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This paper investigates the existence of solutions for a coupled system of nonlinear fractional
differential equations with m-point fractional boundary conditions on an unbounded domain.
Some standard fixed point theorems are applied to obtain the main results. The paper concludes
with two illustrative examples.

1. Introduction

In the last few decades, the subject of fractional calculus has gained considerable popularity
and importance as it finds its applications in numerous fields of science and engineering.
Some of the areas of recent applications of fractional models include fluid mechanics, solute
transport or dynamical processes in porous media, material viscoelastic theory, dynamics
of earthquakes, control theory of dynamical systems, and biomathematics. In the afore-
mentioned areas, there are phenomena with estrange kinetics involving microscopic complex
dynamical behaviour that cannot be characterized by classical derivative models. It has been
learnt through experimentation that most of the processes associated with complex systems
have nonlocal dynamics possessing long-memory in time, and the integral and derivative
operators of fractional order do have some of these characteristics. Thus, due to the modeling
capabilities of fractional integrals and derivatives for complex phenomena, the fractional
modelling has emerged as a powerful tool and has accounted for the rapid development
of the theory of fractional differential equations. Fractional differential equations also serve
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as an excellent tool for the description of hereditary properties of various materials and
processes [1]. The presence of memory term in such models not only takes into account the
history of the process involved but also carries its impact to present and future development
of the process. For more details and applications, we refer the reader to the books [2–6]. For
some recent work on the topic, see [7–27] and references therein.

The study of coupled systems involving fractional differential equations is also
important as such systems occur in various problems of applied nature. For some recent
results on systems of fractional differential equations, see [28–35].

Much of the work on fractional differential equations has been considered on finite
domain and there are few papers dealing with infinite domain [36–43]. In this paper, we
discuss the existence and uniqueness of the solutions of a coupled system of nonlinear
fractional differential equations with m-point boundary conditions on an unbounded
domain. Precisely, we consider the following problem:

Dpu(t) + f(t, v(t)) = 0, 2 < p < 3,

Dqv(t) + g(t, u(t)) = 0, 2 < q < 3,

u(0) = u′(0) = 0, Dp−1u(+∞) =
m−2∑

i=1

βiu(ξi),

v(0) = v′(0) = 0, Dq−1v(+∞) =
m−2∑

i=1

γiv(ξi),

(1.1)

where t ∈ J = [0,+∞), f, g ∈ C(J × R,R), 0 < ξ1 < ξ2 < · · · < ξm−2 < +∞, Dp and Dq denote
Riemann-Liouville fractional derivatives of order p and q, respectively, and βi > 0, and γi > 0
are such that 0 <

∑m−2
i=1 βiξ

p−1
i < Γ(p) and 0 <

∑m−2
i=1 γiξ

q−1
i < Γ(q).

2. Preliminaries

For the convenience of the readers, in this section we first present some useful definitions and
lemmas.

Definition 2.1 (see [5]). The Riemann-Liouville fractional derivative of order δ for a
continuous function f is defined by

Dδf(t) =
1

Γ(n − δ)

(
d

dt

)n ∫ t

0
(t − s)n−δ−1f(s)ds, n = [δ] + 1, (2.1)

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 (see [5]). The Riemann-Liouville fractional integral of order δ for a function f
is defined as

Iδf(t) =
1

Γ(δ)

∫ t

0
(t − s)δ−1f(s)ds, δ > 0, (2.2)

provided that such integral exists.
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For the forthcoming analysis, we define the spaces

X =

{
u ∈ C[0,+∞) : sup

t∈J

|u(t)|
1 + tp−1

< +∞
}
,

Y =

{
v ∈ C[0,+∞) : sup

t∈J

|v(t)|
1 + tq−1

< +∞
} (2.3)

equipped with the norms

‖u‖X = sup
t∈J

|u(t)|
1 + tp−1

, (2.4)

‖v‖Y = sup
t∈J

|v(t)|
1 + tq−1

. (2.5)

Obviously X and Y are Banach spaces.

Lemma 2.3 (see [38]). Let h ∈ C([0,+∞)). For 2 < α < 3, the fractional boundary value problem

Dαu(t) + h(t) = 0,

u(0) = u′(0) = 0, Dα−1u(+∞) =
m−2∑

i=1

βiu(ξi)
(2.6)

has a unique solution

u(t) =
∫+∞

0
G(t, s)h(s)ds, (2.7)

where

G(t, s) = G∗(t, s) +G∗∗(t, s), (2.8)

with

G∗(t, s) =
1

Γ(α)

{
tα−1 − (t − s)α−1, 0 ≤ s ≤ t < +∞,

tα−1, 0 ≤ t ≤ s < +∞.
(2.9)

G∗∗(t, s) =
∑m−2

i=1 βit
α−1

Γ(α) −∑m−2
i=1 βiξ

α−1
i

G∗(ξi, s). (2.10)

Lemma 2.4 (see [38]). For (s, t) ∈ [0,+∞) × [0,+∞), G(t, s)/1 + tα−1 ≤ L1, where

L1 =
1

Γ(α)
+

∑m−2
i=1 βiξ

α−1
m−2

Γ(α)
(
Γ(α) −∑m−2

i=1 βiξ
α−1
i

) . (2.11)
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3. Main Results

This section is devoted to some existence and uniqueness results for problem (1.1).
Define the space

Z = {(u, v) | u ∈ X, v ∈ Y} (3.1)

equipped with the norm

‖(u, v)‖Z = max{‖u‖X, ‖v‖Y}. (3.2)

Clearly Z is a Banach space.
Let an operator Q : Z → Z be defined by

Q(u, v) = (Q1(v), Q2(u))

=
(∫+∞

0
G1(t, s)f(t, v(s))ds,

∫+∞

0
G2(t, s)g(t, u(s))ds

)
,

(3.3)

where G1(t, s) = G11(t, s) +G12(t, s), G2(t, s) = G21(t, s) +G22(t, s), with

G11(t, s) =
1

Γ
(
p
)
{
tp−1 − (t − s)p−1, 0 ≤ s ≤ t < +∞,

tp−1, 0 ≤ t ≤ s < +∞,

G12(t, s) =
∑m−2

i=1 βit
p−1

Γ
(
p
) −∑m−2

i=1 βiξ
p−1
i

G11(ξi, s),

G21(t, s) =
1

Γ
(
q
)
{
tq−1 − (t − s)q−1, 0 ≤ s ≤ t < +∞,

tq−1, 0 ≤ t ≤ s < +∞,

G22(t, s) =
∑m−2

i=1 γit
q−1

Γ
(
q
) −∑m−2

i=1 γiξ
q−1
i

G21(ξi, s).

(3.4)

Observe that the problem (1.1) has a solution if and only if the operator Q defined by (3.3)
has a fixed point.

Lemma 3.1. For (s, t) ∈ [0,+∞) × [0,+∞), one has

G1(t, s)
1 + tp−1

≤ L ,
G2(t, s)
1 + tq−1

≤ L, (3.5)

where

L = max

⎧
⎨

⎩
1

Γ
(
p
) +

∑m−2
i=1 βiξ

p−1
m−2

Γ
(
p
)(

Γ
(
p
) −∑m−2

i=1 βiξ
p−1
i

) ,
1

Γ
(
q
) +

∑m−2
i=1 γiξ

q−1
m−2

Γ
(
q
)(

Γ
(
q
) −∑m−2

i=1 γiξ
q−1
i

)

⎫
⎬

⎭. (3.6)
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Theorem 3.2. Assume that

(H1) there exist nonnegative functions a(t), b(t) ∈ C[0,+∞) such that

∣∣f(t, x)
∣∣ ≤ a(t)|x| + b(t), t ∈ [0,+∞),

∫+∞

0

(
1 + tq−1

)
a(t)dt <

1
L
,

∫+∞

0
b(t)dt < +∞;

(3.7)

(H2) there exist nonnegative functions c(t), d(t) ∈ C[0,+∞) such that

∣∣g
(
t, y

)∣∣ ≤ c(t)
∣∣y

∣∣ + d(t), t ∈ [0,+∞),
∫+∞

0

(
1 + tp−1

)
c(t)dt <

1
L
,

∫+∞

0
d(t)dt < +∞.

(3.8)

Then the system (1.1) has a solution.

Proof. Let us take

R > max

{
L
∫+∞
0 b(s)ds

1 − L
∫+∞
0

(
1 + sq−1

)
a(s)ds

,
L
∫+∞
0 d(s)ds

1 − L
∫+∞
0

(
1 + sp−1

)
c(s)ds

}
, (3.9)

and define

BR = {(u, v) ∈ Z | ‖(u, v)‖Z ≤ R}. (3.10)

Obviously, BR is a bounded closed and convex set of Z.
As a first step, we show that the operator Q is BR → BR.
For any (u, v) ∈ BR, we have

‖Q1v‖X = sup
t∈J

1
1 + tp−1

∣∣∣∣

∫+∞

0
G1(t, s)f(s, v(s))ds

∣∣∣∣

≤ sup
t∈J

1
1 + tp−1

∫+∞

0
G1(t, s)(a(s)|v(s)| + b(s))ds

≤ L

∫+∞

0

(
1 + sq−1

)
a(s)ds‖v‖Y + L

∫+∞

0
b(s)ds

<
L
∫+∞
0 b(s)ds

1 − L
∫+∞
0

(
1 + tq−1

)
a(s)ds

< R.

(3.11)
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Similarly, we can get

‖Q2u‖Y = sup
t∈J

1
1 + tq−1

∣∣∣∣

∫+∞

0
G2(t, s)g(s, u(s))ds

∣∣∣∣

≤ L

∫+∞

0

(
1 + sp−1

)
c(s)ds‖u‖X + L

∫+∞

0
d(s)ds

<
L
∫+∞
0 d(s)ds

1 − L
∫+∞
0

(
1 + sp−1

)
c(s)ds

< R.

(3.12)

That is, ‖Q(u, v)‖Z ≤ R. Thus, QBR ⊂ BR.
Next, we show that Q is completely continuous. By continuity of f, g,G1, and G2, it

follows that Q is continuous. On the other hand, by a similar process used in [38], we can
easily prove that the operators Q1 and Q2 are equicontinuous. Therefore it follows that QBR

is an equicontinuous set. Also, it is uniformly bounded as QBR ⊂ BR. Thus, we conclude that
Q is a completely continuous operator. Hence, by Schauder fixed point theorem, there exists
a solution of (1.1). This completes the proof.

Theorem 3.3. Assume that

(H3) there exist 0 < ρ1 < 1 and nonnegative functions a1(t), b1(t) ∈ C[0,+∞) such that

∣∣f(t, x)
∣∣ ≤ a1(t)|x|ρ1 + b1(t), t ∈ [0,+∞),

∫+∞

0

(
1 + tq−1

)
a1(t)dt < +∞,

∫+∞

0
b1(t)dt < +∞.

(3.13)

(H4) there exist 0 < ρ2 < 1 and nonnegative functions c1(t), d1(t) ∈ C[0,+∞) such that

∣∣g
(
t, y

)∣∣ ≤ c1(t)
∣∣y

∣∣ρ2 + d1(t), t ∈ [0,+∞),
∫+∞

0

(
1 + tp−1

)
c1(t)dt < +∞,

∫+∞

0
d1(t)dt < +∞.

(3.14)

Then the system (1.1) has a solution.

Proof. In this case, we take

R > max

{
2L

∫+∞

0
b1(s)ds,

(
2L

∫+∞

0

(
1 + sq−1

)
a1(s)ds

)1/(1−ρ1)
,

2L
∫+∞

0
d1(s)ds,

(
2L

∫+∞

0

(
1 + sp−1

)
c1(s)ds

)1/(1−ρ2)}
.

(3.15)

The rest of the proof is similar to that of Theorem 3.2. So we omit it.



Abstract and Applied Analysis 7

Remark 3.4. By taking ρ1, ρ2 > 1 (instead of 0 < ρ1 < 1, 0 < ρ2 < 1) in (H3) and (H4), one can
show that (1.1) has a solution.

Theorem 3.5. Assume that
(H5) the functions f and g satisfy Lipschitz condition; that is, there exist nonnegative functions

K1(t) and K2(t) such that

∣∣f(t, x) − f
(
t, y

)∣∣ ≤ K1(t)
∣∣x − y

∣∣, t ∈ [0,+∞),
∣∣g(t, x) − g

(
t, y

)∣∣ ≤ K2(t)
∣∣x − y

∣∣, t ∈ [0,+∞).
(3.16)

Then the problem (1.1) has a unique solution if

μ = L

∫+∞

0
K1(s)

(
1 + sq−1

)
ds < 1, τ = L

∫+∞

0
K2(s)

(
1 + sp−1

)
ds < 1. (3.17)

Proof. For any (u1, v1), (u2, v2) ∈ Z, we have

‖Q1v2 −Q1v1‖X = sup
t∈J

1
1 + tp−1

∣∣∣∣

∫+∞

0
G1(t, s)

[
f(s, v2(s)) − f(s, v1(s))

]
ds

∣∣∣∣

≤ sup
t∈J

∫+∞

0

G1(t, s)
1 + tp−1

K1(s)|(v2 − v1)(s)|ds

≤ L

∫+∞

0
K1(s)

(
1 + sq−1

)
ds‖v2 − v1‖Y

= μ‖v2 − v1‖Y .

(3.18)

Similarly, it can be shown that

‖Q2u2 −Q2u1‖Y = sup
t∈J

1
1 + tq−1

∣∣∣∣

∫+∞

0
G1(t, s)

(
g(s, u2(s)) − f(s, u2(s))

)
ds

∣∣∣∣

≤ L

∫+∞

0
K2(s)

(
1 + sp−1

)
ds‖u2 − u1‖X

= τ‖u2 − u1‖X.

(3.19)

Thus, we get

‖Q(u2, v2) −Q(u1, v1)‖Z ≤ max
{
μ, τ

}‖(u2, v2) − (u1, v1)‖Z. (3.20)

Obviously, Q is a contraction. Thus, the conclusion of the theorem follows by the contraction
mapping principle. This completes the proof.
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4. Example

Example 4.1. Consider the following multipoint boundary value problem on an unbounded
domain:

D9/4u(t) +
sin t ln(1 + |v(t)|)
(
1 + t7/4

)
(2 + t)2

+ (1 + cos 2t)e−t = 0,

D11/4v(t) +
e−5t sin|u(t)|

3
(
1 + t5/4

)
(1 + t)2

+
4

(t + 4)2
= 0,

u(0) = u′(0) = 0, D5/4u(+∞) =
2
5
u

(
1
4

)
+

1
10

u(1),

v(0) = v′(0) = 0, D7/4v(+∞) =
3
10

u

(
1
4

)
+
1
5
u(1).

(4.1)

Here t ∈ [0,+∞), p = 9/4, q = 11/4, ξ1 = 1/4, ξ2 = 1, β1 = 2/5, β2 = 1/10, γ1 =
3/10, and γ2 = 1/5. One has

f(t, v(t)) =
sin t ln(1 + |v(t)|)
(
1 + t7/4

)
(2 + t)2

+ (1 + cos 2t)e−t, g(t, u(t)) =
e−5t sin|u(t)|

3
(
1 + t5/4

)
(1 + t)2

+
4

(t + 4)2
.

(4.2)

For a(t) = 1/(1 + t7/4)(2 + t)2, b(t) = 2e−t, c(t) = 1/3(1 + t5/4)(1 + t)2, d(t) = 4/(t + 4)2,
by direct calculation we find that

L = max

⎧
⎨

⎩
1

Γ
(
p
) +

∑m−2
i=1 βiξ

p−1
m−2

Γ
(
p
)(

Γ
(
p
) −∑m−2

i=1 βiξ
p−1
i

) ,
1

Γ
(
q
)

+
∑m−2

i=1 γiξ
q−1
m−2

Γ
(
q
)(

Γ
(
q
) −∑m−2

i=1 γiξ
q−1
i

)

⎫
⎬

⎭

= max

⎧
⎨

⎩
1

Γ(9/4)
+

(2/5) + (1/10)

Γ(9/4)
(
Γ(9/4) − 2/5(1/4)5/4 − (1/10)

) ,
1

Γ(11/4)

+
(3/10) + (1/5)

Γ(11/4)
(
Γ(11/4) − 3/10(1/4)7/4 − (1/5)

)

⎫
⎬

⎭

= 1.341213,
∣∣f(t, x)

∣∣ ≤ a(t)|x| + b(t),
∣∣g
(
t, y

)∣∣ ≤ c(t)
∣∣y

∣∣ + d(t), t ∈ [0,+∞),
∫+∞

0

(
1 + tq−1

)
a(t)dt =

1
2
<

1
L

= 0.745594,
∫+∞

0
b(t)dt = 2 < +∞,

∫+∞

0

(
1 + tp−1

)
c(t)dt =

1
3
<

1
L

= 0.745594,
∫+∞

0
d(t)dt = 1 < +∞.

(4.3)

Thus all conditions of Theorem 3.2 are satisfied. Therefore, by Theorem 3.2, the couple system
of nonlinear fractional differential (4.1) has at least one solution.
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Example 4.2. Consider the following problem on an unbounded domain:

Dpu(t) +M1(t) sinv(t) +N1(t) = 0,

Dqv(t) +
M2(t)

1 + u2(t)
+N2(t) = 0,

u(0) = u′(0) = 0, Dp−1u(+∞) =
2
5
u

(
1
4

)
+

1
10

u(1),

v(0) = v′(0) = 0, Dq−1v(+∞) =
3
10

u

(
1
4

)
+
1
5
u(1).

(4.4)

Here t ∈ [0,+∞), 2 < p, q < 3, ξ1 = 1/4, ξ2 = 1, β1 = 2/5, β2 = 1/10, γ1 = 3/10, and γ2 = 1/5,
M1(t), M2(t), N1(t), N2(t) ∈ C([0,+∞),R).

With

f(t, v(t)) = M1(t) sinv(t) +N1(t), g(t, u(t)) =
M2(t)

1 + u2(t)
+N2(t), (4.5)

we have
∣∣f(t, x) − f

(
t, y

)∣∣ = |M1(t)|
∣∣sinx − siny

∣∣ ≤ |M1(t)|
∣∣x − y

∣∣, t ∈ [0,+∞),
∣∣g(t, x) − g

(
t, y

)∣∣ = |M2(t)|
∣∣∣∣

1
1 + x2

− 1
1 + y2

∣∣∣∣ ≤ |M2(t)|
∣∣x − y

∣∣, t ∈ [0,+∞),
(4.6)

where K1(t) = |M1(t)|, K2(t) = |M2(t)|. So, the condition (H5) holds. Let us assume that

μ = L

∫+∞

0
|M1(s)|

(
1 + sq−1

)
ds < 1, τ = L

∫+∞

0
|M2(s)|

(
1 + sp−1

)
ds < 1. (4.7)

For example, condition (4.7) holds if we take

p =
9
4
, q =

11
4
, M1(t) =

1
(
1 + t7/4

)
(2 + t)2

, M2(t) =
1

3
(
1 + t5/4

)
(1 + t)2

.

(4.8)

Thus all the conditions of Theorem 3.5 are satisfied. Therefore, by the conclusion of
Theorem 3.5, the coupled system (4.4) has a unique solution.

5. Conclusion

We have shown the existence and uniqueness of solutions for a coupled system of nonlinear
fractional differential equations with multipoint fractional boundary conditions on a semi-
infinite domain. Our existence results are based on Schauder’s fixed point theorem, while
the uniqueness result is obtained by applying Banach’s contraction mapping principle. The
existence of solutions for (1.1) has been addressed for different kinds of growth conditions.
Our approach is simple and can easily be applied to a variety of problems. This has been
demonstrated by solving two examples.
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