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In (Wang et al., 2011), we give an iterative reproducing kernel method (IRKM). The main
contribution of this paper is to use an IRKM (Wang et al., 2011), in singular perturbation problems
with boundary layers. Two numerical examples are studied to demonstrate the accuracy of the
present method. Results obtained by the method indicate that the method is simple and effective.

1. Introduction

Singularly perturbed problems (SPPs) arise frequently in applications including geophysical
fluid dynamics, oceanic and atmospheric circulation, chemical reactions, and optimal control.
In this paper, we consider the following singularly perturbed two-point boundary value
problem:

εUxx(x) + a(x)Ux(x) + b(x)U(x) = F(x,U(x)), x ∈ (0, 1),

U(0) = α, U(1) = β,
(1.1)

where ε is a positive small parameter, a(x), b(x), and F(x, v) are known functions, and
U(x) is a unknown function to be determined. In this paper, we assume that (1.1)
has a unique solution that belongs to W3

2 [0, 1]. Like in [1–5], we give reproducing
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kernel spaces W1
2 [a, b] and W3

2 [a, b]. (i) We define the inner product space W1
2 [a, b] =

{u | u is one-variable absolutely continuous function, u′ ∈ L2[a, b]}. The inner product is
given by 〈u(x), v(x)〉W1

2
= u(a)v(a) +

∫b
a u

′(x)v′(x)dx. The space W1
2 [a, b] is a repro-

ducing kernel space, and its reproducing kernel is R
{1}
x (y). (ii) Space W3

2 [a, b] =
{u | u, u′, u′′ is one-variable absolutely continuous function, u(a) = u(b) = 0, u′′′ ∈ L2[a, b]}.

The inner product is given by 〈u(x), v(x)〉W3
2

= u′(a)v′(a) + u′′(a)v′′(a) +
∫b
a u

′′′(x)v′′′(x)dx. The space W3
2 [a, b] is a reproducing kernel space, and its reproducing

kernel is R{2}
x (y).

2. Iterative Reproducing Kernel Method (IRKM)

In order to solve (1.1), we first give the analytical and approximate solutions of the following
operator equation:

(Lu)(x) = F(x, u(x)), (2.1)

where L : H[a, b] → H1[a, b] is a bounded linear operator and L−1 is existent.H1[a, b] is an
RKHS with the reproducing kernel K(x, t), H[a, b] is also an RKHS with the reproducing
kernel K(x, t).

Theorem 2.1. If L−1 is existent and {xi}∞i=1 are countable dense points in [a, b], Letting ψi(x) =
∑i

k=1 βikψk(x), where the βik are the coefficients resulting from the Gram-Schmidt orthonormalization,
ψi(x) = (LyK(x, y))(xi), i = 1, 2, . . ., then

u(x) =
∞∑

i=1

i∑

k=1

βikf(xk, u(xk))ψi(x) (2.2)

is an analytical solution of (2.1).

Proof. u(x) can be expanded to the Fourier series in terms of normal orthogonal basis
{ψi(x)}∞i=1 inH[a, b]:

u(x) =
∞∑

i=1

〈
u(x), ψi(x)

〉
ψi(x)

=
∞∑

i=1

i∑

k=1

βik
〈
u(x), ψk(x)

〉
ψi(x)

=
∞∑

i=1

i∑

k=1

βik〈u(x), (LsKx(s))(xk)〉ψi(x)

=
∞∑

i=1

i∑

k=1

βik(Ls〈u(x), Kx(s)〉)(xk)ψi(x)
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=
∞∑

i=1

i∑

k=1

βik(Lsu(s))(xk)ψi(x)

=
∞∑

i=1

i∑

k=1

βikf(xk, u(xk))ψi(x).

(2.3)

(i) Linear Problem

Suppose (2.1) is a linear problem, that is, f(x, u) = F(x). We define an approximate solution
un(x) by

un(x) =
n∑

i=1

i∑

k=1

βikF(xk)ψi(x). (2.4)

Theorem 2.2 (convergence analysis). Let ε2n = ‖u(x)−un(x)‖2; then the sequence of real numbers
εn is monotonously decreasing and εn → 0 and the sequence un(x) is convergent uniformly to u(x),
k = 0, 1, 2.

Proof. We have

ε2n = ‖u(x) − un(x)‖2 =
∞∑

i=n+1

〈
u(x), ψi(x)

〉
ψi(x) =

∞∑

i=n+1

(〈
u(x), ψi(x)

〉)2
, (2.5)

and clearly εn−1 ≥ εn and consequently {εn} is monotone decreasing in the sense of ‖ · ‖. By
Theorem 2.1, we know that

∑∞
i=1〈u(x), ψi(x)〉ψi(x) is convergent in the norm of ‖ · ‖, then we

have ε2n = ‖u(x) − un(x)‖2 → 0.
For any x ∈ [a, b], k = 0, 1, 2,

∣∣∣u(k)n (x) − u(k)(x)
∣∣
∣ =

∣∣∣∣∣

〈

un(t) − u(t), ∂
kK(x, t)
∂xk

〉∣∣∣∣∣
≤ ‖un(t) − u(t)‖ ·

∥∥∥∥∥
∂kK(x, t)
∂xk

∥∥∥∥∥
, (2.6)

and by the expression of K(x, t), there exists Ck > 0, such that ‖∂kK(x, t)/∂xk‖ < Ck; thus

∣∣∣u(k)n (x) − u(k)(x)
∣∣∣ ≤ Ck‖un(t) − u(t)‖ = Ckεn −→ 0. (2.7)

(ii) Nonlinear Problem

Suppose that (1.1) is a nonlinear problem, that is, f(x, u) =N(u)+F(x), whereN : H[a, b] →
H1[a, b] is a nonlinear operator, and we give an iterative sequence un(x):

u0,∗(x) is the solution of the linear equation Lu = F(x),

un+1,∗(x) is the solution of the linear equation Lu =N(un,∗) + F(x), n = 0, 1, 2 . . ..
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Lemma 2.3. If un,∗(x) → u(x), then u(x), is the solution of (1.1).

Theorem 2.4. Suppose that the nonlinear operator A � (L−1N) : H1[a, b] → H[a, b] satisfies the
contractive mapping principle, that is,

‖A(u) −A(v)‖ ≤ λ‖u − v‖, λ < 1; (2.8)

then un,∗(x) is convergent.

3. Solution of Singularly Perturbed Problems

We notice that a small variation in the parameter ε produces a large variation in the solution.
In other words, we are treating an ill-posed problem. In this paper, by dividing the domain
[0, 1] into three subdomains [0, d], [d, 1 − d], and [1 − d, 1].

(i) Outer Region

We have

εUxx(x) + a(x)Ux(x) + b(x)U(x) = F(x,U(x)), x ∈ [d, 1 − d],
u(d) = p, u(1 − d) = q.

(3.1)

Letting u(x) = U(x) − ((x − d)/(1 − 2d))q + ((x + d − 1)/(1 − 2d)) and (L1u)(x) = εuxx(x) +
a(x)ux + b(x)u, (3.1) can further be converted into

(L1u)(x) = f(x, u(x)), (3.2)

where f(x, u(x)) = F(x, u(x))−a(x)((1/(1−2d))q− (1/(1−2d))p)−b(x)(((x−d)/(1−2d))q+
((x + d − 1)/(1 − 2d))p). Using IRKM, we can get the solution of the outer region problem.

(ii) Left Layer

We have

εUxx(x) + a(x)Ux(x) + b(x)U(x) = F(x,U(x)), x ∈ [0, d),

U(0) = α, U(d) = p is known.
(3.3)

Letting u(x) = U(x) − α − (x/d)(p − α), x/d = x1, then x = dx1, u(x) = u(dx1)
.= u(x1),

du/dx = (1/d)(du/dx1), and d2u/dx2 = (1/d2)(d2u/dx2
1). In space W3

2 [0, 1], (3.3) can
further be converted into following form:

(Lεu)(x1) = f(x1, u(x1)), (3.4)

where f(x1, u(x1)) = d2(F(x,U(x)) − (a(x)/d)(p − α) − b(x)(α + (x/d)(p − α))), (Lεu)(x1) =
εux1x1(x1) + a(x1)dux1(x1) + b(x1)d

2u(x1). Using IRKM, we can get the solution of the inner
region (left layer near) problem.
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Table 1: Comparison of results, x ∈ [0, d], ε = 2−10, and d = 0.1.

x uT (x) u100 (x) |uT − u100| |uT − u200|
0 0 0 0 0

0.01 −0.272864 −0.272866 1.8788 ×10−6 7.48551 ×10−7
0.02 −0.468765 −0.46877 5.38727 ×10−6 1.15911 ×10−7
0.03 −0.608251 −0.608257 6.10734 ×10−6 1.17267 ×10−7
0.04 −0.706254 −0.70626 5.54546 ×10−6 1.01462 ×10−7
0.05 −0.773632 −0.773636 4.52354 ×10−6 8.05672 ×10−7
0.06 −0.818281 −0.818285 3.45181 ×10−6 6.04003 ×10−7
0.07 −0.845955 −0.845958 2.49497 ×10−6 4.30798 ×10−7
0.08 −0.860849 −0.86085 1.66887 ×10−6 2.84958 ×10−7
0.09 −0.866029 −0.86603 8.9114 ×10−7 1.50666 ×10−7
0.1 −0.863746 −0.863746 3.33067 ×10−16 2.22045 ×10−7

Table 2: Comparison of results, x ∈ [d, 1 − d], ε = 2−30, and d = 0.001.

x uT (x) u100(x) |uT − u10| |uT − u100|
0.001 −0.99999 −0.99999 1.51212 × 10−13 4.71756 × 10−12

0.1008 −0.903026 −0.903045 1.89196 × 10−5 7.69723 × 10−10

0.2006 −0.652715 −0.652709 5.8384 × 10−6 1.58393 × 10−10

0.3004 −0.344297 −0.344299 1.66259 × 10−6 4.10425 × 10−10

0.4002 −0.0951225 −0.0951222 3.12214 × 10−7 2.67338 × 10−10

0.5998 −0.0951225 −0.0951223 1.7619 × 10−7 6.92579 × 10−10

0.6996 −0.344297 −0.344298 1.11205 × 10−6 2.66992 × 10−10

0.7994 −0.652715 −0.652711 3.96364 × 10−6 1.77961 × 10−10

0.8992 −0.903026 −0.903039 1.27772 × 10−5 6.22121 × 10−8

0.999 −0.99999 −0.99999 6.67721 × 10−12 1.91558 × 10−12

(iii) Right Layer

We have

εUxx(x) + a(x)Ux(x) + b(x)U(x) = F(x,U(x)), x ∈ (1 − d, 1],
U(1) = β, U(1 − d) = q.

(3.5)

Letting u(x) = U(x) − β + ((x − 1)/d)(q − β), (x/d) − (1/d) + 1 = x1, then x = dx1 + 1 − d,
u(x) = u(dx1 + 1 − d) .= u(x1), du/dx = (1/d)(du/dx1), and d2u/dx2 = (1/d2)(d2u/dx2

1). In
spaceW3

2 [0, 1], (3.5) can further be converted into following form:

(Lεu)(x1) = f(x1, u(x1)), (3.6)

where f(x, u(x)) = F(x,U(x))+ (a(x)/d)(q−β)−b(x)(β− ((x−1)/d)(q−β)), q is known (the
outer solution has been given), f(x1, u(x1)) = d2f(x, u(x)), and (Lεu)(x1) = εux1x1(x1) +
a(x1)dux1(x1) + b(x1)d2u(x1). Using IRKM, we can get the solution of the inner region
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Table 3: Comparison of results, x ∈ [1 − d, 1], ε = 2−10, and d = 0.01.

x uT (x) u10(x) |uT − u10| u200(x) |uT − u200|
0.991 −0.249439 −0.249431 8.11552 × 10−6 −0.249439 2.72812 × 10−9

0.992 −0.225227 −0.225219 7.75753 × 10−6 −0.225227 3.72799 × 10−9

0.993 −0.200201 −0.200194 7.17326 × 10−6 −0.200201 4.18195 × 10−9

0.994 −0.174338 −0.174331 6.40087 × 10−6 −0.174338 4.18298 × 10−9

0.995 −0.147609 −0.147604 5.47897 × 10−6 −0.147609 3.82517 × 10−9

0.996 −0.119989 −0.119984 4.44655 × 10−6 −0.119989 3.20353 × 10−9

0.997 −0.0914472 −0.0914438 3.34288 × 10−6 −0.0914472 2.41376 × 10−9

0.998 −0.0619555 −0.0619533 2.20746 × 10−6 −0.0619555 1.55216 × 10−9

0.999 −0.0314835 −0.0314825 1.07993 × 10−6 −0.0314835 7.1531 × 10−10

1. −2.22045 ×10−16 −3.62743 ×10−17 1.8577 × 10−16 −3.62852 ×10−17 1.85759 × 10−16

Table 4: Comparison of results, x ∈ [0, d], and d = 0.01

x uT (x) u3,10(x) |uT − u3,10| uT (x) u3,10(x) |uT − u3,10|
ε = 2−10 ε = 2−10 ε = 2−10 ε = 2−5 ε = 2−5 ε = 2−5

0.001 0.0324619 0.0324564 5.56236 × 10−6 0.00628391 0.0062835 −4.09563 × 10−7

0.002 0.063871 0.0638658 5.18059 × 10−6 0.0125208 0.0125204 −3.72485 × 10−7

0.003 0.0942614 0.0942567 4.67451 × 10−6 0.0187109 0.0187106 −3.57056 × 10−7

0.004 0.123666 0.123662 4.20082 × 10−6 0.0248545 0.0248541 −3.30969 × 10−7

0.005 0.152117 0.152113 3.72089 × 10−6 0.0309517 0.0309514 −3.0024 × 10−7

0.006 0.179645 0.179642 3.23223 × 10−6 0.0370029 0.0370026 −2.61703 × 10−7

0.007 0.20628 0.206277 2.78314 × 10−6 0.0430082 0.043008 −2.14219 × 10−7

0.008 0.232051 0.232049 2.18254 × 10−6 0.048968 0.0489678 −1.56195 × 10−7

0.009 0.256986 0.256984 2.14645 × 10−6 0.0548823 0.0548822 −8.66593 × 10−8

(right layer near) problem. After solving the inner and outer region problems, we combine
their solutions to obtain an approximate solution to the original problem (1.1) over the
interval 0 ≤ x ≤ 1.

4. Numerical Examples

Example 4.1. This example is from [6–8]:

−εuxx + u = f(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 0.
(4.1)

We determine f(x) to get the true solution, the true solution uT (x) = (e(x−1)/
√
ε + e−x/

√
ε)/(1 +

e−1/
√
ε) − cos2(πx). The numerical results are given in Tables 1, 2, and 3.
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Example 4.2. Considering the following nonlinear singularly perturbed problem with
boundary layers

εuxx +
ex

x
ux + eu = f(x), 0 < x ≤ 1,

u(0) = 0, u(1) = 0,
(4.2)

we determine f(x) to get the true solution, the true solution uT (x) = 1 + (x − 1)e−x/
√
ε −

xe(x−1)/
√
ε. The numerical results are given in Tables 3 and 4.

5. Conclusions

In this paper, IRKM was employed successfully for solving a class of SPPs with boundary
layers. The numerical results show that the present method is an accurate and reliable
analytical technique for SPP with boundary layers.
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