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We consider the numerical solution of a time-fractional heat equation, which is obtained from
the standard diffusion equation by replacing the first-order time derivative with Riemann-Liouville
fractional derivative of order α, where 0 < α < 1. The main purpose of this work is to extend the
idea on Crank-Nicholsonmethod to the time-fractional heat equations.We prove that the proposed
method is unconditionally stable, and the numerical solution converges to the exact one with the
order O(τ2 + h2). Numerical experiments are carried out to support the theoretical claims.

1. Introduction

Fractional calculus is one of the most popular subjects in many scientific areas for decades.
Many problems in applied science, physics and engineering are modeled mathematically by
the fractional partial differential equations (FPDEs). We can see these models adoption in
viscoelasticity [1, 2], finance [3, 4], hydrology [5, 6], engineering [7, 8], and control systems
[9–11]. FPDEs may be investigated into two fundamental types: time-fractional differential
equations and space-fractional differential equations.

Several different methods have been used for solving FPDEs. For the analytical
solutions to problems, some methods have been proposed: the variational iteration method
[12, 13], the Adomian decomposition method [13–16], as well as the Laplace transform and
Fourier transform methods [17, 18].

On the other hand, numerical methods which based on a finite-difference approxima-
tion to the fractional derivative, for solving FDPEs [19–24], have been proposed. A practical
numerical method for solving multidimensional fractional partial differential equations,
using a variation on the classical alternating-directions implicit (ADI) Euler method,
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is presented in [25]. Many finite-difference approximations for the FPDEs are only first-
order accurate. Some second-order accurate numerical approximations for the space-fractional
differential equations were presented in [26–28]. Here, we propose a Crank-Nicholson-type
method for time-fractional differential heat equations with the accuracy of order O(τ2 + h2).

In this work, we consider the following time-fractional heat equation:

∂αMu(t, x)
∂tα

=
∂2u(t, x)

∂x2
+ f(t, x), (0 < x < 1, 0 < t < 1),

u(0, x) = r(x), 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, 0 ≤ t ≤ 1.

(1.1)

Here, the term ∂αMu(t, x)/∂tα denotes α-order-modified Riemann-Liouville fractional deriva-
tive [29] given with the formula:

∂αMu(t, x)
∂tα

=

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ(1 − α)

∂

∂t

∫ t

0

u(s, x) − u(0, x)
(t − s)α

ds, if 0 < α < 1,

∂

∂t
u(t, x), if α = 1,

(1.2)

where Γ(·) is the Gamma function.

Remark 1.1. If r(x) = 0, then the Riemann-Liouville and the modified Riemann-Liouville
fractional derivatives are identical, since the Riemann-Liouville derivative is given by the
following formula:

∂αu(t, x)
∂tα

=

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ(1 − α)

∂

∂t

∫ t

0

u(s, x)
(t − s)α

ds, if 0 < α < 1,

∂

∂t
u(t, x), if α = 1.

(1.3)

If r(x) is nonzero, then there are some problems about the existence of the solutions for the
heat equation (1.1). To rectify the situation, two main approaches can be used: the modified
Riemann-Liouville fractional derivative can be used [29] or the initial condition should be
modified [30]. We chose the first approach in our work.

2. Discretization of the Problem

In this section, we introduce the basic ideas for the numerical solution of the time-fractional
heat equation (1.1) by Crank-Nicholson difference scheme.

For some positive integers M and N, the grid sizes in space and time for the finite-
difference algorithm are defined by h = 1/M and τ = 1/N, respectively. The grid points in
the space interval [0, 1] are the numbers xi = ih, i = 0, 1, 2, . . . ,M, and the grid points in the
time interval [0, 1] are labeled tn = nτ , n = 0, 1, 2, . . . ,N. The values of the functions U and f
at the grid points are denoted Un

i = U(tn, xi) and fn
i = f(tn, xi), respectively.
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As in the classical Crank-Nicholson difference scheme, we will obtain a discrete
approximation to the fractional derivative ∂αU(t, x)/∂tα at (tn+(1/2), xi). Let

H(t, x) =
1

Γ(1 − α)

∫ t

0

u(s, x) − u(0, x)
(t − s)α

ds. (2.1)

Then, we have

∂αU(tn+1/2, xi)
∂tα

=
∂

∂t
H(tn+1/2, xi) =

H(tn+1, xi) −H(tn, xi)
τ

+O
(
τ2
)
. (2.2)

Now, we will find the approximations for H(tn+1, xi) and H(tn, xi):

H(tn+1, xi) =
1

Γ(1 − α)

∫ tn+1

0

u(s, xi) − u(0, xi)
(tn+1 − s)α

ds

=
1

Γ(1 − α)

n+1∑

j=1

∫ jτ

(j−1)τ

u(s, xi)
(tn+1 − s)α

ds − u(0, xi)
((n + 1)τ)1−α

Γ(2 − α)

=
1

Γ(1 − α)

n+1∑

j=1

∫ jτ

(j−1)τ

[(
s − tj

)

−τ U
j−1
i +

(
s − tj−1

)

τ
U

j

i +O
(
τ2
)
]

1
(tn+1 − s)α

ds

−U0
i

((n + 1)τ)1−α

Γ(2 − α)

= τ
n∑

j=0

(
aj − jbj

)
U

n−j
i − τ

n∑

j=0

(
aj −

(
j + 1

)
bj
)
U

n−j+1
i −U0

i

((n + 1)τ)1−α

Γ(2 − α)
+ Rn+1,

(2.3)

where

Rn+1 =
1

Γ(1 − α)

n+1∑

j=1

∫ jτ

(j−1)τ
O
(
τ2
) ds

(tn+1 − s)α

=
1

(1 − α)Γ(1 − α)
O
(
τ2
) n+1∑

j=1

[(
n − j + 2

)1−α − (
n − j + 1

)1−α]
τ1−α

=
1

Γ(2 − α)
(n + 1)1−αO

(
τ3−α

)
.

(2.4)
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Similarly, we can obtain

H(tn, xi) =
1

Γ(1 − α)

∫ tn

0

u(s, xi) − u(0, xi)
(tn − s)α

ds

= τ
n∑

j=1

(
aj−1 −

(
j − 1

)
bj−1

)
U

n−j
i − τ

n∑

j=1

(
aj−1 − jbj−1

)
U

n−j+1
i −U0

i

(nτ)1−α

Γ(2 − α)
+ Rn,

(2.5)

where Rn = (1/Γ(2 − α))n1−αO(τ3−α) and

aj =
τ−α

(2 − α)Γ(1 − α)

[(
j + 1

)2−α − j2−α
]
, bj =

τ−α

(1 − α)Γ(1 − α)

[(
j + 1

)1−α − j1−α
]
. (2.6)

Then, we can write the following approximation:

∂αU(tn+1/2, xi)
∂tα

=
H(tn+1, xi) −H(tn, xi)

τ
+O

(
τ2
)

= qnU
0
i +

n∑

j=0

pjU
n+1−j
i +

Rn+1 − Rn

τ
+O

(
τ2
)

= qnU
0
i +

n∑

j=0

pjU
n+1−j
i +

1
Γ(2 − α)

[
(n + 1)1−α − n1−α

]
O
(
τ2−α

)
+O

(
τ2
)

= qnU
0
i +

n∑

j=0

pjU
n+1−j
i +

1
Γ(2 − α)

[
(n + 1)1−α − n1−α

τ

]

O
(
τ3−α

)
+O

(
τ2
)

= qnU
0
i +

n∑

j=0

pjU
n+1−j
i +

1
Γ(2 − α)

[
(τ(n + 1))1−α − (τn)1−α

τ

]

O
(
τ2
)
+O

(
τ2
)
,

(2.7)

where

q0 = 3a0 − a1 + 2b1 − 2b0,

qn = an − an−1 + (n − 1)bn−1 − (n + 1)bn, for 1 ≤ n ≤ N − 1,

p0 = b0 − a0,

p1 = 2a0 − a1 + 2b1 − b0,

pj =
(−aj−2 + 2aj−1 − aj

)
+
(
j − 2

)
bj−2 −

(
2j − 1

)
bj−1 +

(
j + 1

)
bj , for j ≥ 2.

(2.8)

On the other hand, using the mean-value theorem, we get

(τ(n + 1))1−α − (τn)1−α

τ
= f ′(c) = constant, (2.9)
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where f(x) = x1−α and tn < c < tn+1. So, we obtain the following second-order approximation
for the modified Riemann-Liouville derivative:

∂αU
(
tn+(1/2), xi

)

∂tα
=

H(tn+1, xi) −H(tn, xi)
τ

+O
(
τ2
)

= qnU
0
i +

n∑

j=0

pjU
n+1−j
i +O

(
τ2
)
.

(2.10)

3. Crank-Nicholson Difference Scheme

Using the approximation above, we obtain the following difference scheme which is accurate
of order O(τ2 + h2):

qnU
0
i +

n∑

j=0

pjU
n+1−j
i −

[
Un+1

i+1 − 2Un+1
i +Un+1

i−1
2h2

+
Un

i+1 − 2Un
i +Un

i−1
2h2

]

= f
(
tn +

τ

2
, xi

)
, 0 ≤ n ≤ N − 1, 1 ≤ i ≤ M − 1,

U0
i = r(xi), 1 ≤ i ≤ M − 1,

Un
0 = 0, Un

M = 0, 0 ≤ n ≤ N.

(3.1)

We can arrange the system above to obtain

(

− 1
2h2

)(
Un+1

i+1 +Un
i+1

)
+ qnU

0
i +

n∑

j=0

pjU
n+1−j
i +

(

− 1
2h2

)(
Un+1

i−1 +Un
i−1

)

= f
(
tn +

τ

2
, xi

)
, 0 ≤ n ≤ N − 1, 1 ≤ i ≤ M − 1,

U0
i = r(xi), 1 ≤ i ≤ M − 1,

Un
0 = 0, Un

M = 0, 0 ≤ n ≤ N.

(3.2)

The difference scheme above can be written in matrix form:

AUi+1 + BUi +AUi−1 = ϕi, (3.3)

where ϕi = [ϕ0
i , ϕ

1
i , ϕ

2
i , . . . , ϕ

N
i ]T , ϕ0

i = r(xi), ϕn
i = f(tn+1/2, xi), 1 ≤ n ≤ N, 1 ≤ i ≤ M, and

Ui = [U0
i , U

1
i , U

2
i , . . . , U

N
i ]T .
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Here, A(N+1)×(N+1) and B(N+1)×(N+1) are the matrices of the form

A =
(

− 1
2h2

)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1 1

1 1
. . . . . .

1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

q0 +
1
h2

p0 +
1
h2

q1 p1 +
1
h2

p0 +
1
h2

q2 p2 p1 +
1
h2

p0 +
1
h2

...
. . . . . . . . .

qN−1 pN−1 . . . p2 p1 +
1
h2

p0 +
1
h2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.4)

We note that the unspecified entries are zero at the matrices above.
Using the idea on the modified Gauss-Elimination method, we can convert (3.3) into

the following form:

Ui = αi+1Ui+1 + βi+1, i = M − 1, . . . , 2, 1, 0. (3.5)

This way, the two-step form of difference schemes in (3.3) is transformed to one-step
method as in (3.5).

Now, we need to determine the matrices αi+1 and βi+1 satisfying the last equality. Since
U0 = α1U1 + β1 = 0, we can select α1 = O(N+1)×(N+1) and β1 = O(N+1)×1. Combining the
equalities Ui = αi+1Ui+1 + βi+1 and Ui−1 = αiUi + βi and the matrix equation (3.3), we have

(A + Bαi+1 +Aαiαi+1)Ui+1 +
(
Bβi+1 +Aαiβi+1 +Aβi

)
= ϕi. (3.6)

Then, we write

A + Bαi+1 +Aαiαi+1 = 0,

Bβi+1 +Aαiβi+1 +Aβi = ϕi,
(3.7)

where 1 ≤ i ≤ M − 1.
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So, we obtain the following pair of formulas:

αi+1 = −(B +Aαi)−1A,

βi+1 = (B +Aαi)−1
(
ϕi −Aβi

)
,

(3.8)

where 1 ≤ i ≤ M − 1.

4. Stability of the Method

The stability analysis is done by using the analysis of the eigenvalues of the iteration matrix
αi (1 ≤ i ≤ M) of the scheme (3.5).

Let ρ(A) denote the spectral radius of a matrixA, that is, the maximum of the absolute
value of the eigenvalues of the matrix A.

We will prove that ρ(αi) < 1, (1 ≤ i ≤ M), by induction.
Since α1 is a zero matrix ρ(α1) = 0 < 1.

Moreover, α2 = −B−1A, ρ(α2) = ρ(−B−1A) =
−1

1/h2 + p0
· −1
2h2

=
1/h2

2(1/h2 + p0)
, since α2 is

of the form

α2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

∗ 1/h2

2
(
1/h2 + p0

)

∗ ∗ 1/h2

2
(
1/h2 + p0

)

. . .

∗ ∗ ∗ 1/h2

2
(
1/h2 + p0

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

p0 = b0 − a0 =
τ−α

(1 − α)Γ(1 − α)
− τ−α

(2 − α)Γ(1 − α)
=

τ−α

Γ(3 − α)
> 0,

(4.1)

therefore, ρ(α2) < 1.
Now, assume ρ(αi) < 1. After some calculations, we find that

αi+1 = −(B +Aαi)−1A

=
(

1
2h2

)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

∗ 1
B2,2 − (1/2h2)αi2,2

∗ ∗ 1
B3,3 − (1/2h2)αi3,3

∗ ∗ ∗ . . .

∗ ∗ ∗ 1
BN+1,N+1 − (1/2h2)αiN+1,N+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.2)
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and we already know that Bj,j = 1/h2 +w0 and αij,j = ρ(αi) for 2 ≤ j ≤ N + 1:

ρ(αi+1) =

∣
∣
∣
∣
∣

1/2h2

1/h2 + p0 − (1/2h2)ρ(αi)

∣
∣
∣
∣
∣
=

M2

2
[
M2

(
1 − ρ(αi)/2

)
+ p0

] . (4.3)

Since 0 ≤ ρ(αi) < 1, it follows that ρ(αi+1) < 1. So, ρ(αi) < 1 for any i, where 1 ≤ i ≤ M.

Remark 4.1. The convergence of the method follows from the Lax equivalence theorem [31]
because of the stability and consistency of the proposed scheme.

5. Numerical Analysis

Example 5.1. Consider

∂αu(t, x)
∂tα

=
∂2u(t, x)

∂x2
+

2t(2−α)

Γ(3 − α)
sin

(
x − x2

)

+ t2
[
sin

(
x − x2

)
(1 − 2x)2 + 2 cos

(
x − x2

)]
, (0 < x < 1, 0 < t < 1),

u(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, 0 ≤ t ≤ 1.

(5.1)

Exact solution of this problem is U(t, x) = t2 sin(1 − x)x. The solution by the Crank-
Nicholson scheme is given in Figure 1. The errors when solving this problem are listed in the
Table 1 for various values of time and space nodes.

The errors in the table are calculated by the formula max0≤n≤M, 0≤k≤N |u(tk, xn) − Uk
n|

and the error rate formula is |Ek|/|Ek+1|.

Example 5.2. Consider

∂αu(t, x)
∂tα

=
∂2u(t, x)

∂x2
+

24t(2−α)

Γ(5 − α)

(
x2 − x

)
− 2t4, (0 < x < 1, 0 < t < 1),

u(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = 0, 0 ≤ t ≤ 1.

(5.2)

Exact solution of this problem is U(t, x) = t4x(x − 1). The solution by the Crank-
Nicholson scheme is given in Figure 2. The errors when solving this problem are listed in
Table 2 for various values of time and space nodes and several values of α.

It can be concluded from the tables and the figures that when the step size is reduced
by a factor of 1/2, the error decreases by about 1/4. The numerical results support the claim
about the order of the convergence.
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Figure 1: (a) The approximate solutions of Example 5.1 by the proposed method when N = 32, M = 32,
and α = 0.5. (b) The errors for some values of M and N when t = 1 and α = 0.5.

Table 1: Error table for Example 5.1.

α = 0.2 α = 0.5 α = 0.9
M N Error Rate Error Rate Error Rate
32 8 0.0018870311 — 0.0016846217 — 0.0009754809 —
32 16 0.0004703510 4.01 0.0004052354 4.16 0.0002461078 3.97
32 32 0.0001172029 4.01 0.0000969929 4.18 0.0000650942 3.78
32 64 0.0000291961 4.01 0.00002314510 4.19 0.0000198362 3.28
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Figure 2: (a) The approximate solutions of Example 5.2 by the proposed method when N = 32, M = 32,
and α = 0.5. (b) The errors for some values of M and N when t = 1 and α = 0.5.
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Table 2: The errors for some values of M,N, and α.

α = 0.3 α = 0.5 α = 0.8
M N Error Rate Error Rate Error Rate
4 4 0.02321328680 — 0.02286737567 — 0.02173420667 —
8 8 0.00583004420 3.98 0.00577931685 3.96 0.00554721754 3.92
16 16 0.00146112785 3.99 0.00145293106 3.98 0.00140076083 3.96
32 32 0.00036572715 3.995 0.00036424786 3.99 0.00035252421 3.97
64 64 0.00009148685 3.998 0.00009122231 3.99 0.00008860379 3.98

6. Conclusion

In this work, the Crank-Nicholson difference scheme was successfully extended to solve
the time-fractional heat equations. A second-order approximation for the Riemann-Liouville
fractional derivative is obtained. It is proven that the time-fractional Crank-Nicholson
difference scheme is unconditionally stable and convergent. Numerical results are in good
agreement with the theoretical results.
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