [0, 1]), f(y, x) (y ∈ [0, 1], x ∈ [0, 1]), and
g(y, x) (y ∈ [−1, 0], x ∈ [0, 1]) functions.

We introduce the Hilbert space L2[0, 1] of all the square integrable functions defined
on [0, 1] and Hilbert spaces W1

2 [0, 1] and W2
2 [0, 1] equipped with norms

∥∥ϕ
∥∥
W1

2 [0,1]
=

(∫1

0

∣∣ϕ(x)
∣∣2dx

)1/2

+

(∫1

0

∣∣ϕx(x)
∣∣2dx

)1/2

,

∥∥ϕ
∥∥
W2

2 [0,1]
=

(∫1

0

∣∣ϕ(x)
∣∣2dx

)1/2

+

(∫1

0

∣∣ϕx(x)
∣∣2dx

)1/2

+

(∫1

0

∣∣ϕxx(x)
∣∣2dx

)1/2

,

(3.2)

respectively. This allows us to reduce the mixed problem (3.1) to the nonlocal boundary value
problem (1.1) in Hilbert space H with a self-adjoint positive definite operator A defined by
problem (3.1).

Theorem 3.1. The solutions of the nonlocal boundary value problem (3.1) satisfy the following sta-
bility estimates:

max
−1≤y≤1

∥∥vy

(
y, ·)∥∥

L2[0,1]
+ max

−1≤y≤1

∥∥v
(
y, ·)∥∥W1

2 [0,1]

≤ M

[∥∥ϕ
∥∥
L2[0,1]

+
∥∥g(0, ·)∥∥L2[0,1]

+ max
−1≤y≤0

∥∥gy
(
y, ·)∥∥

L2[0,1]
+ max

0≤y≤1

∥∥f
(
y, ·)∥∥L2[0,1]

]
,

max
−1≤y≤1

∥∥v
(
y, ·)∥∥W2

2 [0,1]
+ max

−1≤y≤0

∥∥vy

(
y, ·)∥∥

L2[0,1]
+max

0≤y≤1

∥∥vyy

(
y, ·)∥∥

L2[0,1]

≤ M

[∥∥ϕ
∥∥
W1

2 [0,1]
+
∥∥g(0, ·)∥∥L2[0,1]

+
∥∥gy(0, ·)

∥∥
L2[0,1]

+ max
−1≤y≤0

∥∥gyy
(
y, ·)∥∥

L2[0,1]
+
∥∥f(0, ·)∥∥W1

2 [0,1]
+ max

0≤y≤1

∥∥fy
(
y, ·)∥∥

W1
2 [0,1]

]
,

(3.3)

where M does not depend on not only f(y, x) (y ∈ [0, 1], x ∈ [0, 1]) and g(y, x)(y ∈ [−1, 0], x ∈
[0, 1]) but also ϕ(x)(x ∈ [0, 1]).
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The proof of Theorem 3.1 is based on the abstract Theorem 2.3 and symmetry proper-
ties of the space operator defined by problem (3.1).

Next, we consider the mixed nonlocal boundary value problem for the multidimen-
sional hyperbolic Schrödinger equation:

vyy−
m∑

r=1

(ar(x)vxr )xr
= f
(
y, x
)
, 0 ≤ y ≤ 1,

x = (x1, . . . , xm) ∈ Ω,

ivy−
m∑

r=1

(ar(x)vxr )xr
= g
(
y, x
)
, −1 ≤ y ≤ 0,

x = (x1, . . . , xm) ∈ Ω,

−
n∑

r=1

(ar(x)vxr (−1, x))xr
= v(1, x) + ϕ(x), x ∈ Ω,

u
(
y, x
)
= 0, x ∈ S, −1 ≤ y ≤ 1,

(3.4)

where Ω is the unit open cube in the m-dimensional Euclidean space R
m:

(x : x = (x1, . . . , xm), 0 < xk < 1, 1 ≤ k ≤ m) (3.5)

with boundary S and Ω = Ω ∪ S. Here, ar(x) (x ∈ Ω), ϕ(x) (x ∈ Ω), and f(y, x) (y ∈
(0, 1), x ∈ Ω), g(y, x) (y ∈ (−1, 0), x ∈ Ω) are given smooth functions in [0, 1]×Ω and ar(x) ≥
a > 0.

We introduce the Hilbert space L2(Ω) of all square integrable functions defined on Ω,
equipped with the norm

∥∥f
∥∥
L2(Ω) =

{∫
· · ·
∫

x∈Ω

∣∣f(x)
∣∣2dx1 · · ·dxn

}1/2
(3.6)

and Hilbert spaces W1
2 (Ω) and W2

2 (Ω) defined on Ω, equipped with norms

∥∥ϕ
∥∥
W1

2 (Ω) =
∥∥ϕ
∥∥
L2(Ω) +

{∫
· · ·
∫

x∈Ω

n∑

r=1

|ϕxr |2dx1 · · ·dxn

}1/2

,

∥∥ϕ
∥∥
W2

2 (Ω) =
∥∥ϕ
∥∥
L2(Ω) +

{∫
· · ·
∫

x∈Ω

n∑

r=1

|ϕxr |2dx1 · · ·dxn

}1/2

+

{∫
· · ·
∫

x∈Ω

n∑

r=1

|ϕxrxr |2dx1 · · ·dxn

}1/2

,

(3.7)

respectively. The problem (3.4) has a unique smooth solution v(y, x) for smooth
ar(x), f(y, x), and g(y, x) functions. This allows us to reduce the mixed problem (3.4) to
the nonlocal boundary value problem (1.1) in Hilbert space H with a self-adjoint positive
definite operator A defined by problem (3.4).



Abstract and Applied Analysis 11

Theorem 3.2. The following stability inequalities for solutions of the nonlocal boundary value
problem (3.4)

max
−1≤y≤1

∥
∥vy

(
y, ·)∥∥

L2(Ω) + max
−1≤y≤1

∥
∥v
(
y, ·)∥∥W1

2 (Ω)

≤ M

[∥
∥g(0, ·)∥∥L2(Ω) + max

−1≤y≤0

∥
∥gy
(
y, ·)∥∥

L2(Ω) + max
0≤y≤1

∥
∥f(y, ·)∥∥L2(Ω) +

∥
∥ϕ
∥
∥
L2(Ω)

]
,

max
−1≤y≤1

∥
∥v(y, ·)∥∥W2

2 (Ω) + max
−1≤y≤0

∥
∥vy

(
y, ·)∥∥

L2(Ω) + max
0≤y≤1

∥
∥vyy(y, ·)

∥
∥
L2(Ω)

≤ M

[∥
∥ϕ
∥
∥
W1

2 (Ω) +
∥
∥g(0, ·)∥∥L2(Ω) +

∥
∥gy(0, ·)

∥
∥
L2(Ω)

+ max
−1≤y≤0

∥
∥gyy

(
y, ·)∥∥

L2(Ω) +
∥
∥f(0, ·)∥∥W1

2 (Ω) + max
0≤y≤1

∥
∥fy
(
y, ·)∥∥

W1
2 (Ω)

]

(3.8)

hold. Here, M is independent of f(y, x) (y ∈ [0, 1], x ∈ [0, 1]), g(y, x) (y ∈ [−1, 0], x ∈ [0, 1]),
and ϕ(x) (x ∈ [0, 1]).

The proof of Theorem 3.2 is based on the abstract Theorem 2.3, symmetry properties
of the space operator defined by problem (3.4), and the following theorem on the coercivity
inequality for the solution of the elliptic differential problem in L2(Ω) in Sobolevskii [28].

Theorem 3.3. For the solutions of the elliptic differential problem

−
m∑

r=1

(ar(x)uxr )xr
= ω(x), x ∈ Ω,

u(x) = 0, x ∈ S,

(3.9)

the following coercivity inequality holds:

m∑

r=1

‖uxrxr‖L2(Ω) ≤ M‖ω‖L2(Ω). (3.10)
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