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The L2 space solution of an initial boundary problem for a generalized damped Boussinesq
equation is constructed. Certain assumptions on the coefficients of the equation are found to show
the existence and uniqueness of the global solution to the initial boundary problem. The explicit
expression for the large time asymptotic solution is obtained.

1. Introduction

The classical Boussinesq equation can be expressed by

utt = −αuxxxx + uxx + β
(
u2
)
xx
, (1.1)

where u(x, t) is the elevation of the free surface of fluid, the subscripts denote partial
derivatives, and the constant coefficients α and β depend on the depth of fluid and the
characteristic speed of the long waves. The Boussinesq equation (1.1) was first derived by
Boussinesq [1], in 1872, to describe propagation of long waves with small amplitude on the
surface of shallow water. Since then, extensive research has been carried out to study the
property and solutions of the equation and its associated initial boundary value problems.
Clarkson [2] proposed a general approach for constructing exact solutions of (1.1). Hirota
[3] deduced conservation laws and then examined the numerical solution of a Boussinesq
equation. Yajima [4] investigated the nonlinear evolution of a linearly stable solution for
(1.1). The exponentially decaying solution of the spherical Boussinesq equation has been
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investigated by Nakamura [5]. Galkin et al. [6] developed rational solutions of the one-
dimensional Boussinesq equation with both zero and nonzero boundary conditions at the
infinity in the space from the known solutions of the Kadomtzev-Petviashvili equation. The
structure of their solutions generalizes a family of rational solutions of the Korteweq-de
Vries equation to the case of two-wave processes. For many other methods to investigate
the Boussinesq system and other shallow water models, the reader is referred to [7–13] and
the references therein.

Various generalizations of the classical Boussinesq equation have been proposed and
studied from many aspects, in particular the well-posedness of the Cauchy problem for the
following equation,

utt = −uxxxx + uxx +
(
f(u)

)
xx. (1.2)

Bona and Sachs [14] showed that the special solitary wave solutions of (1.2) are nonlinearly
stable for a range of wave speeds. The local and global well-posedness of the problem has
been proved by transforming (1.2) into a system of nonlinear Schrödinger equations [15].

Varlamov [16] considered the initial-boundary condition for the following damped
Boussinesq equation:

utt − 2butxx = −αuxxxx + uxx + β
(
u2
)
xx
, (1.3)

where the second term on the left-hand side is responsible for dissipation, β ∈ R1, and α and
b are assumed to be positive constants and satisfy the assumption that α > b2. An initial-
boundary value problem for (1.3) with small initial data is considered for the case of one
space dimension. The classical solution of the problem is constructed, and the long-time
asymptotics is obtained in explicit form. The asymptotics show the presence of both time
and space oscillations and the exponential decay of the solution in time due to dissipations.
Varlamov [17] has also used the eigenfunction expansion method to consider the long-time
asymptotics for a damped Boussinesq equation in a ball which is similar to (1.3).

The aim of this paper is to study the initial-boundary value problem for the following
generalized damped Boussinesq equation:

utt − auttxx − 2butxx +
2b
a
ut = −cuxxxx + uxx − p2u + β

(
u2
)
xx
, (1.4)

where a, b and c are positive constants and constants p ≥ 0 and β ∈ R1. We assume the
cases a + c > b2 and p ≥ √

2b/a. The classical solutions of the initial-boundary value problem
for (1.4) will be constructed in the form of a Fourier series with coefficients in their own
term represented as series in terms of a small parameter involved in the initial conditions.
It is shown that the new solution of the initial-boundary value problem for (1.4) is well-
posedness. In addition, the long time behavior of our solution also shows the presence of
damped oscillations decaying exponentially in time as t → ∞.
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2. Theorem of Existence, Uniqueness, and Asymptotics

In this paper, we consider the following initial-boundary value problem for the damped
Boussinesq equation:

utt − auttxx − 2butxx +
2b
a
ut = −cuxxxx + uxx − p2u + β

(
u2
)
xx
,

u(0, t) = u(π, t) = 0, t > 0,

uxx(0, t) = uxx(π, t) = 0, t > 0,

u(x, 0) = ε2ϕ(x), ut(x, 0) = ε2ψ(x), x ∈ (0, π),

(2.1)

where a, b, c, and p are positive constants, β ∈ R, and ε is a small parameter.

Definition 2.1. The function u(x) ∈ C2n(0, π), n ≥ 1, if u(0) = u(π) = u′′ (0) = u′′ (π) = · · · =
u(2n−2)(0) = u(2n−2)(π) = 0 and u(2n)(x) ∈ L2(0, π).

Definition 2.2. The function u(x, t) defined on [0, π]×[0,+∞) is said to be the classical solution
of the problem defined by (2.1), if it has two continuous derivatives on [0, π] × [0,+∞) and
satisfies system (2.1).

The main results obtained are summarized in the following theorem.

Theorem 2.3. If a > 0, a + c > b2, p ≥ √
2b/a, ϕ(x) ∈ C8(0, π), ψ(x) ∈ C6(0, π), then there is a

ε0 > 0 such that, for 0 < ε ≤ ε0, problem (2.1) has a unique classical solution of which is represented
in the form of

u(x, t) =
∞∑
N=0

εN+1u(N)(x, t), (2.2)

where the function u(N)(x, t) is as that defined by expressions (3.24) in the proof below. This series
and the series for the derivatives of u(x, t) involved in (2.1) converge absolutely and uniformly with
respect to x ∈ [0, π], t ≥ 0, ε ∈ [0, ε0]. In addition, the solution of system (2.1) has the following long
time behavior as t → +∞ :

u(x, t) = e−(b/a)t
[
(A cos σt + B sin σt) sinx +O

(
e[(−ηb/a)t]

)]
, (2.3)

where σ =
√
ac + (a + c − b2) + (1 + ap2 − (b2/a2)) + p2 − (b2/a2)/1 + a is a positive constant,

0 < η < 1, and the coefficients A and B are defined by (3.44).

3. Proof of Theorem 2.3

The proof of Theorem 2.3 includes three parts, namely, existence of a solution, uniqueness
of the solution, and the asymptotics of the solution. The main techniques used in this paper
are based on those presented in [16]. However, it should be emphasized that the method for
proving uniqueness of the solution is different from that of [16].
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3.1. Existence of a Solution

Wemake an odd extension of u(x, t) in x to the interval [−π, 0] and represent u in the form of
a complex Fourier series; namely,

u(x, t) =
∞∑

n=−∞
n/= 0

ûn(t)einx, ûn(t) =
1
2π

∫π

−π
u(x, t)e−inxdx, (3.1)

where û−n(t) = −ûn(t) for n ≥ 1. For the above equalities, we shall use the fact that u(x, t)
belongs to the space L2(−π,π) for each fixed t > 0, and we shall denote the corresponding
norm by

‖u(t)‖ = ‖u(t)‖L2(−π,π) =
(∫π

−π
|u(x, t)|2dx

)1/2

. (3.2)

From (3.1), we obtain, through a simple calculation, that

u(x, t) = 2i
∞∑
n=1

ûn(t) sinnx, ûn(t) =
1
iπ

∫π

0
u(x, t) sinnx dx. (3.3)

Noting the initial functions, we can write on [−π,π] with

ϕ̂−n = ϕ̂n, ψ̂−n = ψ̂n, (3.4)

for n ≥ 1 that

ϕ(x) =
∞∑

n=−∞
n/= 0

ϕ̂ne
inx, ψ(x) =

∞∑
n=−∞
n/= 0

ψ̂ne
inx. (3.5)

Then on the interval [0, π], we obtain

ϕ(x) = 2i
∞∑
n=1

ϕ̂n sinnx, ψ(x) = 2i
∞∑
n=1

ψ̂n sinnx,

ϕ̂n =
1
iπ

∫π

0
ϕ(x) sinnx dx, ψ̂n =

1
iπ

∫π

0
ψ(x) sinnx dx.

(3.6)
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Integrating (3.6) by parts and using the smoothness assumption of the initial data, we get the
following inequalities:

∣∣ϕ̂n
∣∣ ≤ C1n

−8,
∣∣ψ̂n

∣∣ ≤ C1n
−6, n ≥ 1, (3.7)

where C1 is a positive constant. Substituting (3.1) and (3.5) into (2.1), we have the following
Cauchy problem for the function ûn(t), n ∈ Z:

(
1 + an2

)
û′′n(t) + 2

(
bn2 +

b

a

)
û′n(t) +

(
cn4 + n2 + p2

)
ûn(t) = −βn2P(ûn(t)),

ûn(0) = ε2ϕ̂n, û′n(0) = ε
2ψ̂n,

(3.8)

where

P(ûn(t)) =
∞∑

g=−∞
g /= 0,n

ûn−g(t)ûg(t), û−n(t) = −ûn(t) for n ≥ 1. (3.9)

For n = 1, we have

P(û1(t)) = 2
∞∑
g=1

û−g(t)û1+g(t) = −2
∞∑
g=1

ûg(t)û1+g(t). (3.10)

For n ≥ 2, it has

P(ûn(t)) =
n−1∑
g=1

ûn−g(t)ûg(t) − 2
∞∑
g=1

ûg(t)ûn+g(t). (3.11)

Letting Φn = εϕ̂n, Ψn = εψ̂n and solving the initial value problem (3.8), we get

ûn(t) = εe−(b/a)t
{[

cos(σnt) +
b

a
· sin(σnt)

σn

]
Φn +

sin(σnt)
σn

Ψn

}

− βn2

σn(1 + an2)

∫ t

0
exp

[
−b
a
(t − τ)

]
sin [σn(t − τ)]P(ûn(τ))dτ,

(3.12)

where

σn =

√
acn6 + (a + c − b2)n4 + (

1 + ap2 − (2b/a)
)
n2 + p2 − (b2/a2)

1 + an2
,

n ≥ 1, a + c > b2, p ≥
√
2b
a

.

(3.13)
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Now, in order to solve the integral equation, we use the perturbation theory. Firstly, we
express ûn(t), n ≥ 1, as a formal series in ε:

ûn(t) =
∞∑
N=0

εN+1ξ̂
(N)
n (t). (3.14)

Then, by substituting (3.14) into (3.12) and equating the coefficients of the like powers of ε,
we get the following formulas, respectively, forN = 0 andN ≥ 1 :

ξ̂
(0)
n (t) = εe−(b/a)t

{[
cos(σnt) +

b

a
· sin(σnt)

σn

]
Φn +

sin(σnt)
σn

Ψn

}
, (3.15)

ξ̂
(N)
n (t) = − βn2

σn(1 + an2)

∫ t

0
exp

[
−b
a
(t − τ)

]
× sin [σn(t − τ)]QN

(
ξ̂
(j)
n (τ)

)
dτ, N ≥ 1, (3.16)

where n ≥ 1 and

QN

(
ξ̂
(j)
n (τ)

)
= εn

n−1∑
g=1

N∑
j=1

ξ̂
(j−1)
n−g (τ)ξ̂(N−j)

g (τ) − 2
∞∑
g=1

N∑
j=1

ξ̂
(j−1)
n+g (τ)ξ̂(N−j)

g (τ), (3.17)

in which ε1 = 0 and εn = 1 for n ≥ 2.
Nowwemust prove that the formally constructed function (3.3), together with (3.12)–

(3.14), does represent a solution of problem (2.1). To do this, we shall show that the series

u(x, t) =
∞∑

n=−∞
n/= 0

einx
∞∑
N=0

εN+1ξ̂
(N)
n (t)

= 2i
∞∑
n=1

sin nx
∞∑
N=0

εN+1ξ̂
(N)
n (τ)

(3.18)

converges absolutely and uniformly. For this purpose, we firstly establish the following time
estimates for n ≥ 1, t > 0, N ≥ 0:

∣∣∣ξ̂(N)
n (t)

∣∣∣ ≤ CN(N + 1)−2n−6e−(b/a)t. (3.19)

Here and in the sequel we denote by C any positive constant independent of N, n, ε, and t,
but possibly depending on the coefficients of the equation and the initial functions.

We shall use the induction on the numberN. ForN = 0, we have from (3.7) and (3.15)
that

∣∣∣ξ̂(0)n (t)
∣∣∣ ≤ εe−(b/a)t

[(
1 +

b

aσn

)∣∣∣Φ̂n

∣∣∣ + 1
σn

|Ψn|
]

≤ εn−6e−(b/a)t.

(3.20)
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Assuming that (3.19) is valid for all ξ̂(s)n (t) with 0 ≤ s ≤ N − 1, we shall prove that (3.19) also
holds for s =N. According to [16], for any integer n ≥ 1, g ≥ 1, and g /=n, we have

∣∣n − g∣∣−6g−6 ≤ 26n−6
[
g−6 +

∣∣n − g∣∣−6
]
,

j−2
(
N + 1 − j)−2 ≤ 22(N + 1)−2

[
j−2 +

(
N + 1 − j)−2

]
.

(3.21)

From (3.16) and noting that

bn2

1 + an2
≥ b

a
for n/= 0, (3.22)

we have

∣∣∣ξ̂(N)
n (t)

∣∣∣ ≤ C
∣∣β∣∣(N + 1)−2n−6

∞∑
g=1

(
g−6 +

∣∣n − g∣∣−6
)

×
∞∑
j=1

Cj−1CN−j
[(
N + 1 − j)−2 + j−2

]
|SN(n, t)|, |SN(n, t)|

≤ Ce−(b/a)t
∫ t

0
e((b/a)−(2b/a))τdτ

≤ Ce−(b/a)t ×
∣∣∣∣∣
e((b/a)−(2b/a))t − 1
(b/a) − (2b/a)

∣∣∣∣∣

≤ Ce−(b/a)t.

(3.23)

Therefore, we know that inequality (3.19) holds.
For the derivation of (3.15), we recall (3.3) and (3.14) with ξ̂(N)

n defined by (3.15) and
(3.16) and interchange the order of summations in the series; namely,

u(x, t) = 2i
∞∑
n=1

ûn(t) sinnx = 2i
∞∑
n=1

sinnx
∞∑
N=0

εN+1ξ̂
(N)
n (t) =

∞∑
N=0

εN+1u(N)(x, t), (3.24)

where

u(N)(x, t) = 2i
∞∑
n=1

ξ̂
(N)
n sinnx. (3.25)
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The interchange of the order of summations is allowable as the series is absolutely and
uniformly convergent for x ∈ [0, π], t ≥ 0 and ε ∈ [0, ε0]. Differentiating (3.15) and (3.16), we
get, for k = 1, 2, that

∂tkξ̂
(0)
n (t) =

k∑
l=0

clk(−1)l
(
b

a

)l

e−(b/a)t∂k−lk

{[
cos(σnt) +

b

a

sin(σnt)
σn

]
Φn +

sin(σnt)
σn

Ψn

}
,

∂kt ξ̂
(N)
n (t) = − βn2

(1 + an2)σn

∫ t

0
gk(n, t − τ)QN

(
ξ̂
(j)
n (τ)

)
dτ + Rk(n, t),

(3.26)

where

gk(n, t) =
k∑
l=0

clk(−1)l
(
b

a

)l

e−(b/a)tσk−ln sin
[
σnt +

(k − l)π
2

]
, (3.27)

QN(ξ̂(j)n (τ)) is defined by (3.16), cl
k
(l = 0, 1, . . . , k) are binomial coefficients, and Rk(n, t) (k =

1, 2) are obtained by differentiating the integral in (3.16) and are as follows:

R1(n, t) = 0, R2(n, t) = −βn2QN

(
ξ̂
(j)
n (t)

)
. (3.28)

Hence, using (3.19), we deduce that for, n ≥ 1, N ≥ 0, t > 0, and k ≥ 0, 1, 2,

∣∣∣∂kt ξ̂(N)
n (t)

∣∣∣ ≤ CN(N + 1)−2n2k−6e−(b/a)t,
∣∣∣∂kt ûn(t)

∣∣∣ ≤ Cn2k−6e−(b/a)t.
(3.29)

Using these estimates and calculating the necessary derivatives of (3.29), we can prove
straightforwardly that (3.29) represents the classical solution of the initial-boundary value
problem defined by system (2.1).

3.2. Uniqueness of the Solution

For proving the uniqueness of the constructed solution, we shall assume that there exist two
classical solutions u(1)(x, t) and u(2)(x, t) to system (2.1) and then deduce that u(1)(x, t) must
be equal to u(2)(x, t).
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Making an odd extension of the two solutions to the segment (−π, 0], we notice that
both of them belong to the L2(−π,π) space, and according to Definition 2.2, we have for each
fixed time t > 0 that

max
x∈[−π,π]

∣∣∣u(1)(x, t)
∣∣∣ ≤ Ct, max

x∈[−π,π]

∣∣∣u(2)(x, t)
∣∣∣ < Ct, (3.30)

where Ct is a constant depending on t. Let w(x, t) = u(1)(x, t) − u(2)(x, t), and make an even
extension of w(x, t) to . . . (−3π,−2π), (−2π,−π), (π, 2π), (2π, 3π), . . . Then, we have from
(2.1) that

wtt − awttxx − 2bwtxx +
2b
a
wt = −cwxxxx +wxx − p2w + β

[
w(x, t)

(
u(1)(x, t) + u(2)(x, t)

)]
xx
,

w(x, 0) = wt(x, t) = 0.
(3.31)

Taking the Fourier transform of w in the interval (−∞,+∞); namely,

ŵ(ξ, t) =
∫+∞

−∞
e−ixξw(x, t)dx, (3.32)

we have

(
1 + aξ2

)
ŵ′′(ξ, t) + 2b

(
ξ2 +

b

a

)
ŵ(ξ, t) +

(
cξ4 + ξ2 + p2

)
ŵ(ξ, t) = −βξ2f̂(ξ, t), (3.33)

where

f(x, t) = w
(
u(1) + u(2)

)
(x, t). (3.34)

From (3.33), we have

ŵ(ξ, t) = − βξ2

σξ(1 + aξ2)

∫ t

0
exp

[
−b
a
(t − τ)

]
sin

(
σξ(t − τ)

)
f̂(ξ, τ)dτ, (3.35)

where

σξ =

√
acξ6 + (a + c − b)ξ4 + (

1 + ap2 − (2b2/a)
)
ξ2 + p2 − (b2/a2)

1 + aξ2
. (3.36)
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Thus, it has

|ŵ(ξ, t)| ≤ C

∫ t

0

∣∣∣∣exp
[
−b
a
(t − τ)

]
f̂(ξ, τ)

∣∣∣∣dτ

≤ C

[∫ t

0
exp

[
−b
a
(t − τ)

]
dτ

]1/2[∫ t

0

∣∣∣f̂(ξ, τ)
∣∣∣
2
dτ

]1/2

≤ C

[∫ t

0

∣∣∣f̂(ξ, τ)
∣∣∣
2
dτ

]1/2

.

(3.37)

It follows from (3.37) and the Parseval inequality that

∫+∞

−∞
|ŵ(ξ, t)|2dξ ≤ C

∫+∞

−∞

∫ t

0

∣∣∣f̂(ξ, τ)
∣∣∣
2
dτ dξ

≤ C

∫ t

0

∥∥∥f̂(ξ, t)
∥∥∥
2

L2
dτ

≤ C

∫ t

0

∥∥∥w(x, τ)
(
u(1)(x, τ) + u(2)(x, τ)

)∥∥∥
2

L2
dτ

≤ C

∫ t

0
Cτ‖w(x, τ)‖2L2dτ.

(3.38)

Using the Gronwall inequality, we obtain

w(x, t) = 0
(
in L2

)
, (3.39)

which implies that u(1)(x, t) ≡ u(2)(x, t) and thus the solution is unique.

3.3. Long Time Asymptotics

To find the long-time behavior of the constructed solution, we firstly determine a subtle
asymptotic estimate of û1(t) which will contribute to the major term and then estimate the
remaining terms

∑∞
n=2 ûn(t) sinnx.

Since

û1(t) =
∞∑
N=0

εN+1ξ̂1
(N)

(t), (3.40)
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we substitute it into the integral equations (3.15) and (3.16) to obtain

ξ̂1
(0)
(t) = e−(b/a)t

[
A(0) cos(σt) + B(0) sin(σt)

]
,

ξ̂1
(N)

(t) = e−(b/a)t
{[
A(N) + R(N)

A (t)
]
cos(σt) +

[
B(N) + R(N)

B (t)
]
sin(σt)

}
,

(3.41)

where

A(0) = εϕ̂1,

B(0) =
ε

σ

(
b

1 + a
ϕ̂1 + ψ̂1

)
,

σ =

√
ac + 1 + a + c − b2

1 + a
,

A(N) =
β

σ(1 + a)

∫ t

0
e(b/a)τ sin(στ)Sun(τ)dτ,

B(N) = − β

σ(1 + a)

∫ t

0
e(b/a)τ cos(στ)Sun(τ)dτ,

R
(N)
A =

β

σ(1 + a)

∫+∞

0
e(b/a)τ sin(στ)Sun(τ)dτ,

R
(N)
B = − β

σ(1 + a)

∫+∞

0
e(b/a)τ cos(στ)Sun(τ)dτ,

Sun(t) =
∞∑
g=1

N∑
j=1

ξ̂
(j−1)
1+g (t)ξ̂(N−j)

g (t), N ≥ 1,

(3.42)

and the function ξ̂(j)(t), j = 0, 1, . . . ,N − 1 are defined by (3.15)-(3.16). Taking n ≥ 2, N ≥ 1
and using a method similar to that used in [16], it follows from (3.19) and (3.24) that there
exists a positive number 0 < η < 1 such that

∣∣∣R(N)
A (t)

∣∣∣ ≤ ce−(ηbt/a),
∣∣∣R(N)

B (t)
∣∣∣ ≤ ce−(ηbt/a). (3.43)

Hence, we have proved that, as t → +∞,

2iû1(t) = e−(b/a)t[A cos(σt) + B sin(σt)] +O
(
e−((1+η)b/a)t

)
,

A = 2i
∞∑
N=0

εN+1A(N), B = 2i
∞∑
N=0

εN+1B(N),
(3.44)

where 0 < η < 1,A(N) andB(N) are defined by (3.41), and the series above converge absolutely
and uniformly for ε ∈ [0, ε0].
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Now, we can represent the solution by

u(x, t) = 2iû1(t) + Ru(x, t),

Ru(x, t) = 2i
∞∑
n=2

sinnx
∞∑
N=0

ξ̂n
(N)

(t).
(3.45)

Using (3.24), we deduce that

|Ru(x, t)| ≤ exp
[−ηb
a

t

] ∞∑
n=0

cNεN+1(N + 1)−2
∞∑
N=2

n−6 ≤ c exp
[−ηb
a

t

]
, (3.46)

u(x, t) = e−(b/a)t
[
(A cosσt + B sinσt) sinx +O

(
e−[(ηb/a)t]

)]
, 0 < η < 1. (3.47)

It follows from (3.47) that the inequality (2.3) holds.
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