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We study here different fractional versions of the compound Poisson process. The fractionality is
introduced in the counting process representing the number of jumps as well as in the density
of the jumps themselves. The corresponding distributions are obtained explicitly and proved to
be solution of fractional equations of order less than one. Only in the final case treated in this
paper, where the number of jumps is given by the fractional-difference Poisson process defined
in Orsingher and Polito (2012), we have a fractional driving equation, with respect to the time
argument, with order greater than one. Moreover, in this case, the compound Poisson process is
Markovian and this is also true for the corresponding limiting process. All the processes considered
here are proved to be compositions of continuous time random walks with stable processes (or
inverse stable subordinators). These subordinating relationships hold, not only in the limit, but
also in the finite domain. In some cases the densities satisfy master equations which are the
fractional analogues of the well-known Kolmogorov one.

1. Introduction and Preliminary Results

The fractional Poisson process (FPP), which we will denote by Nβ(t), t > 0, β ∈ (0, 1],
has been introduced in [1], by replacing, in the differential equation governing the Poisson
process, the time derivative with a fractional one. Later, in [2, 3], it was proved to be a renewal
process with Mittag-Leffler distributed waiting times (and therefore with infinite mean). In
[4] it has been expressed as the composition N(Tβ(t)) of a standard Poisson process N with
the fractional diffusion Tβ, independent of N. A full characterization of Nβ in terms of its
finite multidimensional distributions can be found in [5]. In [6] the coincidence between Nβ

and the fractal time Poisson process (FTPP) defined as N(Lβ(t)) has been proved, where
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Lβ(t), t ≥ 0 is the inverse of the stable subordinator Aβ(t) of index β (with parameters
μ = 0, θ = 1, σ = (t cosπβ/2)1/β, in the notation of [7], that we will adopt hereafter). Thus,
the process Aβ is characterized by the following Laplace pairs:

Ee−kAβ(t) = e−k
βt, k, t > 0,

∫+∞
0

e−sthβ(x, t)dt = xβ−1Eβ,β

(
−sxβ
)
, s, x > 0,

(1.1)

where Eβ,δ is the Mittag-Leffler function of parameters β, δ and hβ(x, t) is the density of
Aβ(t). The inverse stable subordinator Lβ is defined by the following relation:

Lβ(t) := inf
{
s : Aβ(s) = t

}
, z, t > 0, (1.2)

and therefore we get

Ee−kLβ(t) = Eβ,1

(
−ktβ
)
, k, t > 0,

∫+∞
0

e−stlβ(x, t)dt = sβ−1e−xs
β

, s, x > 0,
(1.3)

where lβ(x, t) is the density of Lβ(t).
We will make use also of different forms of FPP such as the alternative fractional

Poisson process in [8] and the fractional-difference Poisson process in [9].
In this paper we study several fractional compound Poisson processes and, to help the

reader, we list the acronyms used throughout the paper by the end of the paper.
The first form of fractional compound Poisson process has been introduced in [10], in

the form of a continuous time random walk with infinite-mean waiting times (see also [11]).
This corresponds to the following random walk time changed via the FTPP, that is,

Yβ(t) =
N(Lβ(t))∑

j=1

Xj, t ≥ 0, (1.4)

with Xj , j = 1, 2, . . . are i.i.d. random variables, independent from N and Lβ. The
last assumption (that we will adopt throughout the paper) corresponds to the so-called
uncoupled case.

In [6] it is proved that subordinating random walk to the fractional Poisson process
Nβ(t), t ≥ 0, produces the same one-dimensional distribution. The (generalized) density
function of Yβ(t) can be expressed as

gYβ

(
y, t
)
:= Eβ,1

(
−λtβ
)
δ
(
y
)
+ fYβ

(
y, t
)
, y, t ≥ 0, (1.5)
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where the first term refers to the probability mass concentrated in the origin, δ(y) denotes the
Dirac delta function, and fYβ denotes the density of the absolutely continuous component.
The function gYβ given in (1.5) satisfies the following fractional master equation, that is,

∂β

∂tβ
gYβ

(
y, t
)
= −λgYβ

(
y, t
)
+ λ

∫+∞
−∞

gYβ

(
y − x, t

)
fX(x)dx, (1.6)

where ∂β/∂tβ is the Caputo fractional derivative of order β ∈ (0, 1] (see, for example, [12])
and the random variables Xj , j = 1, 2, . . . have continuous density fX .

We also recall the following result proved in [13] for the rescaled version of the time-
fractional compound Poisson process (hereafter TFCPP): if the random variables Xj, j =
1, 2, . . . are centered and have finite variance, then

c−β/2Yβ(ct) =⇒ W
(
Lβ(t)

)
, c −→ ∞, (1.7)

where W is a standard Brownian motion and⇒ denotes weak convergence.
A detailed exposition of the theory of TFCPP and continuous time random walks can

be found in [14, 15], where the density fYβ is expressed in terms of successive derivatives of
the Mittag-Leffler function as follows:

fYβ

(
y, t
)
=

∞∑
n=1

f∗n
X

(
y
)
Pr
{
Nβ(t) = n

}
=

∞∑
n=1

f∗n
X

(
y
)(λtβ)n

n!
∂n

∂xn
Eβ,1(x)

∣∣∣∣
x=−λtβ

, t, y ≥ 0, (1.8)

where f∗n
X is the nth convolution of the density fX of the r.v.’s Xj .

A further asymptotic result has been proved in [15], under the assumption that the
density of the jump variables (which we will denote, in this special case, as X∗

j ) behaves
asymptotically as

f̂X∗(hκ) :=
∫+∞
−∞

eiκhxf̂X∗(x)dx � 1 − hα|κ|α, h −→ 0, α ∈ (0, 1], (1.9)

where ·̂ denotes the Fourier transform. In this case the TFCPP is defined as Y ∗
β (t) =

∑Nβ(t)
j=1 X∗

j

and the rescaled version displays the following weak convergence:

hY ∗
β

(
t

r

)
=⇒ Z(t), (1.10)

for h, r → 0, s.t. hα/rβ → 1. The characteristic function of the limiting process Z(t) is given
by

Eβ,1

(
−λtβ|κ|α

)
(1.11)

and thus it can be represented as Sα(Lβ(t)), where Sα is a symmetric α-stable process with
parameters μ = 0, θ = 0, σ = (t cosπα/2)1/α. For β < 1, the inverse stable subordinator
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Lβ(t) is not Markovian as well as not Lévy (see [10]) and the same is true for Sα(Lβ(t)), as
remarked in [15]; moreover, the density u = u(y, t) of the latter is the solution to the space-
time fractional equation:

∂βu

∂tβ
= λ

∂αu

∂
∣∣y∣∣α , u

(
y, 0
)
= δ
(
y
)
, y ∈ R, t > 0, (1.12)

where ∂α/∂|y|α denotes the Riesz-Feller derivative of order α ∈ (0, 1] (see [16]). Thus, in the
special case α = 1, it reduces to the composition of a Cauchy process with Lβ.

Finally, we recall the following result proved in [17]: under the assumption of heavy
tailed r.v.’s representing the jumps, that is,

Pr
{∣∣Xj

∣∣ > x
}
∼ x−α, x −→ ∞, (1.13)

the following convergence holds, as c → ∞,

c−β/αYβ(ct) =⇒ I
(
Lβ(t)

)
. (1.14)

In (1.14) I is a α-stable Lévy process with density pα(x, t) and characteristic function

p̂α(κ, t) = etb[q(−iκ)
α+(1−q)(iκ)α], for

{
b < 0, 0 < α < 1
or b > 0, 1 < α < 2,

(1.15)

under the assumption that limx→∞ Pr{Xj < −x}/Pr{|Xj | > x} = q ∈ 0, 1]. The density of the
limiting process is proved to satisfy the following time and space fractional equation:

D
β

0+,tu = qbDα
−,xu +

(
1 − q
)
bDα

0+,xu, (1.16)

where the fractional derivatives are intended in the Riemann-Liouville sense (see [12],
formulae (2.2.3) and (2.2.4), page 80).

We present, in this paper, different versions of the compound Poisson process (CPP),
fractional (under different acceptions) with respect to time and space; we provide for them
analytic expressions of the distributions and some composition relationships with stable and
inverse-stable processes, holding not only in the scaling limit, but also in the finite domain.

Tables 1 and 2 provide a summary of these results in the finite and asymptotic
domains, respectively.

We assume here exponential jumps (generalized later to Mittag-Leffler), since this
allows to obtain explicit equations (fractional in most cases) driving these fractional CPP’s
for any finite value of the time and space arguments. This kind of explicit formulae, together
with the knowledge of the related governing differential equations, is of great importance in
many actuarial applications (see, for example, [18], Section 4.2). In risk theory it is related to
the Tweedie’s compound Poisson model (see [19]). The hypothesis of exponential jumps has
been widely applied also in other fields: in natural sciences it leads to the so-called compound
Poisson-Gamma model, which is used for rainfall prediction (see, for example, [20]).
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2. Time-Fractional Compound Poisson Processes

We consider different forms of TFCPP, starting with the more familiar one given in (1.4) and
then comparing the results with those obtained for an alternative definition of FPP.

2.1. The Standard Case

In order to get a form of the density of the TFCPPmore explicit than (1.8), we assume that the
Xj ’s are exponentially distributed: in this case it can be expressed in terms of the generalized
Mittag-Leffler function:

E
γ

α,δ(x) =
∞∑
j=0

(
γ
)(j)
j!

xj

Γ
(
αj + δ

) , α, δ, γ ∈ C, R(α),R(δ) > 0, (2.1)

where (x)(n) = x(x + 1) · · · (x + n − 1) is the rising factorial (or Pochhammer symbol).
Moreover, we can obtain the fractional partial-differential equation satisfied by the density
of its absolutely continuous component.

Theorem 2.1. The process

Yβ(t) =
Nβ(t)∑
j=1

Xj, t ≥ 0, (2.2)

with Xj, j = 1, 2 . . ., independent and exponentially distributed with parameter ξ, has the following
distribution:

Pr
{
Yβ(t) ≤ y

}
= Eβ,1

(
−λtβ
)
1[0,+∞)

(
y
)
+
∫y
−∞

fYβ(z, t)dz, t ≥ 0, y ∈ R, (2.3)

where

fYβ

(
y, t
)
=

e−ξy

y

∞∑
n=1

(
λξtβy

)n
(n − 1)!

En+1
β,βn+1

(
−λtβ
)
1[0,+∞)

(
y
)
, t ≥ 0. (2.4)

The function fYβ(y, t) given in (2.4) satisfies the following partial differential equation:

ξ
∂β

∂tβ
fYβ = −

[
λ +

∂β

∂tβ

]
∂

∂y
fYβ , t, y ≥ 0, (2.5)

where ∂β/∂tβ denotes the Caputo fractional derivative with the conditions

fYβ

(
y, 0
)
= 0,

∫+∞
0

fYβ

(
y, t
)
dy = 1 − Eβ,1

(
−λtβ
)
.

(2.6)
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Proof . Formula (1.8) can be rewritten by considering that f∗n
X (y) = ξnyn−1e−ξy/(n − 1)! and

using the expression of Pr{Nβ(t) = n} in terms of generalized Mittag-Leffler functions (see
[21]), that is,

Pr
{
Nβ(t) = n

}
= λntnβEn+1

β,βn+1

(
−λtβ
)
, n ≥ 0. (2.7)

In order to derive (2.5), we evaluate the following partial derivatives of (2.4):

∂β

∂tβ
fYβ

(
y, t
)
=

e−ξy

ytβ

∞∑
n=1

(
λξtβy

)n
(n − 1)!n!

∞∑
j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn − β + 1

) ,

∂

∂y
fYβ

(
y, t
)
= −ξe

−ξy

y

∞∑
n=1

(
λξtβy

)n
(n − 1)!n!

∞∑
j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn + 1

)+

+
e−ξy

y2

∞∑
n=2

(
λξtβy

)n
(n − 2)!n!

∞∑
j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn + 1

) ,

∂

∂y

∂β

∂tβ
fYβ

(
y, t
)
= −ξe

−ξy

ytβ

∞∑
n=1

(
λξtβy

)n
n!(n − 1)!

∞∑
j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn − β + 1

)+

+
e−ξy

y2tβ

∞∑
n=2

(
λξtβy

)n
(n − 2)!n!

∞∑
j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn − β + 1

)

= −ξe
−ξy

ytβ

∞∑
n=1

(
λξtβy

)n
((n − 1)!)2

∞∑
j=0

(
n + j − 1

)
!
(
−λtβ
)j

j!Γ
(
βj + βn − β + 1

)+

− ξe−ξy

ytβ

∞∑
n=1

(
λξtβy

)n
n!(n − 1)!

∞∑
j=1

(
n + j − 1

)
!
(
−λtβ
)j

(
j − 1
)
!Γ
(
βj + βn − β + 1

)+

+
e−ξy

y2tβ

∞∑
n=2

(
λξtβy

)n
(n − 2)!(n − 1)!

∞∑
j=0

(
n + j − 1

)
!
(
−λtβ
)j

j!Γ
(
βj + βn − β + 1

)+

+
e−ξy

y2tβ

∞∑
n=2

(
λξtβy

)n
(n − 2)!n!

∞∑
j=0

(
n + j − 1

)
!
(
−λtβ
)j

(
j − 1
)
!Γ
(
βj + βn − β + 1

) .

(2.8)

By inserting (2.8) in (2.5), the equation is satisfied. Finally, it can be easily verified that the
initial condition holds. In order to check the second condition in (2.6), we integrate fYβ with
respect to y:

∫∞
0

e−ξy

y

∞∑
n=1

(
λξtβy

)n
(n − 1)!

En+1
β,βn+1

(
−λtβ
)
dy =

∞∑
n=1

(
λξtβ
)n

(n − 1)!
(n − 1)!

ξn
En+1
β,βn+1

(
−λtβ
)
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=
∞∑
n=0

(
λtβ
)n

En+1
β,βn+1

(
−λtβ
)
− Eβ,1

(
−λtβ
)

= 1 − Eβ,1

(
−λtβ
)
,

(2.9)

where, in the last step, we have applied formula (2.30) of [21], for u = 1.

2.1.1. The Nonfractional Case β = 1

From (2.4), we obtain the distribution of the standard CPP, defined as Y (t) =
∑N(t)

n=1 Xj , under
the assumption of exponential jumps Xj , which reads

Pr
{
Y (t) ≤ y

}
= e−λt1[0,+∞)

(
y
)
+
∫y
−∞

fY (z, t)dz, t ≥ 0, y ∈ R, (2.10)

where

fY
(
y, t
)
=

e−ξy−λt

y

∞∑
n=1

(
λξty
)n

n!(n − 1)!
1[0,+∞)

(
y
)

= λξte−ξy−λtW1,2
(
λξty
)
1[0,+∞)

(
y
)
, t ≥ 0,

(2.11)

Wα,β(z) =
∞∑
j=0

zj

j!Γ
(
αj + β

) , α > −1, β, z ∈ C, (2.12)

is the Wright function. Equation (4.2.8) in [18] provides another expression of fY in terms of
the modified Bessel function. The density (2.11) satisfies the following equation:

ξ
∂

∂t
fY = −

[
λ +

∂

∂t

]
∂

∂y
fY , (2.13)

with conditions

fY
(
y, 0
)
= 0,

∫+∞
0

fY
(
y, t
)
dy = 1 − e−λt,

(2.14)

as can be easily verified directly.
Now we recall the following subordination law presented in [6] in a more general

setting:

Yβ(t)
d= Y
(
Lβ(t)

)
, (2.15)
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where Lβ(t), t ≥ 0 is the inverse stable subordinator defined by (1.2). We give an explicit
proof of (2.15), which will be useful to prove analogous results in the next sections. We start
with the evaluation of the Laplace transform (hereafter denoted by ·̃) of Yβ(t)with respect to
y: by considering the probability generating function of Nβ, that is,

EuNβ(t) = Eβ,1

(
−λtβ(1 − u)

)
, |u| ≤ 1, (2.16)

we get

g̃Yβ(k, t) := Ee−kYβ(t) = Eβ,1

(
− λk

k + ξ
tβ
)
. (2.17)

Formula (2.17), Laplace transformed with respect to t, gives

˜̃gYβ
(k, s) :=

∫+∞
0

e−stg̃Yβ(k, t)dt =
sβ−1(k + ξ)

sβ(k + ξ) + kλ
, (2.18)

which can be rewritten as

˜̃gYβ
(k, s) = sβ−1

∫+∞
0

e−s
βt

Ee−kY (t)dt

=
[
by (1.3)

]

=
∫+∞
0

Ee−kY (z) l̃β(z; s)dz,

(2.19)

where l̃β(z; s) :=
∫+∞
0 e−stlβ(z, t)dt. Thus, by inverting the double Laplace transform, we get

Pr
{
Yβ(t) ∈ dy

}
=
∫+∞
0

Pr
{
Y (z) ∈ dy

}
lβ(z, t)dz. (2.20)

Now it is also easy to derive (2.5), since we can write in particular from (2.20) that

fYβ

(
y, t
)
=
∫+∞
0

fY
(
y, z
)
lβ(z, t)dz (2.21)

and thus we get

∂β

∂tβ
fYβ

(
y, t
)
=
∫+∞
0

fY
(
y, z
) ∂β
∂tβ

lβ(z, t)dz

= −
∫+∞
0

fY
(
y, z
) ∂
∂z

lβ(z, t)dz.

(2.22)
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Indeed, it is well known that Lβ(t) is governed by the following equation:

∂β

∂tβ
lβ(z, t) = − ∂

∂z
lβ(z, t), lβ(z, 0) = δ(z), z, t ≥ 0. (2.23)

By integrating by parts and applying the initial condition, (2.22) becomes

∂β

∂tβ
fYβ

(
y, t
)
=
∫+∞
0

∂

∂z
fY
(
y, z
)
lβ(z, t)dz

=
[
by (2.13)

]

= −1
ξ

∂

∂y

∫+∞
0

∂

∂z
fY
(
y, z
)
lβ(z, t)dz − λ

ξ

∂

∂y

∫+∞
0

fY
(
y, z
)
lβ(z, t)dz

= −1
ξ

∂

∂y

∂β

∂tβ
fYβ

(
y, t
)
− λ

ξ

∂

∂y
fYβ

(
y, t
)
.

(2.24)

2.2. An Alternative Case

We consider now a different model of TFCPP, based on the alternative definition of FPP given
in [4], that is,

Pr
{
Nβ(t) = k

}
=

(
λtβ
)k

Γ
(
βk + 1

) 1
Eβ,1
(
λtβ
) , t, k ≥ 0. (2.25)

The process with the above state probabilities plays a crucial role in the evolution of some
random motions (see [22]) and can be considered as a fractional version of the Poisson
process because its probability generating function (displayed below) satisfies a fractional
equation (see formula (4.5) of [4]). The distribution (2.25) can be interpreted as a weighted
Poisson distribution (for the general concept of discrete weighted distribution see, e.g., [23],
page 90, and the references cited therein) and, as explained in [8], the weights that do not
depend on t; actually we have

Pr
{
Nβ(t) = k

}
=

wkpk
(
tβ
)

∑
j≥0 wjpj

(
tβ
) , t, k ≥ 0, (2.26)

where wj = j!/Γ(βj + 1), j = 0, 1, . . . (for all t) and pj(t) = ((λt)j/j!)e−λt, j = 0, 1, . . . are the
distribution of the standard Poisson processN with intensity λ. We also recall [24]where one
can find a sample path version of the weighted Poisson process.

We remark that the corresponding process is not Markovian, as Nβ, and moreover
is not a renewal. Nevertheless, it is, for some aspects, more similar to the standard Poisson
process N than Nβ. For example, the rate of the asymptotic behavior of its moments is the
same as for N.
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The moment generating function is given by

EeθNβ(t) =
Eβ,1
(
λtβeθ

)
Eβ,1
(
λtβ
) , (2.27)

so that we get

ENβ(t) =
λtβ

β

Eβ,β

(
λtβ
)

Eβ,1
(
λtβ
) . (2.28)

By applying the following asymptotic formula of the Mittag-Leffler function

Eβ,ν(z) �
1
β
z(1−ν)/β exp

{
z1/β
}
, as z −→ ∞, (2.29)

(see, for example, [25] or [26])we get

ENβ(t) �
1
β
λ1/βt, as t −→ ∞, (2.30)

while for Nβ the mean value behaves asymptotically as tβ.
We define the alternative TFCPP as

Yβ(t) =
Nβ(t)∑
j=1

Xj, t ≥ 0, β ∈ (0, 1], (2.31)

where again Xj ’s are i.i.d. with exponential distribution, independent from Nβ. Under this
assumption we obtain the following result on the distribution of Yβ.

Theorem 2.2. The process Yβ defined in (2.31), withXj, j = 1, 2, . . ., independent and exponentially
distributed with parameter ξ, has the following distribution:

Pr
{
Yβ(t) ≤ y

}
=

1
Eβ,1
(
λtβ
)1[0,+∞)

(
y
)
+
∫y
−∞

fYβ
(z, t)dz, t ≥ 0, y ∈ R, (2.32)

where

fYβ

(
y, t
)
=

λξtβe−ξy

Eβ,1
(
λtβ
)Wβ,β+1

(
λξtβy

)
1[0,+∞)

(
y
)
, t ≥ 0. (2.33)
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Proof. The density (2.33) can be obtained as follows:

fYβ

(
y, t
)
=

e−ξy

Eβ,1
(
λtβ
) ∞∑
n=1

(
λtβ
)n

Γ
(
βn + 1

) ξnyn−1

(n − 1)!

=
λξtβe−ξy

Eβ,1
(
λtβ
) ∞∑

l=0

(
λξtβ
)l

l!Γ
(
βl + β + 1

) .
(2.34)

Moreover, one can check that

∫∞
0
fYβ

(
y, t
)
dy = 1 − 1

Eβ,1
(
λtβ
) , (2.35)

and this completes the proof.

Remark 2.3. For β = 1, formula (2.33) reduces to (2.11). We note that, as happens for the
standard case, the density in (2.33) is expressed in terms of a singleWright function instead of
an infinite sum of generalized Mittag-Leffler functions (as for the process Yβ). Nevertheless,
the presence of a Mittag-Leffler in the denominator does not allow to evaluate the equation
satisfied by fYβ

.

2.2.1. Asymptotic Results

The analogy with the standard case is even more evident in the asymptotic behavior of the
rescaled version of (2.31). Under the assumption (1.9) for the r.v.’s X∗

j , we can prove that, as
h, r → 0, s.t. hα/r → 1 (not depending on β),

hY
∗
β

(
t

r

)
=

Nβ(t/r)∑
j=1

hX∗
j =⇒ Sβ

α(t), (2.36)

where Sβ
α is a symmetric α-stable Lévy process with μ = θ = 0 and σ =

((1/β)λ1/βt cos(πα/2))1/α. Indeed, the characteristic function of (2.36) can be written as

ĝhY ∗
β

(
κ,

t

r

)
= EeiκhY

∗
β(t/r) =

1
Eβ,1
(
λ
(
tβ/rβ

)) ∞∑
n=0

(
λ
(
tβ/rβ

)
f̂hX(κ)

)n
Γ
(
βn + 1

)

=
Eβ,1

(
λf̂hX(κ)

(
tβ/rβ

))

Eβ,1
(
λ
(
tβ/rβ

))

=
[
by the assumption (1.9)

]
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�
Eβ,1
(
λ
(
tβ/rβ

)
− λ
(
tβhα|κ|α/rβ

))
Eβ,1
(
λ
(
tβ/rβ

))

= [for (2.29)]

� exp

{
λ1/βt

r

[(
1 − hα|κ|α

)1/β − 1
]}

.

(2.37)

By considering the generalized binomial theorem, we get from (2.37) that

ĝhY ∗
β

(
κ,

t

r

)
� exp

⎧⎨
⎩

λ1/βt

r

∞∑
j=0

⎛
⎝1

β
j

⎞
⎠(−hα|κ|α

)j
⎫⎬
⎭

= exp

{
λ1/βt

r

[
1 − hα|κ|α

β
+ o(hα)

]}
.

(2.38)

Therefore, the limiting process is represented by the α-stable process Sβ
α with characteristic

function e−(1/β)λ
1/βt|κ|α , instead of the subordinated process Sα(Lβ(t)) obtained in the limit

when considering the FPPNβ; note that Sα(Lβ(t)) coincides withZ(t) in (1.10). It is clear that
the dependence on β is limited to the scale parameter; the space-fractional equation satisfied
by its density is therefore given by

∂u

∂t
=

λ1/β

β

∂αu

∂
∣∣y∣∣α , u

(
y, 0
)
= δ
(
y
)
, y ∈ R, t ≥ 0, (2.39)

instead of (1.12). For α = 1 the density of the limiting process reduces to a Cauchy with scale
parameter λ1/βt/β.

3. Space-Fractional Compound Poisson Process

We define now a space-fractional version of the compound Poisson process (which we will
indicate hereafter by SFCPP): indeed, its distribution satisfies (2.5), but with integer time
derivative and fractional space derivative. We consider the standard CPP

Y (α)(t) =
N(t)∑
j=1

X
(α)
j , α ∈ (0, 1], (3.1)

where, as usual, N(t), t > 0 is a standard Poisson process with parameter λ and the random
variables X(α)

j have the following heavy tail distribution:

fX(α) (x) = ξxα−1Eα,α(−ξxα), x > 0, α ∈ (0, 1] (3.2)
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for ξ > 0. The Laplace transform of (3.2) is f̃X(α) (k) = ξ/(kα + ξ). The distribution of X(α)
j given

in (3.2) is usually called Mittag-Leffler and coincides with the geometric-stable law of index
α (hereafter GSα) with parameters μ = 0, θ = 1, andσ = [cos(πα/2)/ξ]1/α (see [27]). The
density of

∑n
j=1 X

(α)
j is given by

f∗n
X(α)

(
y
)
= ξnyαn−1En

α,αn

(
−ξyα) (3.3)

with Laplace transform

f̃∗n
X(α) (k) =

ξn

(kα + ξ)n
. (3.4)

Note that (3.3) coincides with the density of the nth event waiting time for the fractional
Poisson processNα (see [21]). It is easy to check that the variableX(α)

j displays the asymptotic
behavior (1.13).

Theorem 3.1. The process Y (α) defined in (3.1), with X
(α)
j , j = 1, 2, . . ., independent and distributed

according to (3.2), has the following distribution:

Pr
{
Y (α)(t) ≤ y

}
= e−λt1[0,+∞)

(
y
)
+
∫y
−∞

fY (α) (z, t)dz, t ≥ 0, y ∈ R, (3.5)

where

fY (α)
(
y, t
)
=

e−λt

y

∞∑
n=1

(
ξλtyα

)n
n!

En
α,αn

(
−ξyα)1(0,+∞)

(
y
)
, t ≥ 0. (3.6)

The density (3.6) satisfies the following equation:

ξ
∂

∂t
fY (α) = −

[
λ +

∂

∂t

]
∂α

∂yα
fY (α) , t ≥ 0, y > 0, (3.7)

with conditions

fY (α)
(
y, 0
)
= 0,

∫+∞
0

fY (α)
(
y, t
)
dy = 1 − e−λt.

(3.8)

The following composition rule holds for the one-dimensional distribution of (3.1):

Y (α)(t) d= Aα(Y (t)), (3.9)

whereAα(t) is the stable subordinator defined in (1.1) and Y is the standard CPP.
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Proof. We start by noting that the absolutely continuous part of the distribution is defined
in (0,∞), with the exclusion of y = 0, where only the discrete component gives some
contribution.

In order to check (3.7) we evaluate the following fractional derivatives, arguing as in
the proof of Theorem 2.1:

∂

∂t
fY (α)
(
y, t
)
= −λe

−λt

y

∞∑
n=1

(
λξtyα

)n
(n − 1)!n!

∞∑
j=0

(
n + j − 1

)
!
(
−ξyα
)j

j!Γ
(
αj + αn

) +

+
e−λt

yt

∞∑
n=1

(
λξtyα

)n
((n − 1)!)2

∞∑
j=0

(
n + j − 1

)
!
(
−ξyα
)j

j!Γ
(
αj + αn

) ,

∂α

∂yα
fY (α)
(
y, t
)
=

e−λt

y1+α

∞∑
n=1

(
λξtyα

)n
n!(n − 1)!

∞∑
j=0

(
n + j − 1

)
!
(
−ξyα
)j

j!Γ
(
αj + αn − α

) ,

∂α

∂yα

∂

∂t
fY (α)
(
y, t
)
= − e−λt

y1+α

∞∑
n=2

(
λξtyα

)n
n!(n − 2)!

∞∑
j=0

(
n + j − 2

)
!
(
−ξyα
)j

j!Γ
(
αj + αn − α

) +

+
e−λt

y1+αt

∞∑
n=1

(
λξtyα

)n
((n − 1)!)2

∞∑
j=1

(
n + j − 2

)
!
(
−ξyα
)j

(
j − 1
)
!Γ
(
αj + αn − α

)+

+
e−λt

y1+αt

∞∑
n=2

(
λξtyα

)n
(n − 1)!(n − 2)!

∞∑
j=0

(
n + j − 2

)
!
(
−ξyα
)j

j!Γ
(
αj + αn − α

) +

+
e−λt

y1+α

∞∑
n=1

(
λξtyα

)n
n!(n − 1)!

∞∑
j=1

(
n + j − 2

)
!
(
−ξyα
)j

(
j − 1
)
!Γ
(
αj + αn − α

) .

(3.10)

The initial condition is immediately satisfied by (3.6), while the second condition in (3.8) can
be verified as follows:

∫∞
0
e−kyfY (α)

(
y, t
)
dy = e−λt

∞∑
n=1

(ξλt)n

n!kαn

∞∑
j=0

(
n + j − 1

)
!

j!kαj

= e−λt
∞∑
n=1

1
n!

(
ξλt

kα + ξ

)n

= e−λt
(
eλtξ/(k

α+ξ) − 1
)
,

(3.11)

which, for k = 0, becomes 1 − e−λt. The composition rule given in (3.9) can be verified by
taking the Laplace transform of Y (α),

g̃Y (α) (k, t) := Ee−kY
(α)(t) = e−(λk

α/(kα+ξ))t, (3.12)
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which Laplace transformed with respect to t gets

˜̃gY (α) (k, s) :=
∫∞
0
e−stg̃Y (α) (k, t)dt =

kα + ξ

kα(λ + s) + sξ
=
∫+∞
0

Ee−k
αY (z)e−szdz. (3.13)

Thus,

g̃Y (α) (k, t) = Ee−k
αY (t) =

∫+∞
0

e−k
αvPr{Y (t) ∈ dv}, (3.14)

so that, by (1.1), we get

Pr
{
Y (α)(t) ∈ dy

}
=
∫+∞
0

hα

(
y, v
)
Pr{Y (t) ∈ dv}dy, (3.15)

and formula (3.9) follows.

Remark 3.2. Equation (3.15) yields an alternative proof of (3.7) noting that the density ofAλ,ξ
α

satisfies the following equation (where the space-fractional derivative is defined now in the
Caputo sense):

∂u

∂t
= −∂

αu

∂yα
, u

(
y, 0
)
= δ
(
y
)
, y, t ≥ 0. (3.16)

Indeed, we get

∂α

∂yα
fY (α)
(
y, t
)
=
∫+∞
0

∂α

∂yα
hα

(
y, v
)
fY (v, t)dv

= −
∫+∞
0

∂

∂v
hα

(
y, v
)
fY (v, t)dv

=
∫+∞
0

hα

(
y, v
) ∂

∂v
fY (v, t)dv

=
[
by (2.5)

]

= − ξ

λ

∂

∂t

∫+∞
0

hα

(
y, v
)
fY (v, t)dv − 1

λ

∂

∂t

∫+∞
0

hα

(
y, v
) ∂

∂v
fY (v, t)dv

= − ξ

λ

∂

∂t
fY (α)
(
y, t
)
− 1
λ

∂

∂t

∂α

∂yα
fY(α)
(
y, t
)
.

(3.17)

By considering (3.9) together with (1.2), we can write the following relationship:

FY (α)(t)(z) = Pr
{
Y (α)(t) ≤ z

}
= Pr{Aα(Y (t)) ≤ z} = Pr{Y (t) ≥ Lα(z)}, (3.18)

while for the first version of TFCPP we had, from (2.15), that FYβ(t)(z) = Pr{Y (Lβ(t)) ≤ z}.
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We finally note that the process Y (α) is still a Markovian and Lévy process, since it is
substantially a special case of CPP.

3.1. Special Cases

For α = 1, since theXj ’s reduce to exponential r.v.’s, from (3.6) and (3.7)we retrieve the results
(2.11) and (2.13) valid for the standard CPP, under the exponential assumption for Xj ’s. As
a direct check of (3.9), we can consider the special case α = 1/2, so that the law h1/2(·, z) can
be written explicitly as the density of the first passage time of a standard Brownian motion
through the level z > 0. Then by considering (3.15)we can write

Pr
{
Y1/2(t) ∈ dy

}
=
∫+∞
0

h1/2
(
y, v
)
fY (v, t)dv dy

=
∫+∞
0

ze−z
2/2y√

2πy3

e−ξz−λt

z

∞∑
n=1

(λξtz)n

n!(n − 1)!
dzdy

=
e−λt

y

∞∑
n=1

(λξt)n

n!(n − 1)!
(−1)n dn

dξn

∫+∞
0

e−z
2/2y√
2πy

e−ξzdz dy

=
e−λt

2y

∞∑
n=1

(λξt)n

n!(n − 1)!
(−1)n dn

dξn
E1/2,1

(
−ξy1/2

)
dy,

(3.19)

where the last equality holds by (2.11)-(2.12) in [28]; then, by (1.10.3) in [12], we get

Pr
{
Y1/2(t) ∈ dy

}
=

e−λt

2y

∞∑
n=1

(λξt)n

(n − 1)!
yn/2

n!

∞∑
j=0

(
n + j
)
!
(
−ξy1/2)j

j!Γ
(
j/2 + n/2 + 1

)dy

=
e−λt

y

∞∑
n=1

(
λξty1/2)n

n!
En
1/2,n/2

(
−ξy1/2

)
dy.

(3.20)

3.2. Asymptotic Results

We study now the asymptotic behavior of the rescaled version of Y (α) defined as

hY (α)
(
t

r

)
=

N(t/r)∑
j=1

hX
(α)
j , (3.21)

for h, r → 0. The Fourier transform of the r.v.’s, X(α)
j , for any α ∈ (0, 1), is given by

f̂X(α) (κ) =
1

1 + (1/ξ) cos(πα/2)|κ|α
(
1 − i sgn(κ) tan(πα/2)

) (3.22)
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(see [27], formula (2.4.1)), which, in the limit, behaves as

f̂X(α) (hκ) � 1 −Ahα|κ|α, h −→ 0, (3.23)

whereA = (1/ξ) cos(πα/2)(1− i sgn(κ) tan(πα/2)). Thus, the characteristic function of (3.21)
can be written as

ĝhY (α)

(
κ,

t

r

)
= eλ(t/r)[f̂X(α) (hκ)−1]

� e−(λt/ξ) cos(πα/2)|κ|
α(1−i sgn(κ) tan(πα/2)), α ∈ (0, 1),

(3.24)

for h, r → 0, s.t. hα/r → 1. We can conclude that

hY (α)
(
t

r

)
=⇒ Aλ,ξ

α (t), (3.25)

where the limiting process is represented, in this case, by an α-stable subordinator Aλ,ξ
α (t)

with parameters μ = 0, θ = 1, σ = ((λt/ξ) cosπα/2)1/α, whose density satisfies

∂u

∂t
= −λ

ξ

∂αu

∂yα
, u

(
y, 0
)
= δ
(
y
)
, y > 0, t > 0. (3.26)

4. Compound Poisson Processes Fractional in Time and Space

We consider now together the results obtained in the previous sections, by defining a CPP
fractional both in space and time (STFCPP), that is,

Y
(α)
β (t) =

Nβ(t)∑
j=1

X
(α)
j , t > 0, (4.1)

where X(α)
j ’s are i.i.d. with density (3.2) and Nβ(t), t > 0 is again the FPP.

Theorem 4.1. The process Y (α)
β

(t), t > 0, defined in (4.1) has the following distribution:

Pr
{
Y

(α)
β (t) ≤ y

}
= Eβ,1

(
−λtβ
)
1[0,+∞)

(
y
)
+
∫y
−∞

f
Y

(α)
β
(z, t)dz, t ≥ 0, y ∈ R, (4.2)

where

f
Y

(α)
β

(
y, t
)
=

1
y

∞∑
n=1

(
λξtβyα

)n
En+1
β,βn+1

(
−λtβ
)
En
α,αn

(
−ξyα)1(0,+∞)

(
y
)
, t ≥ 0. (4.3)
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The density f
Y

(α)
β

solves the following equation:

ξ
∂β

∂tβ
fYαβ = −

[
λ +

∂β

∂tβ

]
∂α

∂yα
f
Y

(α)
β
, t ≥ 0, y > 0, (4.4)

with conditions
f
Y

(α)
β

(
y, 0
)
= 0,

∫+∞
0

f
Y

(α)
β

(
y, t
)
dy = 1 − Eβ,1

(
−λtβ
)
.

(4.5)

The following equality of the one-dimensional distributions holds:

Y
(α)
β (t) d= Sα

(
Yβ(t)

)
. (4.6)

Proof. In order to check (4.4) we evaluate the following fractional derivatives:

∂

∂tβ
f
Y

(α)
β

(
y, t
)
=

1
ytβ

∞∑
n=1

(
λξtβyα

)n
(n − 1)!n!

⎛
⎝ ∞∑

j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn − β + 1

)
⎞
⎠
(

∞∑
r=0

(n + r − 1)!
(
−ξyα
)r

r!Γ(αr + αn)

)
,

∂α

∂yα
f
Y

(α)
β

(
y, t
)
=

1
y1+α

∞∑
n=1

(
λξtβyα

)n
n!(n − 1)!

⎛
⎝ ∞∑

j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn + 1

)
⎞
⎠
(

∞∑
r=0

(n + r − 1)!
(
−ξyα
)r

r!Γ(αr + αn − α)

)
,

∂α

∂yα

∂

∂tβ
f
Y

(α)
β

(
y, t
)
=

1
y1+αtβ

∞∑
n=1

(
λξtβyα

)n
n!(n − 1)!

⎛
⎝ ∞∑

j=0

(
n + j
)
!
(
−λtβ
)j

j!Γ
(
βj + βn − β + 1

)
⎞
⎠

×
(

∞∑
r=0

(n + r − 1)!
(
−ξyα
)r

r!Γ(αr + αn − α)

)
.

(4.7)

By some algebraic manipulations we finally get (4.4). While the initial condition is trivially
satisfied, the second condition in (4.5) can be checked as follows:∫∞

0
e−kyf

Y
(α)
β

(
y, t
)
dy =

∞∑
n=1

(
λξtβ
)n

kαn
En+1
β,βn+1

(
−λtβ
) ∞∑
r=0

(
n + r − 1

r

)(
− ξ

kα

)r

=
∞∑
n=1

(
λξtβ

kα + ξ

)n

En+1
β,βn+1

(
−λtβ
)

=
[
by (2.30) of [21]

]

= Eβ,1

(
−λξt

βkα

kα + ξ

)
− Eβ,1

(
−λtβ
)
,

(4.8)

which, for k = 0, becomes 1 − Eβ,1(−λtβ).
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The relationship (4.6) can be checked by evaluating the double Laplace transform of
Y

(α)
β as follows:

˜̃g
Y

(α)
β
(k, s) =

∫+∞
0

Ee
−kY (α)

β
(t)
e−stdt =

sβ−1(kα + ξ)
sβ(kα + ξ) + λkα

. (4.9)

We then rewrite formula (4.9) as

˜̃g
Y

(α)
β
(k, s) = sβ−1

∫+∞
0

e−s
βz

Ee−k
αY (z)dz (4.10)

and we follow the same lines which lead to (2.15) to get the conclusion.

Remark 4.2. For α = 1 formulae (4.3) and (4.4) coincidewith (2.4) and (2.5), while for α = β = 1
we get (3.6) and (3.7).

From (4.6), by considering (1.2), we get the following relation:

F
Y

(α)
β

(t)(z) = Pr
{
Y

(α)
β (t) ≤ z

}
= Pr
{
Sα

(
Yβ(t)

)
≤ z
}
= Pr
{
Yβ(t) ≥ Lα(z)

}
, (4.11)

where Lα is the inverse stable subordinator.

4.1. Asymptotic Results

For the rescaled version of Y (α)
β we obtain the following asymptotic result, which agrees with

(1.14) and (1.15) proved in [17]: the characteristic function of the process

hY
(α)
β

(
t

r

)
=

Nβ(t/r)∑
j=1

hX
(α)
j (4.12)

can be written as

ĝ
hY

(α)
β

(
κ,

t

r

)
= Eβ,1

(
λ
tβ

rβ

[
f̂hX(α) (κ) − 1

])
. (4.13)

By applying formula (3.23) we conclude that (4.13) converges, for h, r → 0 s.t. hα/rβ → 1,
to

Eβ,1

(
−λt

β

ξ
|κ|α cos πα

2

(
1 − i sgn(κ) tan

πα

2

))
(4.14)
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so that the process hY
(α)
β (t/r) converges weakly to the α-stable subordinator Aλ,ξ

α (t),
composed with the inverse β-stable subordinator Lβ. Indeed, the characteristic function of
Aλ,ξ

α (Lβ(t)) can be evaluated as follows:

∫+∞
0

e−stf̂Aλ,ξ
α (Lβ)

(κ, t)dt =
∫+∞
0

e−stdt

∫+∞
0

eiκydy

∫+∞
0

p
λ,ξ
α

(
y; z
)
lβ(z, t)dz

= sβ−1
∫+∞
0

e−zλ|κ|
αAe−zs

β

dz

=
sβ−1

λ|κ|αA + sβ
,

(4.15)

where h
λ,ξ
α (y, z) is the law of Aλ,ξ

α (z) and A = (1/ξ) cos(πα/2)(1 − i sgn(κ) tan(πα/2)). By
inverting the Laplace transform in (4.15) we get (4.14). The density of Aλ,ξ

α (Lβ(t)) satisfies
the following equation:

∂βu

∂tβ
= −λ

ξ

∂αu

∂yα
, y, t > 0, (4.16)

as can be easily seen from (4.15) (see also [29]). A relevant special case of this result can be
obtained by taking α = β = ν, so that the composition Aλ,ξ

ν (Lν(t)) is proved to display a
Lamperti-type law (see on this topic [30, 31]); therefore, the latter can be seen as the weak
limit of the STFCPP.

We note that in the particular case β = 1, the Fourier transform (4.14) reduces to (3.24)
and correspondingly (4.16) coincides with (3.26).

Finally, we consider the case where we have Nβ(t) in place of Nβ(t). If the jumps are
Mittag-Leffler distributed, we get the following space-time fractional CPP:

Yα,β(t) =
Nβ(t)∑
j=1

X
(α)
j , (4.17)

whose distribution is given by

Pr
{
Yα,β ≤ y

}
=

1
Eβ,1
(
−λtβ
)1[0,+∞)

(
y
)
+
∫y
−∞

fYα,β
(z, t)dz, t ≥ 0, y ∈ R, (4.18)

where

fYα,β

(
y, t
)
=

1
Eβ,1
(
λtβ
) ∞∑
n=1

(
λξtβyα

)n
Γ
(
βn + 1

)En
α,αn

(
−ξyα)1[0,+∞)

(
y
)
, t ≥ 0. (4.19)
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The rescaled version of (4.17) is defined as

hYα,β

(
t

r

)
=

Nβ(t/r)∑
j=1

hX
(α)
j =⇒ Aλ,ξ

α (t) (4.20)

for h, r → 0, s.t. hα/r → 1, where again Aλ,ξ
α denotes the α-stable subordinator with

characteristic function given in (3.24) (last line). Thus, in the limit, the fractional nature of
the counting process Nβ does not exert any influence, in analogy with the result given in
(3.25).

5. Fractional-Difference Compound Poisson Process

We present now a final version of the fractional CPP, where the fractionality of the counting
process is referred to the difference operator involved in the recursive equation governing
its distribution. Let B denote the standard backward shift operator, Δ = 1 − B, and let γ be a
fractional parameter in (0, 1], then the fractional recursive differential equation

d

dt
pΔk (t) = −λγΔγpΔk (t), pΔk (0) = 1[k=0], (5.1)

has been introduced in [9]. In (5.1) the following definition of the fractional difference
operator Δγ of a function f(n) has been used (see [12], formula (2.8.2), page121):

Δγf(n) =
∞∑
j=0

(−1)j
(
γ
)
j

j!
f
(
n − j
)
, (5.2)

where (x)n = x(x − 1) · · · (x − (n − 1)) is the falling factorial. We use the notation pΔ
k
(t) :=

Pr{NΔ(t) = k}, k ≥ 0, t > 0, and we have

pΔk (t) =
(−1)k

k!

∞∑
r=0

(−λγ t)r

r!
(
γr
)
k, γ ∈ (0, 1]. (5.3)

It can be proved thatNΔ is not a renewal process, by verifying that the density of the kth event
waiting time cannot be expressed as kth convolution of i.i.d. random variables. Nevertheless,
NΔ(t) is a Lévy process, with infinite expected value for any t. Moreover, by (5.3), one can
check that (as h → 0)

Pr{NΔ(h) = k} = (−1)k+1
λγ
(
γ
)
k

k!
h + o(h), ∀k ≥ 1 (5.4)

instead of o(h) for k ≥ 2, as for the standard or the time-fractional Poisson process. We
can obtain (5.1) from (5.4) by taking into account that the increments are independent and
stationary.
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Let us define the corresponding fractional-difference compound Poisson process
(hereafter ΔFCPP) as

YΔ(t) =
NΔ(t)∑
j=1

Xj, t ≥ 0, γ ∈ (0, 1] (5.5)

so that we can obtain, under the assumption of i.i.d. exponential Xj ’s, the distribution of
YΔ together with the differential equation which is satisfied by its absolutely continuous
component.

Theorem 5.1. For γ ∈ (0, 1], the distribution of the process YΔ defined in (5.5), withXj, j = 1, 2, . . .,
independent and exponentially distributed with parameter ξ, is given by

Pr
{
YΔ(t) < y

}
= e−λ

γ t1[0,+∞)
(
y
)
+
∫y
0
fYΔ(z, t)dz, t, y ≥ 0, (5.6)

where

fYΔ

(
y, t
)
=

e−ξy

y

∞∑
n=1

(
−ξy
)n

n!(n − 1)!

∞∑
r=0

(−λγ t)r

r!
(
γr
)
n1[0,+∞)

(
y
)
, t ≥ 0. (5.7)

The density fYΔ solves the differential equation:

ξD
1/γ
−,t fYΔ =

[
λ −D

1/γ
−,t

] ∂
∂y

fYΔ , (5.8)

where D
1/γ
0−; t is the right-sided fractional Riemann-Liouville derivative on the half-axis R

+, with
conditions

fYΔ

(
y, 0
)
= 0,

Dr
−,tfYΔ

(
y, t
)∣∣∣

t=0
= Φr

(
y
)
,

∫+∞
0

fYΔ

(
y, t
)
dy = 1 − e−λ

γ t,

(5.9)

where Φr(y) = (λγre−ξy/y)
∑∞

n=1((−ξy)
n(γr)n/n!(n − 1)!).

The following subordinating relationship holds for (5.5):

YΔ(t)
d= Y
(
Aγ(t)

)
, (5.10)

where, as usual,Aγ denotes the γ-stable subordinator.



Abstract and Applied Analysis 23

Proof. Formula (5.7) can be easily derived by (5.3) and can be checked by verifying that, for
γ = 1, it reduces to (2.11):

fYΔ(y, t)
∣∣
γ=1 =

e−ξy

y

∞∑
n=1

(
−ξy
)n

n!(n − 1)!

∞∑
r=n

(−λt)r

r!
(r)n

=
e−ξy

y

∞∑
n=1

(
−ξy
)n

n!(n − 1)!
(−λt)ne−λt.

(5.11)

We now prove the relationship (5.10) as follows. The Laplace transform of YΔ(t) is given by

g̃YΔ(k, t) = Ee−kYΔ(t) =
∞∑
n=0

(−ξ)n

n!
1

(k + ξ)n
∞∑
r=0

(−λγ t)r

r!
(
γr
)
n

=
∞∑
r=0

(−λγ t)r

r!

∞∑
n=0

(
γr
)
n

n!

(
− ξ

k + ξ

)n

=
∞∑
r=0

(−λγ t)r

r!

(
1 − ξ

k + ξ

)γr

= e−λ
γkγ t/(k+ξ)γ ;

(5.12)

moreover, (5.12) can be rewritten as

g̃YΔ(k, t) =
∫+∞
0

e−λzeλξz/(k+ξ)hγ(z, t)dz

=
∞∑
n=0

(λξ)n

n!(ξ + k)n

∫+∞
0

zne−λzhγ(z, t)dz

=
∫+∞
0

Ee−kY (z)hγ(z, t)dz,

(5.13)

which gives (5.10). Thus, we also have that

fYΔ

(
y, t
)
=
∫+∞
0

fY
(
y, z
)
hγ(z, t)dz. (5.14)

In order to prove that (5.7) satisfies (5.8), we recall the following result proved in [32]: the
density hν/n(y, t) of the stable subordinator Aν/n is governed by the following equation (as
well as by (3.16) for α = ν/n):

Dn
−,thν/n =

∂ν

∂yν
hν/n, y, t ≥ 0, ν ∈ (0, 1], (5.15)
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for n ∈ N, with conditions

hν/n(0, t) = 0,

hν/n

(
y, 0
)
= δ
(
y
)
,

Dr
−,thν/n(y, t)

∣∣∣
t=0

=
y−(νr/n)−1

Γ(−rν/n) , r = 1, . . . , n − 1.

(5.16)

We can prove that the slightly different result holds:

D
1/γ
−,t hγ =

∂

∂y
hγ , y, t ≥ 0, γ ∈ (0, 1], n =

⌊
1
γ

⌋
+ 1 (5.17)

with the following conditions

hγ(0, t) = 0,

hγ

(
y, 0
)
= δ
(
y
)
,

Dr
−,thγ(y, t)

∣∣∣
t=0

=
y−γr−1

Γ
(
−γr
) , r = 1, . . . , n − 1.

(5.18)

Equation (5.17) can be checked by resorting to the Laplace transform with respect to y as
follows:

D
1/γ
−,t h̃γ(k, t) = D

1/γ
−,t e

−kγ t

=
[
by (2.2.15) of [12]

]

= ke−k
γ t

=
∫+∞
0

e−ky
∂

∂y
hγ

(
y, t
)
dy.

(5.19)

Analogously, we can check (5.18): in particular we get

Dr
−,th̃γ(k, t)

∣∣∣
t=0

= (−1)r ∂
r

∂tr
h̃γ(k, t)

∣∣∣∣
t=0

= kγr

=
∫+∞
0

e−ky
y−γr−1

Γ
(
−γr
)dy.

(5.20)
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We now take the derivative of (5.14) of order 1/γ with respect to t:

D
1/γ
−,t fYΔ

(
y, t
)
=
∫+∞
0

fY
(
y, z
)
D

1/γ
−,t hγ(z, t)dz

=
∫+∞
0

fY
(
y, z
) ∂
∂z

hγ(z, t)dz

=
[
by considering (2.11)

]

= −
∫+∞
0

∂

∂z
fY
(
y, z
)
hγ(z, t)dz

=
1
ξ

∂

∂y

∫+∞
0

∂

∂z
fY
(
y, z
)
hγ(z, t)dz +

λ

ξ

∂

∂y
fYΔ

(
y, t
)

= −1
ξ

∂

∂y
D

1/γ
−,t fYΔ

(
y, t
)
+
λ

ξ

∂

∂y
fYΔ

(
y, t
)
.

(5.21)

We remark that, for γ = 1, D1/γ
−,t fYΔ = −∂fYΔ/∂t, and therefore the previous equation reduces

to (2.13). Finally, we have to check (5.9): the first initial condition is trivially satisfied, while
the second condition can be checked either directly by taking the derivatives of (5.7) or by
noting that

Dr
−,tfYΔ

(
y, t
)
=
∫+∞
0

fY
(
y, z
)
Dr

−,thγ(z, t)dz

=
[
by (5.18)

]

=
e−ξy

y

∞∑
n=1

(
λξy
)n

n!(n − 1)!

∫+∞
0

e−λz
zn−rγ−1

Γ
(
−rγ
)dz

=
λγne−ξy

y

∞∑
n=1

(
ξy
)n

n!(n − 1)!
Γ
(
n − rγ

)
Γ
(
−rγ
)

=
λγne−ξy

y

∞∑
n=1

(
ξy
)n

n!(n − 1)!
(
−γr
)(n)

=
λγne−ξy

y

∞∑
n=1

(
−ξy
)n

n!(n − 1)!
(
γr
)
n,

(5.22)

where, in the last step, we have applied the following relationship between falling and rising
factorial (x)n = (−1)n(x)(n). The last condition in (5.9) holds, since g̃YΔ(0, t) = 1 by (5.12), so
that f̃YΔ(0, t) = g̃YΔ(0, t) − e−λ

γ t = 1 − e−λ
γ t.
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Remark 5.2. We show that the distribution of theΔFCPP satisfies a fractional master equation
of order 1/γ greater than one, when the jumps have an arbitrary continuous density fX . If we
consider the (generalized) density function of YΔ(t),

gYΔ

(
y, t
)
:= e−λ

γ tδ
(
y
)
+ fYΔ

(
y, t
)
, y, t ≥ 0, (5.23)

then we get

D
1/γ
−,t gYΔ

(
y, t
)
= λgYΔ

(
y, t
)
− λ

∫+∞
−∞

gYΔ

(
y − x, t

)
fX(x)dx, (5.24)

which is analogue to (1.6) for the TFCPP Yβ. Indeed, by (5.10), we can write (5.23) as

gYΔ

(
y, t
)
=
∫+∞
0

gY
(
y, z
)
hγ(z, t)dz, (5.25)

where gY (y, t) = e−λtδ(y)+fY (y, t) and fY (y, t) are the density of the standard CPP. By taking
the fractional time-derivative of (5.25)we get

D
1/γ
−,t fYΔ

(
y, t
)
=
∫+∞
0

gY
(
y, z
)
D

1/γ
−,t hγ(z, t)dz

=
[
by (5.17)

]

=
∫+∞
0

gY
(
y, z
) ∂
∂z

hγ(z, t)dz

=
[
by (5.18)

]

= −
∫+∞
0

∂

∂z
gY
(
y, z
)
hγ(z, t)dz

=
[
by the Kolmogorov master equation

]

= λ

∫+∞
0

gY
(
y, z
)
hγ(z, t)dz − λ

∫+∞
−∞

fX(x)
∫+∞
0

gY
(
y − x, z

)
hγ(z, t)dzdx,

(5.26)

which coincides with (5.24). For γ = 1 (5.24) reduces to the well-known master equation of
the standard CPP, by considering again that D1/γ

−,t fYΔ = −∂fYΔ/∂t.
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5.1. Asymptotic Results

We study the asymptotic behavior of the rescaled version of (5.5) under the two alternative
assumptions on the r.v.’s representing the jumps: forX∗

j distributed according to (1.9) and for

X
(α)
j with density (3.2). In the first case, we have that

hYΔ

(
t

r

)
=

NΔ(t/r)∑
j=1

hX∗
j =⇒ Sαγ(t) (5.27)

for h, r → 0, s.t. hαγ/r → 1, where Sαγ(t) is a symmetric stable process of index αγ (which
is strictly less than one) and parameters μ = 0, θ = 0, and σ = (t cosπαγ/2)1/αγ . Indeed,
the characteristic function of (5.27) can be evaluated, by considering that the probability
generating function of NΔ is G(u, t) = e−λ

γ t(1−u)γ (see [9]) as follows:

f̂hYΔ

(
κ,

t

r

)
= e−(λ

γ t/r)(1−f̂hX∗ (κ))
γ

� e−λ
γ t|κ|αγ .

(5.28)

Under the assumption ofMittag-Leffler distributedX
(α)
j ’s, we get instead the following result:

the rescaled process

hY
(α)
Δ

(
t

r

)
=

NΔ(t/r)∑
j=1

hX
(α)
j =⇒ Aλ,ξ

αγ (t) (5.29)

can be written as

f̂
hY

(α)
Δ

(
κ,

t

r

)
� exp

{
−λ

γ t

ξγ r

(
cos

πα

2

)γ
hαγ |κ|αγ

(
1 − i sgn(κ) tan

πα

2

)γ}

� exp
{
−λ

γ t

ξγ
|κ|αγ exp

{
−i sgn(κ)

παγ

2

}}
,

(5.30)

for h, r → 0, s.t. hαγ/r → 1. The last line of (5.30) corresponds to the Fourier transform
of a stable subordinator Aλ,ξ

αγ of index αγ and with parameters μ = 0, θ = 1, and
σ = ((λγ t/ξγ) cosπαγ/2)1/αγ . Therefore, in both cases, the limiting processes are simply the
stable symmetric process and the stable subordinator of index αγ , respectively, instead of
their compositions with the inverse stable subordinator as happened when Nβ was used as
counting process.
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Table 1: Main results in finite domain.

Process Equation

CPP Y (t) ξ
∂

∂t
= −
[
λ +

∂

∂t

]
∂

∂y

TFCPP Yβ(t)
d= Y (Lβ(t)) ξ

∂β

∂tβ
= −
[
λ +

∂β

∂tβ

]
∂

∂y

SFCPP Y (α)(t) d= Sα(Y (t)) ξ
∂

∂t
= −
[
λ +

∂

∂t

]
∂α

∂yα

STFCPP Y
(α)
β

(t) d= Sα(Yβ(t)) ξ
∂β

∂tβ
= −
[
λ +

∂β

∂tβ

]
∂α

∂yα

ΔFCPP YΔ(t)
d= Y (Aγ (t)) ξD

1/γ
−,t =

[
λ −D

1/γ
−,t

] ∂
∂y

Table 2: Main results in asymptotic domain.

Process Hypothesis on jumps Limiting process Limiting equation

TFCPP Yβ X∗
j Sα(Lβ(t))

∂βu

∂tβ
= λ

∂αu

∂|y|α

” X
(α)
j Aα(Lβ(t))

∂βu

∂tβ
= −λ∂

αu

∂yα

Altern. TFCPP Yβ X∗
j Sβ

α(t)
∂u

∂t
=

λ1/β

β

∂αu

∂|y|α

” X
(α)
j Aλ,ξ

α (t)
∂u

∂t
= −λ

ξ

∂αu

∂yα

ΔFCPP YΔ X∗
j Sαγ (t)

∂u

∂t
= λγ

∂αγu

∂|y|αγ

” X
(α)
j Aλ,ξ

αγ (t)
∂u

∂t
= −λ

γ

ξ

∂αγu

∂yαγ

Acronym

CPP: Compound Poisson process
TFCPP: Time-fractional compound Poisson process
SFCPP: Space-fractional compound Poisson process
STFCPP: Space-time fractional compound Poisson process
ΔFCPP: Fractional-difference compound Poisson process.
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