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Generalizations ofWendroff type integral inequalities with four dependent limits and their discrete
analogues are obtained. In applications, these results are used to establish the stability estimates
for the solution of the Goursat problem.

1. Introduction

Integral inequalities play a significant role in the theory of ordinary and partial differential
equations. They are useful to investigate some properties of the solutions of equations, such
as existence, uniqueness, and stability, see for instance [1–6].

Most scientific and technical problems can be solved by using mathematical modelling
and new numerical methods. This is based on the mathematical description of real processes
and the subsequent solving of the appropriate mathematical problems on the computer.
The mathematical models of many scientific and technical problems lead to already known
or new problems of partial differential equations. In most of the cases it is difficult to
find the exact solutions of the problems for partial differential equations. For this reason
discrete methods play a significant role, especially due to the increasing role of mathematical
methods of solving problems in various areas of science and engineering. A well-known and
widely applied method of approximate solutions for problems of differential equations is the
method of difference schemes. Modern computers allow us to implement highly accurate
difference schemes. Hence, the task is to construct and investigate highly accurate difference
schemes for various types of partial differential equations. The investigation of stability
and convergence of these difference schemes is based on the discrete analogues of integral
inequalities, see for instance [1, 7–9].
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Due to various motivations, several generalizations and applications of Wendroff-type
integral inequality have been obtained and used extensively, see for instance [10–12]. In
[12], the following generalizations of Wendroff-type integral inequality in two independent
variables are obtained.

Theorem 1.1. Assume that u(x, y) ≥ 0 and a(x, y) ≥ 0 are continuous functions on 0 ≤ x ≤ L,
0 ≤ y ≤M and the inequalities

u
(
x, y

) ≤ C +
∫x

0

∫y

0
a(s, t)u(s, t)dt ds, 0 ≤ x ≤ L, 0 ≤ y ≤M (1.1)

hold, where C = const ≥ 0. Then, for u(x, y) the inequalities:

u
(
x, y

) ≤ C exp
[∫x

0

∫y

0
a(s, t)dt ds

]
, 0 ≤ x ≤ L, 0 ≤ y ≤M (1.2)

are satisfied.

Theorem 1.2. Assume that u(x, y) ≥ 0 is a continuous function on 0 ≤ x ≤ L, 0 ≤ y ≤ M and the
inequalities:

u
(
x, y

) ≤ f(x, y) +
∫x

0
a(s)u

(
s, y

)
ds +

∫y

0
b(t)u(x, t)dt, 0 ≤ x ≤ L, 0 ≤ y ≤M (1.3)

hold, where f(x, y) > 0 is a continuous function on 0 ≤ x ≤ L, 0 ≤ y ≤ M and increasing with
respect to each variable, a(x) ≥ 0 and b(y) ≥ 0 are integrable functions on 0 ≤ x ≤ L and 0 ≤ y ≤M,
respectively. Then, for u(x, y) the inequalities:

u
(
x, y

) ≤ f(x, y) exp
[∫x

0
a(s)ds +

∫y

0
b(t)dt +

∫x

0

∫y

0
a(s)b(t)dt ds

]
, 0 ≤ x ≤ L, 0 ≤ y ≤M

(1.4)

are satisfied.

In this paper, generalizations of Wendroff-type integral inequalities in two indepen-
dent variables with four dependent limits and their discrete analogues are obtained. In
applications, these results are used to obtain the stability estimates of solutions for the
Goursat problem.

2. Wendroff-type Integral Inequalities with Four Dependent
Limits and Their Discrete Analogues

First of all, let us give the discrete analogue of the Gronwall-type integral inequality with two
dependent limits. We will need this result in the remaining part of the paper.
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Theorem 2.1. Assume that vi ≥ 0, ai ≥ 0, δi ≥ 0, i = −N, . . . ,N are the sequences of real numbers
and the inequalities:

vi ≤ δi + h
|i|−1∑

j=−|i|+1
j /= 0

ajvj , i = −N, . . . ,N (2.1)

hold. Then, for vi the inequalities:

vi ≤ δi + exp

⎡

⎢
⎢
⎣h

|i|−1∑

j=−|i|+1
j /= 0

aj

⎤

⎥
⎥
⎦h

|i|−1∑

j=−|i|+1
j /= 0

ajδj exp

⎡

⎢
⎢
⎣−h

|j|∑

n=−|j|
n/= 0

an

⎤

⎥
⎥
⎦, i = −N, . . . ,N (2.2)

are satisfied.

Proof. The proof of (2.2) for i = −1, 0, 1 follows directly from (2.1). Let us prove (2.2) for
i = −N, . . . ,−2, 2, . . . ,N. We denote

yi = h
|i|−1∑

j=−|i|+1
j /= 0

ajvj , i = −N, . . . ,N. (2.3)

Then, (2.1) gets the form

vi ≤ δi + yi, i = −N, . . . ,N. (2.4)

Moreover, we have

y−i = yi, i = −N, . . . ,N. (2.5)

Then, using (2.3)–(2.5) for i = 1, . . . ,N − 1, we obtain

yi+1 − yi = h(aivi + a−iv−i) ≤ hai
(
yi + δi

)
+ ha−i

(
y−i + δ−i

)

= h(ai + a−i)yi + h(aiδi + a−iδ−i).
(2.6)

So,

yi+1 ≤ [1 + h(ai + a−i)]yi + h(aiδi + a−iδ−i), i = 1, . . . ,N − 1. (2.7)
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Then by induction, we can prove that

yi ≤
i−1∏

j=1

[
1 + h

(
aj + a−j

)]
y1 +

i−2∑

j=1

h
(
ajδj + a−jδ−j

) i−1∏

n=j+1

[1 + h(an + a−n)]

+ h(ai−1δi−1 + a−i+1δ−i+1),

(2.8)

for i = 2, . . . ,N. Since y1 = 0, using (2.4) and the inequality 1 + x < exp[x], x > 0, we obtain

vi ≤ δi + h
i−2∑

j=1

(
ajδj + a−jδ−j

)
exp

⎡

⎣h
i−1∑

n=j+1

(an + a−n)

⎤

⎦ + h(ai−1δi−1 + a−i+1δ−i+1)

= δi + exp

[

h
i−1∑

n=1

(an + a−n)

]

h
i−2∑

j=1

(
ajδj + a−jδ−j

)
exp

[

−h
j∑

n=1

(an + a−n)

]

+ h(ai−1δi−1 + a−i+1δ−i+1)

= δi + exp

⎡

⎣h
i−1∑

j=1

(
aj + a−j

)
⎤

⎦h
i−1∑

j=1

(
ajδj + a−jδ−j

)
exp

[

−h
j∑

n=1

(an + a−n)

]

= δi + exp

⎡

⎢⎢
⎣h

i−1∑

j=−i+1
j /= 0

aj

⎤

⎥⎥
⎦h

i−1∑

j=1

(
ajδj + a−jδ−j

)
exp

⎡

⎢⎢
⎣−h

j∑

n=−j
n /= 0

an

⎤

⎥⎥
⎦

= δi + exp

⎡

⎢⎢
⎣h

i−1∑

j=−i+1
j /= 0

aj

⎤

⎥⎥
⎦h

i−1∑

j=−i+1
j /= 0

ajδj exp

⎡

⎢⎢⎢
⎣
−h

|j|∑

n=−|j|
n/= 0

an

⎤

⎥⎥⎥
⎦
.

(2.9)

So, we proved (2.2) for i = 2, . . . ,N.
Let us prove (2.2) for i = −N, . . . ,−2. Using (2.3)–(2.5) for i = −N + 1, . . . ,−1, we have

yi−1 − yi = h(aivi + a−iv−i) ≤ hai
(
yi + δi

)
+ ha−i

(
y−i + δ−i

)

= h(ai + a−i)yi + h(aiδi + a−iδ−i).
(2.10)

So,

yi−1 ≤ [1 + h(ai + a−i)]yi + h(aiδi + a−iδ−i), i = −N + 1, . . . ,−1. (2.11)
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Then by induction, we can prove that

yi ≤
−i−1∏

n=1

[1 + h(an + a−n)]y−1 +
−i−2∑

j=1

h
(
ajδj + a−jδ−j

) −i−1∏

n=j+1

[1 + h(an + a−n)]

+ h(a−i−1δ−i−1 + ai+1δi+1),

(2.12)

for i = −N, . . . ,−2. Since y−1 = 0, using (2.4) and the inequality 1 + x < exp[x], x > 0, we
obtain

vi ≤ δi + h
−i−2∑

j=1

(
ajδj + a−jδ−j

)
exp

⎡

⎣h
−i−1∑

n=j+1

(an + a−n)

⎤

⎦ + h(a−i−1δ−i−1 + ai+1δi+1)

= δi + exp

[

h
−i−1∑

n=1

(an + a−n)

]

h
−i−2∑

j=1

(
ajδj + a−jδ−j

)
exp

[

−h
j∑

n=1

(an + a−n)

]

+ h(a−i−1δ−i−1 + ai+1δi+1)

= δi + exp

⎡

⎣h
−i−1∑

j=1

(
aj + a−j

)
⎤

⎦h
−i−1∑

j=1

(
ajδj + a−jδ−j

)
exp

[

−h
j∑

n=1

(an + a−n)

]

= δi + exp

⎡

⎢⎢
⎣h

−i−1∑

j=i+1
j /= 0

aj

⎤

⎥⎥
⎦h

−i−1∑

j=1

(
ajδj + a−jδ−j

)
exp

⎡

⎢⎢
⎣−h

j∑

n=−j
n /= 0

an

⎤

⎥⎥
⎦

= δi + exp

⎡

⎢⎢
⎣h

−i−1∑

j=i+1
j /= 0

aj

⎤

⎥⎥
⎦h

−i−1∑

j=i+1
j /= 0

ajδj exp

⎡

⎢⎢⎢
⎣
−h

|j|∑

n=−|j|
n/= 0

an

⎤

⎥⎥⎥
⎦
.

(2.13)

So, we proved (2.2) for i = −N, . . . ,−2.

By putting Nh = 1 and passing to limit h → 0 in the Theorem 2.1, we obtain the
following generalization of Gronwall’s integral inequality with two dependent limits.

Theorem 2.2. Assume that v(t) ≥ 0, δ(t) ≥ 0 are continuous functions on [−1, 1], a(t) ≥ 0 is an
integrable function on [−1, 1], and the inequalities

v(t) ≤ δ(t) + sgn(t)
∫ t

−t
a(s)v(s)ds, −1 ≤ t ≤ 1 (2.14)
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hold. Then for v(t), the inequalities:

v(t) ≤ δ(t) + exp

[

sgn(t)
∫ t

−t
a(s)ds

]

sgn(t)
∫ t

−t
a(s)δ(s) exp

[
− sgn(s)

∫ s

−s
a(τ)dτ

]
ds,

−1 ≤ t ≤ 1

(2.15)

are satisfied.

Now, we consider the generalizations of Wendroff inequality for integrals in two
independent variables with four dependent limits and their discrete analogues.

Theorem 2.3. Assume that vkn ≥ 0, akn ≥ 0, n = −N, . . . ,N, k = −K, . . . , K are sequences of real
numbers, and the inequalities:

vkn ≤ C + h1h2
|n|−1∑

s=−|n|+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

aτsv
τ
s , n = −N, . . . ,N, k = −K, . . . , K (2.16)

hold, where C = const > 0, h1 = const > 0, h2 = const > 0. Then for vkn, the following inequalities:

vkn ≤ C exp

⎡

⎢⎢
⎣h1h2

|n|−1∑

s=−|n|+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

aτs

⎤

⎥⎥
⎦, n = −N, . . . ,N, k = −K, . . . , K. (2.17)

are satisfied.

Proof. The proof of (2.17) for n = −1, 0, 1, k = −K, . . . , K and k = −1, 0, 1, n = −N, . . . ,N follows
directly from (2.16). Let us prove (2.17) for n = −N, . . . ,−2, 2, . . . ,N, k = −K, . . . ,−2, 2, . . . , K.
We denote

ωk
n = C + h1h2

|n|−1∑

s=−|n|+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

aτsv
τ
s , n = −N, . . . ,N, k = −K, . . . , K. (2.18)

Then, (2.16) gets the form:

vkn ≤ ωk
n, n = −N, . . . ,N, k = −K, . . . , K. (2.19)

Furthermore, we have

ωk
n = ωk

−n = ω−k
n = ω−k

−n, n = −N, . . . ,N, k = −K, . . . , K. (2.20)
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From (2.18) for n = −N, . . . ,N, k = 1, . . . , K − 1, we have

ωk+1
n −ωk

n = h1h2
|n|−1∑

s=−|n|+1
s /= 0

(
aksv

k
s + a

−k
s v

−k
s

)
≥ 0. (2.21)

So,

ωk
n ≤ ωk+1

n , n = −N, . . . ,N, k = 1, . . . , K − 1. (2.22)

Then using (2.18)–(2.22) for n = 1, . . . ,N − 1, k = −K, . . . ,−2, 2, . . . , K, we obtain

ωk
n+1 −ωk

n = h1h2
|k|−1∑

τ=−|k|+1
τ /= 0

(aτnv
τ
n + a

τ
−nv

τ
−n) ≤ h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

(aτnω
τ
n + a

τ
−nω

τ
−n)

= h1h2
|k|−1∑

τ=−|k|+1
τ /= 0

ωτ
n(a

τ
n + a

τ
−n) = h1h2

|k|−1∑

τ=1

ωτ
n(a

τ
n + a

τ
−n) + h1h2

|k|−1∑

τ=1

ω−τ
n

(
a−τn + a−τ−n

)

= h1h2
|k|−1∑

τ=1

ωτ
n

(
aτn + a

τ
−n + a

−τ
n + a−τ−n

) ≤ h1h2ω|k|
n

|k|−1∑

τ=1

(
aτn + a

τ
−n + a

−τ
n + a−τ−n

)

= h1h2ωk
n

|k|−1∑

τ=−|k|+1
τ /= 0

(aτn + a
τ
−n).

(2.23)

So,

ωk
n+1 ≤ ωk

n

⎡

⎢⎢
⎣1 + h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

(aτn + a
τ
−n)

⎤

⎥⎥
⎦, n = 1, . . . ,N − 1, k = −K, . . . ,−2, 2, . . . , K. (2.24)

Then by induction, we can prove that

ωk
n ≤ ωk

1

n−1∏

s=1

⎡

⎢⎢
⎣1 + h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

(aτs + a
τ
−s)

⎤

⎥⎥
⎦, n = 2, . . . ,N, k = −K, . . . ,−2, 2, . . . , K. (2.25)
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Since ωk
1 = C, k = −K, . . . , K, using (2.19) and the inequality 1 + x < exp[x], x > 0, we obtain

vkn ≤ ωk
n ≤ C exp

⎡

⎢
⎢
⎣h1h2

n−1∑

s=1

|k|−1∑

τ=−|k|+1
τ /= 0

(aτs + a
τ
−s)

⎤

⎥
⎥
⎦ = C exp

⎡

⎢
⎢
⎣h1h2

n−1∑

s=−n+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

aτs

⎤

⎥
⎥
⎦. (2.26)

So, we proved (2.17) for n = 2, . . . ,N, k = −K, . . . ,−2, 2, . . . , K.
Using (2.18)–(2.22) for n = −N + 1, . . . ,−1, k = −K, . . . ,−2, 2, . . . , K, we obtain

ωk
n−1 −ωk

n = h1h2
|k|−1∑

τ=−|k|+1
τ /= 0

(aτnv
τ
n + a

τ
−nv

τ
−n) ≤ h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

(aτnω
τ
n + a

τ
−nω

τ
−n)

= h1h2
|k|−1∑

τ=−|k|+1
τ /= 0

ωτ
n(a

τ
n + a

τ
−n) = h1h2

|k|−1∑

τ=1

ωτ
n(a

τ
n + a

τ
−n) + h1h2

|k|−1∑

τ=1

ω−τ
n

(
a−τn + a−τ−n

)

= h1h2
|k|−1∑

τ=1

ωτ
n

(
aτn + a

τ
−n + a

−τ
n + a−τ−n

) ≤ h1h2ω|k|
n

|k|−1∑

τ=1

(
aτn + a

τ
−n + a

−τ
n + a−τ−n

)

= h1h2ωk
n

|k|−1∑

τ=−|k|+1
τ /= 0

(aτn + a
τ
−n).

(2.27)

So,

ωk
n−1 ≤ ωk

n

⎡

⎢
⎣1 + h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

(aτn + a
τ
−n)

⎤

⎥
⎦, n = −N + 1, . . . ,−1, k = −K, . . . ,−2, 2, . . . , K.

(2.28)

Then by induction, we can prove that

ωk
n ≤ ωk

−1
−n−1∏

s=1

⎡

⎢⎢
⎣1 + h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

(aτs + a
τ
−s)

⎤

⎥⎥
⎦, n = −N, . . . ,−2, k = −K, . . . ,−2, 2, . . . , K. (2.29)
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Since ωk
−1 = C, k = −K, . . . , K using (2.19) and the inequality 1 + x < exp[x], x > 0, we obtain

vkn ≤ ωk
n ≤ C exp

⎡

⎢
⎢
⎣h1h2

−n−1∑

s=1

|k|−1∑

τ=−|k|+1
τ /= 0

(aτs + a
τ
−s)

⎤

⎥
⎥
⎦ = C exp

⎡

⎢
⎢
⎣h1h2

−n−1∑

s=n+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

aτs

⎤

⎥
⎥
⎦. (2.30)

So, we proved (2.17) for n = −N, . . . ,−2, k = −K, . . . ,−2, 2, . . . , K.

Theorem 2.4. Assume that vkn ≥ 0, δkn > 0, an ≥ 0, bk ≥ 0, n = −N, . . . ,N, k = −K, . . . , K are
sequences of real numbers, and the inequalities:

vkn ≤ δkn + h1
|n|−1∑

s=−|n|+1
s /= 0

asv
k
s + h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτv
τ
n, n = −N, . . . ,N, k = −K, . . . , K, (2.31)

δkn ≤ δkn+1, n = −N, . . . ,N − 1, k = −K, . . . , K,

δkn ≤ δk+1n , n = −N, . . . ,N, k = −K, . . . , K − 1
(2.32)

hold, where h1 = const > 0, h2 = const > 0. Then for vkn, n = −N, . . . ,N, k = −K, . . . , K, the
inequalities:

vkn ≤ δkn exp

⎡

⎢⎢
⎣h1

|n|−1∑

s=−|n|+1
s /= 0

as + h2
|k|−1∑

τ=−|k|+1
τ /= 0

bτ + h1h2
|n|−1∑

s=−|n|+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

asbτ

⎤

⎥⎥
⎦ (2.33)

are satisfied.

Proof. We denote ukn = vkn/δ
k
n, n = −N, . . . ,N, k = −K, . . . , K. Then, (2.31) takes the form

ukn ≤ 1 + h1
|n|−1∑

s=−|n|+1
s /= 0

asu
k
s + h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτu
τ
n, n = −N, . . . ,N, k = −K, . . . , K. (2.34)

Next, by denoting

Tkn = 1 + h1
|n|−1∑

s=−|n|+1
s /= 0

asu
k
s , n = −N, . . . ,N, k = −K, . . . , K, (2.35)

we have

ukn ≤ Tkn + h2
|k|−1∑

τ=−|k|+1
τ /= 0

bτu
τ
n, n = −N, . . . ,N, k = −K, . . . , K. (2.36)
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By using Theorem 2.1, we obtain

ukn ≤ Tkn + exp

⎡

⎢
⎢
⎣h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτ

⎤

⎥
⎥
⎦h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτT
τ
n exp

⎡

⎢
⎢
⎣−h2

|τ |∑

j=−|τ |
j /= 0

bj

⎤

⎥
⎥
⎦. (2.37)

Inserting (2.35) yields

ukn ≤ 1 + h1
|n|−1∑

s=−|n|+1
s /= 0

asu
k
s + exp

⎡

⎢
⎢
⎣h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτ

⎤

⎥
⎥
⎦h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτ exp

⎡

⎢
⎢
⎣−h2

|τ |∑

j=−|τ |
j /= 0

bj

⎤

⎥
⎥
⎦

+ exp

⎡

⎢⎢
⎣h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτ

⎤

⎥⎥
⎦h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

|n|−1∑

s=−|n|+1
s /= 0

asbτu
τ
s exp

⎡

⎢⎢
⎣−h2

|τ |∑

j=−|τ |
j /= 0

bj

⎤

⎥⎥
⎦

≤ exp

⎡

⎢⎢
⎣h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτ

⎤

⎥⎥
⎦ + h1

|n|−1∑

s=−|n|+1
s /= 0

asu
k
s

+ exp

⎡

⎢⎢
⎣h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτ

⎤

⎥⎥
⎦h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

|n|−1∑

s=−|n|+1
s /= 0

asbτu
τ
s exp

⎡

⎢⎢
⎣−h2

|τ |∑

j=−|τ |
j /= 0

bj

⎤

⎥⎥
⎦.

(2.38)

Now, by denoting

wk
n = ukn exp

⎡

⎢⎢
⎣−h2

|k|−1∑

τ=−|k|+1
τ /= 0

bτ

⎤

⎥⎥
⎦, n = −N, . . . ,N, k = −K, . . . , K, (2.39)

we have

wk
n ≤ 1 + h1

|n|−1∑

s=−|n|+1
s /= 0

asw
k
s + h1h2

|k|−1∑

τ=−|k|+1
τ /= 0

|n|−1∑

s=−|n|+1
s /= 0

asbτw
τ
s . (2.40)

Let us denote the right-hand side of (2.40) by Rk
n. Then, (2.40) gets the form

wk
n ≤ Rk

n, n = −N, . . . ,N, k = −K, . . . , K. (2.41)
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Then by using induction, we can prove that

Rk
n exp

⎡

⎢
⎢
⎣−h1

|n|−1∑

s=−|n|+1
s /= 0

as

⎤

⎥
⎥
⎦ ≤ 1 + h1h2

|n|−1∑

s=−|n|+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

asbτR
τ
s exp

⎡

⎢
⎢
⎣−h1

|s|−1∑

j=−|s|+1
j /= 0

aj

⎤

⎥
⎥
⎦. (2.42)

By using Theorem 2.3, we obtain

Rk
n exp

⎡

⎢
⎢
⎣−h1

|n|−1∑

s=−|n|+1
s /= 0

as

⎤

⎥
⎥
⎦ ≤ exp

⎡

⎢
⎢
⎣h1h2

|n|−1∑

s=−|n|+1
s /= 0

|k|−1∑

τ=−|k|+1
τ /= 0

asbτ

⎤

⎥
⎥
⎦, n = −N, . . . ,N, k = −K, . . . , K.

(2.43)

Finally, by combining (2.39), (2.41), and (2.43), we finish the proof of (2.33).

By puttingNh1 = L,Kh2 =M and passing to limit as h1 → 0, h2 → 0 in Theorems 2.3
and 2.4, we obtain the following two theorems about the generalizations of Wendroff integral
inequality with four dependent limits.

Theorem 2.5. Assume that v(x, y) ≥ 0 and b(x, y) ≥ 0 are continuous functions on −L ≤ x ≤ L,
−M ≤ y ≤M and the inequalities

v
(
x, y

) ≤ C + sgn
(
xy

)
∫x

−x

∫y

−y
v(s, t)b(s, t)dt ds, −L ≤ x ≤ L, −M ≤ y ≤M (2.44)

hold, where C = const ≥ 0. Then for v(x, y) the inequalities

v
(
x, y

) ≤ C exp

[

sgn
(
xy

)
∫x

−x

∫y

−y
b(s, t)dt ds

]

, −L ≤ x ≤ L, −M ≤ y ≤M (2.45)

are satisfied.

Theorem 2.6. Assume that v(x, y) ≥ 0 is a continuous function on −L ≤ x ≤ L, −M ≤ y ≤M, and
the inequalities:

v
(
x, y

) ≤ f
(
x, y

)
+ sgn(x)

∫x

−x
v
(
s, y

)
a(s)ds

+ sgn
(
y
)
∫y

−y
v(x, t)b(t)dt, −L ≤ x ≤ L, −M ≤ y ≤M

(2.46)
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hold, where f(x, y) > 0 is a continuous function on −L ≤ x ≤ L, −M ≤ y ≤ M and increasing
with respect to each variable, a(x) ≥ 0 and b(y) ≥ 0 are integrable functions on −L ≤ x ≤ L and
−M ≤ y ≤M, respectively. Then for v(x, y), the inequalities

v
(
x, y

) ≤ f(x, y) exp
[
sgn(x)

∫x
−x a(s)ds+sgn

(
y
) ∫y

−y b(t)dt+sgn
(
xy

) ∫x
−x

∫y
−y a(s)b(t)dsdt

]

(2.47)

are satisfied.

Finally, we formulate (without proofs) the generalizations of Wendroff-type inequali-
ties for the integrals in three independent variables with six dependent limits.

Theorem 2.7. Assume that v(x, y, z) ≥ 0, b(x, y, z) ≥ 0 (−l1 ≤ x ≤ l1, −l2 ≤ y ≤ l2, −l3 ≤ z ≤ l3)
are continuous functions, and the inequalities:

v
(
x, y, z

) ≤ C + sgn
(
xyz

)
∫x

−x

∫y

−y

∫z

−z
v(s, t, τ)b(s, t, τ)dτ dt ds (2.48)

hold, where C = const ≥ 0. Then for v(x, y, z), the inequalities

v
(
x, y, z

) ≤ C exp

[

sgn
(
xyz

)
∫x

−x

∫y

−y

∫z

−z
b(s, t, τ)dτ dt ds

]

,

−l1 ≤ x ≤ l1, −l2 ≤ y ≤ l2, −l3 ≤ z ≤ l3
(2.49)

are satisfied.

Theorem 2.8. Assume that v(x, y, z) ≥ 0 (−l1 ≤ x ≤ l1, −l2 ≤ y ≤ l2, −l3 ≤ z ≤ l3) is a continuous
function, and the inequalities:

v
(
x, y, z

) ≤ δ
(
x, y, z

)
+ sgn(x)

∫x

−x
v
(
s, y, z

)
a(s)ds + sgn

(
y
)
∫y

−y
v(x, t, z)b(t)dt

+ sgn(z)
∫z

−z
v(s, t, τ)c(τ)dτ

(2.50)

hold, where a(x) ≥ 0 (−l1 ≤ x ≤ l1), b(y) ≥ 0 (−l2 ≤ y ≤ l2), and c(z) ≥ 0 (−l3 ≤ z ≤ l3) are
integrable functions, δ(x, y, z) > 0 is continuous and increasing with respect to each variable. Then
for v(x, y, z), the inequalities:

v
(
x, y, z

)≤ δ(x, y, z) exp
[

T
(
x, y, z

)
+ 3

√

sgn
(
xyz

)
∫x

−x

∫y

−y

∫z

−z
a(s)b(t)c(τ)dτ dt ds eT(x,y,z)

]

−l1 ≤ x ≤ l1, −l2 ≤ y ≤ l2, −l3≤z≤ l3
(2.51)
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are satisfied, where

T
(
x, y, z

)
= sgn(x)

∫x

−x
a(s)ds + sgn

(
y
)
∫y

−y
b(t)dt + sgn(z)

∫z

−z
c(τ)dτ

+ sgn
(
xy

)
∫x

−x

∫y

−y
a(s)b(t)dt ds + sgn(xz)

∫x

−x

∫z

−z
a(s)c(τ)dτ ds

+ sgn
(
yz

)
∫y

−y

∫z

−z
b(t)c(τ)dτ dt.

(2.52)

3. Applications

In applications, we consider the Goursat problem for hyperbolic equations:

uxy = f
(
x, y

)
+

∂

∂y

(
a
(
x, y

)
u
(
x, y

)
+ a

(−x, y)u(−x, y))

+
∂

∂x

(
b
(
x, y

)
u
(
x, y

)
+ b

(
x,−y)u(x,−y)), −l1 < x < l1, −l2 < y < l2,

u(x, 0) = φ(x), −l1 ≤ x ≤ l1,
u
(
0, y

)
= ψ

(
y
)
, −l2 ≤ y ≤ l2.

(3.1)

A function u(x, y) is called a solution of the Goursat problem (3.1) if the following
conditions are satisfied:u(x, y) is twice continuously differentiable on the region [−l1, l1] ×
[−l2, l2], and the derivatives at the endpoints are understood as the appropriate unilateral
derivatives;

Theorem 3.1. Assume that the functions φ(x) and ψ(y) are continuously differentiable and φ(0) =
ψ(0). Let a(x, y), b(x, y), and f(x, y) be continuously differentiable functions. Then, there is a unique
solution of the problem (3.1) and the stability inequalities:

∣∣u
(
x, y

)∣∣ ≤
(
l1l2f +

3
2
(
φ + ψ

)
+ 2al1φ + 2bl2ψ

)
e2a|x|+2b|y|+4ab|xy|,

∣∣ux
(
x, y

)∣∣,
∣∣uy

(
x, y

)∣∣ ≤M1,
∣∣uxy

(
x, y

)∣∣ ≤M2

(3.2)

hold, whereM1 andM2 do not depend on x and y and

f = max
|x|≤l1
|y|≤l2

∣∣f
(
x, y

)∣∣, a = max
|x|≤l1
|y|≤l2

∣∣a
(
x, y

)∣∣, b = max
|x|≤l1
|y|≤l2

∣∣b
(
x, y

)∣∣,

φ = max
|x|≤l1

∣∣φ(x)
∣∣, ψ = max

|y|≤l2
∣∣ψ

(
y
)∣∣.

(3.3)
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The proof of this theorem is based on the formula:

u
(
x, y

)
= φ(x) + ψ

(
y
) − φ(0) −

∫x

−x
a(s, 0)φ(s)ds −

∫y

−y
b(0, t)ψ(t)dt +

∫x

0

∫y

0
f(s, t)dt ds

+
∫x

−x
a
(
s, y

)
u
(
s, y

)
ds +

∫y

−y
b(x, t)u(x, t)dt, −l1 ≤ x ≤ l1, −l2 ≤ y ≤ l2

(3.4)

and on the Theorem 2.6.
Now, we consider the difference schemes for approximate solutions of problem (3.1):

uk
y,n

− uk−1
y,n

h1
=
aknu

k
n − ak−1n uk−1n

h2
+
ak−nu

k
−n − ak−1−n u

k−1
−n

h2
+
bknu

k
n − bkn−1ukn−1

h1

+
b−kn u−kn − b−kn−1u−kn−1

h1
+ fkn , −N + 1 ≤ n ≤N, −K + 1 ≤ k ≤ K,

akn = a
(
xn, yk

)
, bkn = b

(
xn, yk

)
, fkn = f

(
xn, yk

)
, −N ≤ n ≤N, −K ≤ k ≤ K,

xn = nh1, −N ≤ n ≤N, Nh1 = l1, yk = kh2, −K ≤ k ≤ K, Kh2 = l2,

u0n = φ(xn), −N ≤ n ≤N, uk0 = ψ
(
yk

)
, −K ≤ k ≤ K,

(3.5)

where uk
y,n

= (ukn − ukn−1)/h2.

Theorem 3.2. For the solution of difference schemes (3.5), the following estimates are satisfied:

max
−N≤n≤N
−K≤k≤K

∣∣∣ukn
∣∣∣ ≤M

⎡

⎣ max
−N+1≤n≤N
−K+1≤k≤K

∣∣∣fkn
∣∣∣ + max

−N≤n≤N

∣∣φn
∣∣ + max

−K≤k≤K

∣∣ψk
∣∣

⎤

⎦, (3.6)

whereM does not depend on h1, h2, fkn , φn, ψk(−N ≤ n ≤N, −K ≤ k ≤ K).

The proof of this theorem is based on the following formula:

ukn = φn + ψk − φ0 − h1
n∑

s=−n
s/= 0

a0sφs − h2
k∑

τ=−k
τ /= 0

bτ0ψτ + h1h2
n∑

s=1

k∑

τ=1

fτs

+ h1
n∑

s=−n
s/= 0

aksu
k
s + h2

k∑

τ=−k
τ /= 0

bτnu
τ
n, −N ≤ n ≤N, −K ≤ k ≤ K

(3.7)

and on Theorem 2.4.
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4. Conclusion

In this paper, generalizations of Wendroff-type inequalities for the integrals in two in-
dependent variables with four dependent limits and their discrete analogues are studied. The
generalizations of Wendroff-type integral inequalities are used to establish stability estimates
for the solution of the Goursat problem. A difference scheme approximately solving the
Goursat problem is presented. Bu using the discrete analogues of the generalizations of
Wendroff-type integral inequalities, stability estimates for the solution of this difference
scheme are established.
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