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We discuss the existence of positive solutions of a boundary value problem of nonlinear fractional
differential equation with changing sign nonlinearity. We first derive some properties of the
associated Green function and then obtain some results on the existence of positive solutions by
means of the Krasnoselskii’s fixed point theorem in a cone.

1. Introduction

Recently, much attention has been paid to the existence of solutions for fractional differential
equations due to its wide range of applications in engineering, economics, and many other
fields, and for more details see, for instance, [1–17] and the references therein. In most of the
works in literature, the nonlinearity needs to be nonnegative to get positive solutions [10–
17]. In particular, by using the Krasnosel’skii fixed-point theorem and the Leray-Schauder
nonlinear alternative, Bai and Qiu [14] consider the positive solution for the following
boundary value problem:

cDα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(P)

where 2 < α ≤ 3 is a real number, cDα
0+ is the Caputo fractional derivative, f : (0, 1]×[0,∞) →

[0,∞) is continuous and singular at t = 0.
To the best of our knowledge, there are only very few papers dealing with the

exis-tence of positive solutions of semipositone fractional boundary value problems due
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to the difficulties in finding and analyzing the corresponding Green function. The purpose
of this paper is to establish the existence of positive solutions to the following nonlinear
fractional differential equation boundary value problem:

cDα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(1.1)

where 2 < α ≤ 3 is a real number, cDα
0+ is the Caputo fractional derivative, λ is a positive

parameter, and f may change sign and may be singular at t = 0, 1. In this paper, by a positive
solution to (1.1), we mean a function u ∈ C[0, 1], which is positive on (0, 1] and satisfies (1.1).

The rest of the paper is organized as follows. In Section 2, we present some preliminar-
ies and lemmas that will be used to prove our main results. We also develop some properties
of the associated Green function. In Section 3, we discuss the existence of positive solutions
of the semipositone BVP (1.1). In Section 4, we give two examples to illustrate the application
of our main results.

2. Basic Definitions and Preliminaries

In this section, we present some preliminaries and lemmas that are useful to the proof of our
main results. For the convenience of the reader, we also present here some necessary defini-
tions from fractional calculus theory. These definitions can be found in the recent literature.

Definition 2.1. The Riemann-Liouville fractional integral of order α > 0 of a function u :
(0,+∞) → R is given by

Iα0+u(t) =
1

Γ(α)

∫ t

0
(t − s)α−1u(s)ds (2.1)

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2. The Caputo’s fractional derivative of order α > 0 of a function u : (0,+∞) → R
is given by

cDα
0+u(t) =

1
Γ(n − α)

∫ t

0
(t − s)n−α−1u(n)(s)ds, (2.2)

where n − 1 < α ≤ n, provided that the right-hand side is pointwise defined on (0,+∞).

Lemma 2.3 (see [14]). Given y(t) ∈ C(0, 1) ∩ L(0, 1), the unique solution of the problem

cDα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0
(2.3)
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is

u(t) =
∫1

0
G(t, s)y(s)ds, (2.4)

where

G(t, s) =
1

Γ(α)

{
(α − 1)t(1 − s)α−2, 0 ≤ t ≤ s ≤ 1,
(α − 1)t(1 − s)α−2 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1.

(2.5)

Lemma 2.4. The function G(t, s) has the following properties:

(1) G(t, s) ≤ (1/Γ(α − 1)) t(1 − s)α−2, for t,s ∈ [0, 1],

(2) G(t, s) ≤ (1/Γ(α − 1))(α − 2 + s)(1 − s)α−2, for t, s ∈ [0, 1],

(3) G(t, s) ≥ (1/Γ(α))(α − 2 + s)t(1 − s)α−2, for t, s ∈ [0, 1].

Proof. It is obvious that (1) holds. In the following, we will prove (2) and (3).
(i)When 0 ≤ s ≤ t ≤ 1, as 2 < α ≤ 3, we have

∂G(t, s)
∂t

=
(1 − s)α−2 − (t − s)α−2

Γ(α − 1)
≥ 0, (2.6)

therefore

G(t, s) ≤ G(1, s) =
(α − 2 + s)

Γ(α)
(1 − s)α−2 ≤ 1

Γ(α − 1)
(α − 2 + s)(1 − s)α−2. (2.7)

On the other hand, since 0 < α − 2 ≤ 1, we have

G(t, s) =
(α − 1)t(1 − s)α−2 − (t − s)(t − s)α−2

Γ(α)

≥ (α − 1)t(1 − s)α−2 − (t − s)(1 − s)α−2

Γ(α)

=
(α − 2)t + s

Γ(α)
(1 − s)α−2 ≥ (α − 2)t + st

Γ(α)
(1 − s)α−2

=
1

Γ(α)
(α − 2 + s)t(1 − s)α−2.

(2.8)

(ii)When 0 ≤ t ≤ s ≤ 1, we have

G(t, s) =
(α − 1)t(1 − s)α−2

Γ(α)
≤ (α − 1)s(1 − s)α−2

Γ(α)
≤ 1

Γ(α − 1)
(α − 2 + s)(1 − s)α−2. (2.9)
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On the other hand, as α − 1 ≥ α − 2 + s for 0 ≤ s ≤ 1, we have

G(t, s) =
(α − 1)t(1 − s)α−2

Γ(α)
≥ 1

Γ(α)
(α − 2 + s)t(1 − s)α−2. (2.10)

The proof is completed.

Remark 2.5. By Lemma 2.4, there existsK > 0 such that the positive solution u in [14] satisfies

u(t) ≥ t

α − 1
‖u‖, u(t) ≤ Kt, (2.11)

where ‖u‖ = max0≤t≤1|u(t)|.

Proof. In [14], the positive solution of (P) is equivalent to the fixed point ofA inQ, whereQ =
{u(t) ∈ C[0, 1] : u(t) ≥ 0} and

Au(t) =
∫1

0
G(t, s)f(s, u(s))ds. (2.12)

For any u ∈ Q, by (1) of Lemma 2.4, we have

Au(t) ≤ t

Γ(α − 1)

∫1

0
(1 − s)α−2f(s, u(s))ds. (2.13)

On the other hand, by (2), (3) of Lemma 2.4, we get

Au(t) ≥ t

Γ(α)

∫1

0
(α − 2 + s)(1 − s)α−2f(s, u(s))ds,

Au(t) ≤ 1
Γ(α − 1)

∫1

0
(α − 2 + s)(1 − s)α−2f(s, u(s))ds,

(2.14)

which implies Au(t) ≥ (t/(α − 1))‖Au(t)‖.
If u is a positive solution of (P), then u is a fixed point of A in Q, therefore

u(t) ≥ t

α − 1
‖u‖, u(t) ≤ Kt, (2.15)

where K = (1/(Γ(α − 1)))
∫1
0 (1 − s)α−2f(s, u(s))ds. The proof is completed.

For the convenience of presentation, we list here the hypotheses to be used later.

(H1) f ∈ C((0, 1) × [0,+∞), (−∞,+∞)) and satisfies

−r(t) ≤ f(t, x) ≤ z(t)g(x), (2.16)
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where r, z ∈ C((0, 1), [0,+∞)), g ∈ C([0,+∞), [0,+∞)).

(H2) 0 <
∫1
0 r(s)ds < +∞, 0 <

∫1
0 (α − 2 + s)(1 − s)α−2(z(s) + r(s))ds < +∞.

(H3) There exists [a, b] ⊂ (0, 1) such that

lim inf
u→+∞

min
t∈[a,b]

f(t, u)
u

= +∞. (2.17)

(H4) There exists [c, d] ⊂ (0, 1) such that

lim inf
u→+∞

min
t∈[c,d]

f(t, u) >
2(α − 1)2

∫1
0 (1 − s)α−2r(s)ds∫d

c (α − 2 + s)(1 − s)α−2ds
,

lim
u→+∞

g(u)
u

= 0.

(2.18)

Lemma 2.6. Assume that (H1) and (H2) hold, then the boundary value problem

cDα
0+u(t) + r(t) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(2.19)

has a unique solution ω(t) =
∫1
0 G(t, s)r(s)ds with

ω(t) ≤ t

∫1

0

1
Γ(α − 1)

(1 − s)α−2r(s)ds, t ∈ [0, 1]. (2.20)

Proof. By Lemma 2.3, we have that ω(t) =
∫1
0 G(t, s)r(s)ds is the unique solution of (2.19). By

(1) of Lemma 2.4, we have

ω(t) =
∫1

0
G(t, s)r(s)ds ≤ t

∫1

0

1
Γ(α − 1)

(1 − s)α−2r(s)ds. (2.21)

The proof is completed.

Let E = C[0, 1] be endowed with the maximum norm ‖u‖ = max0≤t≤1|u(t)|. Define a
cone P by

P =
{
u(t) ∈ E : u(t) ≥ t

α − 1
‖u‖

}
. (2.22)

Set Br = {u(t) ∈ E : ‖u‖ < r}, Pr = P ∩ Br , ∂Pr = P ∩ ∂Br .
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Next we consider the following boundary value problem:

cDα
0+u(t) + λ

[
f
(
t, [u(t) − λω(t)]+

)
+ r(t)

]
= 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(2.23)

where λ > 0, ω(t) is defined in Lemma 2.6, [u(t) − λω(t)]+ = max{u(t) − λω(t), 0}.
Let

Tu(t) = λ

∫1

0
G(t, s)

[
f
(
s, [u(s) − λω(s)]+

)
+ r(s)

]
ds. (2.24)

It is easy to check that u is a solution of (2.23) if and only if u is a fixed point of T .

Lemma 2.7. T : P → P is a completely continuous operator.

Proof. For any u ∈ P , Lemma 2.4 implies that

Tu(t) ≥ λt

Γ(α)

∫1

0
(α − 2 + s)(1 − s)α−2

[
f
(
s, [u(s) − λω(s)]+

)
+ r(s)

]
ds. (2.25)

On the other hand

Tu(t) ≤ λ

Γ(α − 1)

∫1

0
(α − 2 + s)(1 − s)α−2

[
f
(
s, [u(s) − λω(s)]+

)
+ r(s)

]
ds. (2.26)

Then Tu(t) ≥ (t/(α − 1))‖Tu(t)‖, which implies T : P → P .
According to the Ascoli-Arzela theorem, we can easily get that T : P → P is a com-

pletely continuous operator. The proof is completed.

Lemma 2.8 (see [18]). Let E be a real Banach space, and let P ⊂ E be a cone. Assume thatΩ1 andΩ2

are two bounded open subsets of E with θ ∈ Ω1,Ω1 ⊂ Ω2, and T : P ∩ (Ω2 \Ω1) → P is a completely
continuous operator such that either

(1) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \Ω1).

3. Existence of Positive Solutions

Theorem 3.1. Suppose that (H1)–(H3) hold. Then there exists λ∗ > 0 such that the boundary value
problem (1.1) has at least one positive solution for any λ ∈ (0, λ∗).
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Proof. Choose r1 > ((α − 1)/Γ(α − 1))
∫1
0 (1 − s)α−2r(s)ds. Let

λ∗ = min

⎧⎨
⎩1,

r1Γ(α − 1)[
g∗(r1) + 1

] ∫1
0 (α − 2 + s)(1 − s)α−2(z(s) + r(s))ds

⎫⎬
⎭, (3.1)

where

g∗(r) = max
x∈[0,r]

g(x). (3.2)

In the rest of the proof, we suppose λ ∈ (0, λ∗).
For any u ∈ ∂Pr1 , noting that

u(t) ≥ t

α − 1
r1, t ∈ [0, 1] (3.3)

and using (2.20), we have

0 ≤ t

[
r1

α − 1
−
∫1

0

1
Γ(α − 1)

(1 − s)α−2r(s)ds

]
≤ u(t) − λω(t) ≤ r1. (3.4)

Therefore,

Tu(t) = λ

∫1

0
G(t, s)

[
f
(
s, [u(s) − λω(s)]+

)
+ r(s)

]
ds

≤ λ

Γ(α − 1)

∫1

0
(α − 2 + s)(1 − s)α−2

[
z(s)g

(
[u(s) − λω(s)]+

)
+ r(s)

]
ds

≤ λ

Γ(α − 1)
[
g∗(r1) + 1

] ∫1

0
(α − 2 + s)(1 − s)α−2[z(s) + r(s)]ds

<
λ∗

Γ(α − 1)
[
g∗(r1) + 1

] ∫1

0
(α − 2 + s)(1 − s)α−2[z(s) + r(s)]ds ≤ r1.

(3.5)

Thus,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Pr1 . (3.6)

Now choose a real number

L >
4Γ(α)

λa
∫b
a(α − 2 + s)(1 − s)α−2ds

. (3.7)

By (H3), there exists a constant N > 0 such that for any t ∈ [a, b], x ≥ N, we have

f(t, x) > Lx. (3.8)
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Select

r2 > max

{
r1,

2(α − 1)
Γ(α − 1)

∫1

0
(1 − s)α−2r(s)ds,

4N
a

}
. (3.9)

Then for any u ∈ ∂Pr2 , we have u(t) − λω(t) ≥ 0, t ∈ [0, 1]. Moreover, by the selection of r2 we
have

1
Γ(α − 1)

∫1

0
(1 − s)α−2r(s)ds <

r2
2(α − 1)

. (3.10)

Thus for any t ∈ [a, b], as 1 < α − 1 ≤ 2, we get

u(t) − λω(t) ≥ t

[
r2

α − 1
− 1
Γ(α − 1)

∫1

0
(1 − s)α−2r(s)ds

]
>

ar2
2(α − 1)

≥ ar2
4

. (3.11)

Noting that r2 > 4N/a, we have

u(t) − λω(t) >
ar2
4

> N, t ∈ [a, b]. (3.12)

Hence we get

Tu(1) =
λ

Γ(α)

∫1

0
(α − 2 + s)(1 − s)α−2

[
f
(
s, [u(s) − λω(s)]+

)
+ r(s)

]
ds

≥ λ

Γ(α)

∫b

a

(α − 2 + s)(1 − s)α−2f
(
s, [u(s) − λω(s)]+

)
ds

≥ λL

Γ(α)

∫b

a

(α − 2 + s)(1 − s)α−2[u(s) − λω(s)]ds

≥ λLar2
4Γ(α)

∫b

a

(α − 2 + s)(1 − s)α−2ds > r2.

(3.13)

Thus,

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Pr2 . (3.14)

By Lemma 2.8, T has a fixed point u such that r1 ≤ ‖u‖ ≤ r2. Since ‖u‖ ≥ r1, by (3.4) we have
u(t) − λω(t) > 0, t ∈ (0, 1]. Let u(t) = u(t) − λω(t). As ω(t) is the solution of (2.19) and u(t) is
the solution of (2.23), u(t) is a positive solution of the singular semipositone boundary value
problem (1.1). The proof is completed.

Theorem 3.2. Suppose that (H1), (H2), and (H4) hold. Then there exists λ∗ > 0 such that the
boundary value problem (1.1) has at least one positive solution for any λ ∈ (λ∗,+∞).
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Proof. By the first limit of (H4), we have that there exists N > 0 such that, for any t ∈ [c, d]
and u ≥ N, we have

f(t, u) ≥ 2(α − 1)2
∫1
0 (1 − s)α−2r(s)ds∫d

c (α − 2 + s)(1 − s)α−2ds
. (3.15)

Select

λ∗ =
NΓ(α − 1)

c
∫1
0 (1 − s)α−2r(s)ds

. (3.16)

In the rest of the proof, we suppose λ > λ∗.
Let

R1 =
2λ(α − 1)

∫1
0 (1 − s)α−2r(s)ds
Γ(α − 1)

. (3.17)

Then, for any u ∈ ∂PR1 , we have

u(t) − λω(t) ≥ t

[
R1

α − 1
− λ

∫1

0

1
Γ(α − 1)

(1 − s)α−2r(s)ds

]

=
λt

Γ(α − 1)

∫1

0
(1 − s)α−2r(s)ds

≥ λ∗t
Γ(α − 1)

∫1

0
(1 − s)α−2r(s)ds =

Nt

c
,

(3.18)

and therefore u(t) − λω(t) ≥ N on t ∈ [c, d], u ∈ ∂PR1 . Then,

Tu(t) = λ

∫1

0
G(t, s)

[
f
(
s, [u(s) − λω(s)]+

)
+ r(s)

]
ds

≥ λ

∫d

c

G(t, s)f
(
s, [u(s) − λω(s)]+

)
ds

≥ 2λ(α − 1)2
∫1
0 (1 − s)α−2r(s)ds∫d

c (α − 2 + s)(1 − s)α−2ds

∫d

c

G(t, s)ds

≥ 2tλ(α − 1)2
∫1
0 (1 − s)α−2r(s)ds∫d

c (α − 2 + s)(1 − s)α−2ds

∫d

c

(α − 2 + s)
Γ(α)

(1 − s)α−2ds

=
2λt(α − 1)
Γ(α − 1)

∫1

0
(1 − s)α−2r(s)ds = tR1,

(3.19)

which implies

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂PR1 . (3.20)
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On the other hand, as g(t) is continuous on [0,+∞), from the second limit of (H4), we
have

lim
u→+∞

g∗(u)
u

= 0, (3.21)

where g∗(u) is defined by (3.2). In fact, by limu→+∞g(u)/u = 0, for any ε > 0, there existsN1 >
0 such that for any u > N1 we have 0 ≤ g(u) < εu. LetN = max{N1, g

∗(N1)/ε}, for any u > N
we have 0 ≤ g∗(u) < εu + g∗(N1) < 2εu. Therefore, limu→+∞g∗(u)/u = 0. For

ε = Γ(α − 1)

[
2λ

∫1

0
(α − 2 + s)(1 − s)α−2z(s)ds

]−1
, (3.22)

there exists X0 > 0 such that when x ≥ X0, for any 0 ≤ u ≤ x, we have

g(u) ≤ g∗(x) ≤ εx. (3.23)

Select

R2 ≥ max

{
X0, R1,

2λ
Γ(α − 1)

∫1

0
(α − 2 + s)(1 − s)α−2r(s)ds

}
. (3.24)

Then, for any u ∈ ∂PR2 , we get

‖Tu‖ ≤ λ

Γ(α − 1)

∫1

0
(α − 2 + s)(1 − s)α−2

[
z(s)g

(
[u(s) − λω(s)]+

)
+ r(s)

]
ds

≤ λεR2

Γ(α − 1)

∫1

0
(α − 2 + s)(1 − s)α−2z(s)ds

+
λ

Γ(α − 1)

∫1

0
(α − 2 + s)(1 − s)α−2r(s)ds ≤ R2

2
+
R2

2
= R2.

(3.25)

Thus,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂PR2 . (3.26)

By Lemma 2.8, T has a fixed point u such that R1 ≤ ‖u‖ ≤ R2. Since R1 ≤ ‖u‖, by (3.18), we
have u(t) − λω(t) > 0, t ∈ (0, 1]. Let u(t) = u(t) − λω(t). As ω(t) is a solution of (2.19) and u(t)
is a solution of (2.23), u(t) is a positive solution of the singular semipositone boundary value
problem (1.1). The proof is completed.
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Corollary 3.3. The conclusion of Theorem 3.2 is valid if (H4) is replaced by (H∗
4): there exists [c, d] ⊂

(0, 1) such that

lim inf
u→+∞

min
t∈[c,d]

f(t, u) = +∞;

lim
u→+∞

g(u)
u

= 0.
(3.27)

4. Examples

Example 4.1. Consider the following problem

cD5/2
0+ u(t) + λf(t, u) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(4.1)

where f(t, u) = u2/
√
t(1 − t) + ln t. Let z(t) = 1/

√
t(1 − t), r(t) = − ln t, g(u) = u2. By direct

calculation, we have
∫1
0 r(t)dt = 1,

∫1
0 z(t)dt = π , and

lim inf
u→+∞

min
t∈[1/4,3/4]

f(t, u)
u

= +∞. (4.2)

So all conditions of Theorem 3.1 are satisfied. By Theorem 3.1, BVP (4.1) has at least one
positive solution provided λ is sufficiently small.

Example 4.2. Consider the following problem

cD9/4
0+ u(t) + λf(t, u) = 0, 0 < t < 1,

u(0) = u′(1) = u′′(0) = 0,
(4.3)

where f(t, u) = ln(1+u)/
√
t(1 − t)+ln t. Let z(t) = 1/

√
t(1 − t) , r(t) = − ln t, g(u) = ln(1+u).

By direct calculation, we have
∫1
0 r(t)dt = 1,

∫1
0 z(t)dt = π , and

lim inf
u→+∞

min
t∈[1/4,3/4]

f(t, u) = +∞;

lim
u→+∞

g(u)
u

= 0.
(4.4)

So all conditions of Theorem 3.2 are satisfied. By Theorem 3.2, BVP (4.3) has at least one pos-
itive solution provided λ is sufficiently large.
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