
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 180672, 13 pages
doi:10.1155/2012/180672

Research Article
The Existence of Positive Solutions for
Fractional Differential Equations with
Sign Changing Nonlinearities

Weihua Jiang, Jiqing Qiu, and Weiwei Guo

College of Sciences, Hebei University of Science and Technology, Hebei, Shijiazhuang 050018, China

Correspondence should be addressed to Jiqing Qiu, qiujiqing@263.net

Received 23 March 2012; Revised 11 June 2012; Accepted 12 June 2012

Academic Editor: Bashir Ahmad

Copyright q 2012 Weihua Jiang et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We investigate the existence of at least two positive solutions to eigenvalue problems of fractional
differential equations with sign changing nonlinearities in more generalized boundary conditions.
Our analysis relies on the Avery-Peterson fixed point theorem in a cone. Some examples are given
for the illustration of main results.

1. Introduction

The theory of fractional differential equations has become an important aspect of differential
equations (see [1–8]). Boundary value problems of fractional differential equations have been
investigated in many papers (see [9–46]). The existence of positive solutions to boundary
value problems of fractional differential equations has been studied by many authors when
nonlinearities are positive (see [9–24]). There are a few papers to study the existence of
positive solutions of semipositone fractional differential equations. For example, using the
Krasnoselskii fixed point theorem, Yuan et al. [9] discussed the existence of positive solutions
for the singular positone and semipositone two-point boundary value problems

Dα
0+u(t) = μa(t)f(t, u(t)),

u(0) = u′(0) = u(1) = u′(1) = 0, 3 < α ≤ 4,
(1.1)
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where μ > 0, a and f are continuous. In [10], Wang et al. studied the existence of positive
solutions for the singular semipositone two-point boundary value problems

Dα
0+u(t) + λf(t, u(t)) = 0, (1.2)

u(0) = u′(0) = u(1) = 0, 2 < α ≤ 3, (1.3)

where λ > 0, f is continuous.
In [11], using Krasnoselskii fixed point theorem, Goodrich discussed the existence of

at least one positive solutions for the system of fractional boundary value problems

−Dν1
0+y1(t) = λ1a1(t)f

(
y1(t), y2(t)

)
, −Dν2

0+y2(t) = λ2a2(t)g
(
y1(t), y2(t)

)
,

y
(i)
1 (0) = y

(i)
2 (0) = 0, 0 ≤ i ≤ n − 2, Dα

0+y1(t)|t=1 = φ1
(
y
)
, Dα

0+y2(t)|t=1 = φ2
(
y
)
,

(1.4)

where a1, a2, f , and g are nonnegative for t ∈ [0, 1].
Motivated by the excellent results mentioned above, in this paper, we investigate the

existence of at least two positive solutions for the problem

Dα
0+y(t) + λf

(
t, y(t)

)
= 0, t ∈ [0, 1],

y(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+y(t)|t=1 = h
(
y
)
,

(1.5)

where λ > 0, α ∈ (n−1, n], n ≥ 3, 1 ≤ β ≤ n−2 < α−1, f ∈ C([0, 1]×R
+, [−M,∞)), M > 0, h ∈

C (C(R+),R+), R
+ = [0,∞). The main tool is the Avery-Peterson theorem. To the best of our

knowledge, this is the first paper dealing with eigenvalue problems of fractional differential
equations with sign changing nonlinearities involving more general boundary conditions.
Our results improve some of the earlier work presented in [10, 17, 46].

2. Preliminaries

For the convenience of the readers, we present here some necessary definitions and lemmas
from fractional calculus theory. For more details see [1, 2].

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function y :
(0,∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,∞).
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Definition 2.2. The Riemann-Liouville fractiontal derivative of order α > 0 of a function y :
(0,∞) → R is given by

Dα
0+y(t) =

1
Γ(n − α)

dn

dtn

∫ t

0
(t − s)n−α−1y(s)ds, (2.2)

provided that the right-hand side is pointwise defined on (0,∞), where n = [α] + 1.

Lemma 2.3. Assume f ∈ C[0, 1], q ≥ p ≥ 0, then

D
p

0+I
q

0+f(t) = I
q−p
0+ f(t). (2.3)

Lemma 2.4. Assume α > 0, then

(1) If λ > −1, λ/=α − i, i = 1, 2, . . . , [α] + 1, t > 0, then

Dα
0+t

λ =
Γ(λ + 1)

Γ(λ − α + 1)
tλ−α. (2.4)

(2) Dα
0+t

α−i = 0, i = 1, 2, . . . , n.

(3) Dα
0+I

α
0+u(t) = u(t), for a.e. t ∈ [0, 1], where u ∈ L1[0, 1].

(4) Dα
0+u(t) = 0 if and only if

u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, (2.5)

for some ci ∈ R, i = 1, 2, . . . , n, where n is the least integer greater than or equal to α.

Lemma 2.5 (see[11]). Given g ∈ C[0, 1], y is a solution of the problem

Dα
0+y(t) + g(t) = 0, t ∈ [0, 1],

y(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+y(t)|t=1 = h
(
y
)
,

(2.6)

if and only if it satisfies

y(t) =
Γ
(
α − β

)

Γ(α)
tα−1h

(
y
)
+
∫1

0
G(t, s)g(s)ds, (2.7)
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where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

tα−1(1 − s)α−β−1 − (t − s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1 − s)α−β−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.8)

Lemma 2.6 (see[11]). G(t, s) is continuous on [0, 1] × [0, 1] and

0 ≤ G(t, s) ≤ G(1, s), t, s ∈ [0, 1]. (2.9)

Lemma 2.7. G(t, s) ≥ tα−1G(1, s), t, s ∈ [0, 1].

Proof. For s ≤ t,

G(t, s) =
tα−1(1 − s)α−β−1 − (t − s)α−1

Γ(α)

= tα−1
(1 − s)α−β−1 − (1 − s/t)α−1

Γ(α)

≥ tα−1
(1 − s)α−β−1 − (1 − s)α−1

Γ(α)
= tα−1G(1, s).

(2.10)

For s > t,

G(t, s) =
tα−1(1 − s)α−β−1

Γ(α)
≥ tα−1

(1 − s)α−β−1 − (t − s)α−1

Γ(α)
= tα−1G(1, s). (2.11)

By simple calculation, we can get

∫1

0
G(1, s)ds =

β
(
α − β

)
Γ(α + 1)

,

∫1

1/2
G(1, s)ds =

2βα − α + β

2α
(
α − β

)
Γ(α + 1)

. (2.12)

By Lemma 2.5, we can easily get the following lemma.

Lemma 2.8. The boundary value problem

Dα
0+u(t) + 1 = 0, 0 < t < 1,

u(i)(0) = D
β

0+u(t)|t=1 = 0, 0 ≤ i ≤ n − 2,
(2.13)
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has a unique solution

u(t) =
tα−1

Γ(α)

(
1

α − β
− t

α

)
. (2.14)

Obviously, u satisfies

βtα−1
(
α − β

)
Γ(α + 1)

≤ u(t) ≤ tα−1
(
α − β

)
Γ(α)

, t ∈ [0, 1]. (2.15)

Lemma 2.9. ỹ ≥ λMu is a solution of the following problem:

Dα
0+ ỹ + λ

[
f
(
t, ỹ − λMu

)
+M

]
= 0, t ∈ [0, 1],

ỹ(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+ ỹ(t)|t=1 = h
(
ỹ − λMu

)
,

(2.16)

if and only if y = ỹ − λMu is a positive solution of (1.5).

Proof. In fact, if y is a positive solution of the problem (1.5), by Lemma 2.8, we get that y
satisfies

Dα
0+
(
y + λMu

)
+ λ

[
f
(
t, y

)
+M

]
= 0, t ∈ [0, 1],

(
y + λMu

)(i)(0) = 0, 0 ≤ i ≤ n − 2,

D
β

0+
(
y + λMu

)|t=1 = h
(
y
)
.

(2.17)

Take ỹ = y + λMu. Then ỹ satisfies (2.16) and ỹ ≥ λMu.
On the other hand, if ỹ is a solution of (2.16) and ỹ ≥ λMu. Take y = ỹ − λMu. By

Lemma 2.8, we can easily get that y satisfies (1.5). Clearly, y ≥ 0.

Define functions h̃, f̃ and an operator T : C[0, 1] → C[0, 1] by

h̃
(
y
)
= h

(
max

{
y − λMu, 0

})
, f̃

(
t, y

)
= f

(
t,max

{
y − λMu, 0

})
+M.

Ty(t) =
Γ
(
α − β

)

Γ(α)
tα−1h̃

(
y
)
+ λ

∫1

0
G(t, s)f̃

(
s, y(s)

)
ds.

(2.18)

Obviously, y ≥ λMu is a fixed point of the operator T if and only if y − λMu is a
positive solution of the problem (1.5).

Take X = C[0, 1] with norm ‖x‖ = maxt∈[0,1]|x(t)|. Define a cone P by

P =
{
y ∈ C[0, 1] | y(t) ≥ tα−1

∥∥y
∥∥, t ∈ [0, 1]

}
. (2.19)
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Lemma 2.10. T : P → P is a completely continuous operator.

Proof. Take y ∈ P . By Lemmas 2.6 and 2.7, we get

Ty(t) ≥ tα−1
[
Γ
(
α − β

)

Γ(α)
h̃
(
y
)
+ λ

∫1

0
G(1, s)f̃

(
s, y(s)

)
ds

]

≥ tα−1
∥
∥Ty

∥
∥. (2.20)

So, T : P → P . Let Ω ⊂ P be bounded. It follows from the continuity of h, f that there exist
constants M1 and M2 such that h̃(y) ≤ M1 and f̃(t, y) ≤ M2 for t ∈ [0, 1], y ∈ Ω. Thus,

∥
∥Ty

∥
∥ ≤ Γ

(
α − β

)

Γ(α)
M1 + λM2

∫1

0
G(1, s)ds. (2.21)

That is T(Ω) is bounded. For y ∈ Ω, t1, t2 ∈ [0, 1],

∣∣Ty(t1) − Ty(t2)
∣∣ ≤ M1

Γ
(
α − β

)

Γ(α)

∣∣∣tα−11 − tα−12

∣∣∣ + λM2

∫1

0
|G(t1, s) −G(t2, s)|ds. (2.22)

By the uniform continuity of tα−1 and G(t, s), we get that T(Ω) is equicontinuous. Obviously,
T : P → P is continuous. By the Arzela-Ascoli theorem, we get that T : P → P is completely
continuous.

Definition 2.11. Amap φ is said to be a nonnegative, continuous, and concave functional on a
cone P of a real Banach space E if and only if φ : P → R

+ is continuous and

φ
(
tx + (1 − t)y

) ≥ tφ(x) + (1 − t)φ
(
y
)
, (2.23)

for all x, y ∈ P and t ∈ [0, 1].

Definition 2.12. A map Φ is said to be a nonnegative, continuous, and convex functional on a
cone P of a real Banach space E iff Φ : P → R

+ is continuous and

Φ
(
tx + (1 − t)y

) ≤ tΦ(x) + (1 − t)Φ
(
y
)
, (2.24)

for all x, y ∈ P and t ∈ [0, 1].

Let ϕ andΘ be nonnegative, continuous, and convex functional on P ,Φ a nonnegative,
continuous, and concave functional on P , and Ψ a nonnegative continuous functional on P .
Then, for positive numbers a, b, c, and d, we define the following sets:

P
(
ϕ, d

)
=
{
x ∈ P : ϕ(x) < d

}
,

P
(
ϕ,Φ, b, d

)
=
{
x ∈ P : b ≤ Φ(x), ϕ(x) ≤ d

}
,

P
(
ϕ,Θ,Φ, b, c, d

)
=
{
x ∈ P : b ≤ Φ(x), Θ(x) ≤ c, ϕ(x) ≤ d

}
,

R
(
ϕ,Ψ, a, d

)
=
{
x ∈ P : a ≤ Ψ(x), ϕ(x) ≤ d

}
.

(2.25)
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We will use the following fixed point theorem of Avery and Peterson to study the
problem (1.5).

Theorem 2.13 (see [47]). Let P be a cone in a real Banach space E. Let ϕ and Θ be nonnegative,
continuous, and convex functionals on P , Φ a nonnegative, continuous, and concave functional on P ,
and Ψ a nonnegative continuous functional on P satisfying Ψ(kx) ≤ kΨ(x) for 0 ≤ k ≤ 1, such that
for some positive numbersM and d,

Φ(x) ≤ Ψ(x), ‖x‖ ≤ Mϕ(x) (2.26)

for all x ∈ P(ϕ, d). Suppose that

T : P
(
ϕ, d

) −→ P
(
ϕ, d

)
(2.27)

is completely continuous and there exist positive numbers a, b, c with a < b, such that the following
conditions are satisfied:

(S1) {x ∈ P(ϕ,Θ,Φ, b, c, d) : Φ(x) > b}/= ∅ and Φ(Tx) > b for x ∈ P(ϕ,Θ,Φ, b, c, d);

(S2) Φ(Tx) > b for x ∈ P(ϕ,Φ, b, d) with Θ(Tx) > c;

(S3) 0 /∈ R(ϕ,Ψ, a, d) and Ψ(Tx) < a for x ∈ R(ϕ,Ψ, a, d) with Ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(ϕ, d), such that

ϕ(xi) ≤ d, for i = 1, 2, 3,

b < Φ(x1), a < Ψ(x2), Φ(x2) < b, Ψ(x3) < a.
(2.28)

3. Main Results

We define a concave function Φ(x) = mint∈[1/2,1]|x(t)| and convex functions Ψ(x) = Θ(x) =
ϕ(x) = ‖x‖.

Theorem 3.1. Assume that there exists a constant 0 < l < Γ(α)/Γ(α − β), such that h(y) ≤ l‖y‖
for y ∈ P . In addition, suppose that there exist constants k, a, b, c, d with k > 22α−1βΓ(α)/(Γ(α) −
Γ(α − β)l), [Γ(α) − Γ(α − β)l]αM/βΓ(α) < a < b − [Γ(α) − Γ(α − β)l]αM/βΓ(α) < 2α−1b < c < d,
such that the following conditions hold:

(C1) f(t, y) ≤ d −M, for (t, y) ∈ [0, 1] × [0, d];

(C2) f(t, y) ≥ kb −M, for (t, y) ∈ [1/2, 1] × [b − [Γ(α) − Γ(α − β)l]αM/βΓ(α), c];

(C3) f(t, y) ≤ a −M, for (t, y) ∈ [0, 1] × [0, a].

Then the problem (1.5) has at least two positive solutions for

22α−1
(
α − β

)
Γ(α + 1)

k
[
α
(
2β − 1

)
+ β

] < λ <
α
(
α − β

)[
Γ(α) − Γ

(
α − β

)
l
]

β
. (3.1)
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Proof. Take y ∈ P(ϕ, d). By ‖max{y − λMu, 0}‖ ≤ d, (C1), Lemma 2.6, (2.12), and (3.1), we
have

∥
∥Ty

∥
∥ ≤ Γ

(
α − β

)

Γ(α)
ld + λd

∫1

0
G(1, s)ds

=

[
Γ
(
α − β

)

Γ(α)
l + λ

∫1

0
G(1, s)ds

]

d ≤ d.

(3.2)

This means that T : P(ϕ, d) → P(ϕ, d).
It is easy to see that {y ∈ P(ϕ,Θ,Φ, b, c, d) : Φ(y) > b}/= ∅. y ∈ P(ϕ,Θ,Φ, b, c, d) implies

mint∈[1/2,1]y(t) ≥ b, ‖y‖ ≤ c. It follows from (2.15) and (3.1) that mint∈[1/2,1](y − λMu) ≥
b − α[Γ(α) − Γ(α − β)l]M/βΓ(α). By (C2), (2.12), (3.1), and Lemma 2.7, we get

Φ
(
Ty

)
= min

t∈[1/2,1]
Ty(t) ≥ λ min

t∈[1/2,1]

∫1

0
G(t, s)f̃

(
s, y(s)

)
ds ≥

(
1
2

)α−1
λkb

∫1

1/2
G(1, s)ds > b.

(3.3)

So, the condition (S1) of Theorem 2.13 holds.
Take y ∈ P(ϕ,Φ, b, d) with Θ(Ty) > c. By Ty ∈ P , we get

min
t∈[1/2,1]

Ty(t) ≥ min
t∈[1/2,1]

tα−1
∥∥Ty

∥∥ ≥ 1
2α−1

∥∥Ty
∥∥ >

1
2α−1

c > b. (3.4)

Thus, (S2) holds.
By a > 0, we have 0 /∈ R(ϕ,Ψ, a, d). Take y ∈ R(ϕ,Ψ, a, d) with Ψ(y) = a. By (C3), we

get

Ψ
(
Ty

)
=
∥∥Ty

∥∥ ≤ Γ
(
α − β

)

Γ(α)
la + λa

∫1

0
G(1, s)ds

=

[
Γ
(
α − β

)

Γ(α)
l + λ

∫1

0
G(1, s)ds

]

a ≤ a.

(3.5)

By Theorem 2.13, we get that T has at least three fixed points y1, y2, y3 ∈ P(ϕ, d) such that
‖yi‖ ≤ d, i = 1, 2, 3, and

b < Φ
(
y1
)
, a < Ψ

(
y2
)
, Φ

(
y2
)
< b, Ψ

(
y3
)
< a. (3.6)

If y ∈ P and ‖y‖ > a, by (2.15) and (3.1), we have

y(t) ≥ tα−1
∥∥y

∥∥ > atα−1 > λMu(t). (3.7)

Obviously, ‖y1‖ > b > a and ‖y2‖ > a. So, y1 − λMu, y2 − λMu are two positive
solutions of (1.5). The proof is completed.
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4. Example

For convenience, we define the following notations:

[a, b] := {x : x ∈ R, a ≤ x ≤ b}, (a, b] := {x : x ∈ R, a < x ≤ b}, for a, b ∈ R, a < b. (4.1)

Example 4.1. Consider the following boundary value problem:

D5/2
0+ y(t) + λf

(
t, y(t)

)
= 0, t ∈ [0, 1],

y(0) = y′(0) = 0,

y′(1) = h
(
y
)
,

(4.2)

where h(y) =
∫1
0 y(s)dg(s), g(s) is a bounded variation function on [0, 1] with 0 <

∨1
0(g) ≤

1 < 3/2,

f
(
t, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
(
t − 1

2

)
π − 1 − √

y,
(
t, y

) ∈ [0, 1] × [0, 6],

sin
(
t − 1

2

)
π − 1 + 601

(
y − 6

) − √
y,

(
t, y

) ∈ [0, 1] × (6, 7],

sin
(
t − 1

2

)
π + 600 − √

y,
(
t, y

) ∈ [0, 1] × (7, 900],

sin
(
t − 1

2

)
π + 570,

(
t, y

) ∈ [0, 1] × (900,+∞).

(4.3)

Corresponding to the problem (1.5), we get that α = 5/2, β = 1, n = 3, h(y) ≤ ‖y‖∨1
0(g).

Take l = 1, k = 50,M = a = 6, b = 12, c = 36, d = 620.
By simple calculation, we can get that the conditions of Theorem 3.1 are satisfied. So,

when (9/35)
√
π < λ < (15/16)

√
π , the problem (4.2) has at least two positive solutions.

Example 4.2. Consider the following boundary value problem:

D7/2
0+ y(t) + λf

(
t, y(t)

)
= 0, t ∈ [0, 1],

y(0) = y′(0) = y′′(0) = 0,

D3/2
0+ y(t)|t=1 = h

(
y
)
,

(4.4)
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where h(y) =
∫1
0 y(s)dg(s), g(s) is a bounded variation function on [0, 1] with 0 <

∨1
0(g) ≤

(15/8)
√
π − 1,

f
(
t, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3
4
cos

π

2
t − 1

4
√
y,

(
t, y

) ∈ [0, 1] × [0, 1],

−3
4
cos

π

2
t + 3205

(
y − 1

) − 1
4
√
y,

(
t, y

) ∈ [0, 1] × (1, 1.2],

−3
4
cos

π

2
t + 641 − 1

4
√
y,

(
t, y

) ∈ [0, 1] × (1.2, 12],

−3
4
cos

π

2
t + 641 − 1

2

√
3,

(
t, y

) ∈ [0, 1] × (12,+∞).

(4.5)

Corresponding to the problem (1.5), we get that α = 7/2, β = 3/2, n = 4, h(y) ≤ ‖y‖∨1
0(g).

Take l = (15/8)
√
π − 1, k = 320,M = a = 1, b = 2, c = 12, d = 642.

Obviously, f ∈ C ([0, 1] × R
+, [−1,∞)), h(y) ≤ l‖y‖. By simple calculation, we can get

that k, l, a, b, c, d, α, β,M satisfy 0 < l < Γ(α)/Γ(α − β), k > 22α−1βΓ(α)/(Γ(α) − Γ(α − β)l), and

[
Γ(α) − Γ

(
α − β

)
l
]
αM

βΓ(α)
< a < b −

[
Γ(α) − Γ

(
α − β

)
l
]
αM

βΓ(α)
< 2α−1b < c < d. (4.6)

It is easy to see that f(t, y) + 1 ≤ 642, for (t, y) ∈ [0, 1] × [0, 642], and f(t, y) + 1 ≤ 1, for
(t, y) ∈ [0, 1] × [0, 1]. So, conditions (C1) and (C3) of Theorem 3.1 hold.

For (t, y) ∈ [1/2, 1] × [2 − 56/45
√
π, 12], f(t, y) + 1 ≥ kb = 640. Therefore, condition

(C2) of Theorem 3.1 holds. So, for (21/8(7
√
2 − 2))

√
π < λ < 14/3, the problem (4.4) has at

least two positive solutions.
Specially, in Example 4.2, we take

g(t) =

⎧
⎨

⎩

0, t < ξ,

1, t ≥ ξ,
(4.7)

where 0 < ξ < 1 and all other conditions remain unchanged. Then h(y) = y(ξ). Clearly,
∨1
0(g) = 1 < (15/8)

√
π − 1. The problem (4.4) has at least two positive solutions for

(21/8(7
√
2 − 2))

√
π < λ < 14/3.
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