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Numerical solutions for Burgers’ equation based on the Galerkins’ method using cubic B-splines
as both weight and interpolation functions are set up. It is shown that this method is capable of
solving Burgers’ equation accurately for values of viscosity ranging from very small to large. Three
standard problems are used to validate the proposed algorithm. A linear stability analysis shows
that a numerical scheme based on a Cranck-Nicolson approximation in time is unconditionally
stable.

1. Introduction

A study of Burgers’ equation is important since it arises in the approximate theory of
flow through a shock wave propagating in a viscous fluid [1] and in the modeling of
turbulence [2]. Burgers’ equation and the Navier-Stokes equation are similar in the form
of their nonlinear terms and in the occurrence of higher order derivatives with small
coefficients in both [3]. The applications have been found in field as diverse as number
theory, gas dynamics, heat conduction, elasticity, and so forth [4]. The exact solutions of
the one-dimensional Burgers’ equation have been surveyed by Benton and Platzman [5].
However, difficulties arise in the numerical solution of Burgers’ equation for small values
of the viscosity coefficient, that is large Reynolds numbers, which correspond to steep
wave fronts [6]. In these cases, numerical methods are likely to produce results which
include large nonphysical oscillations unless the size of the elements in unrealistically small.
Many studies have been done on the numerical solutions of Burgers’ equation to deal with
solutions for the large Reynolds number values. Some of the earlier numerical studies are
documented as follows: a finite element method has been given by Caldwell et al. [7] to solve
Burgers’ equation by altering the size of the element at each stage using information from
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three previous steps. Galerkin and Petrov-Galerkin finite element methods involving a time
dependent grid [8, 9], and product approximation methods [10], have been used successfully
to obtain accurate numerical solutions even for small viscosity coefficients.

Rubin and Graves Jr. [11] have used the spline function technique and quasilin-
earization for the numerical solution of Burgers’ equation in one space variable. A cubic
spline collocation procedures were developed for Burgers’ equation in the papers [12–15].
Soliman [16, 17] has solved Burgers’ equation numerically using a new similarity technique,
and analytically using the modified extended tanh-function method. Raslan [18] has solved
Burgers’ equation using collocation method based on quadratic B-spline finite element
method. In this paper we set up the finite element method using Galerkins’ method with
cubic splines as shape functions to obtain a numerical solution for Burgers’ equation. The
resulting systemwill be a system of ordinary differential equations which can be solved using
a Crank-Nicolson approximation in time.

2. The Governing Equation

Consider Burgers’ equation in the form

ut + εuux − νuxx=0, a ≤ x ≤ b, (2.1)

where ε and ν are positive parameters and the subscripts t and x denote temporal and spatial
differentiation, respectively. Appropriate boundary conditions will be chosen from

u(a, t) = α,

u(b, t) = β,

ux(a, t) = ux(b, t) = 0,

uxx(a, t) = uxx(b, t) = 0.

(2.2)

Applying the Galerkin approach [19–21] to (2.1) with weight function v, integrating
by parts, and choosing the boundary conditions from (2.2) lead to the weak form

∫b

a

v(ut + εuux)dx + ν

∫b

a

vxuxdx = ν[vux]ba, (2.3)

where the right-hand side of (2.3) is evaluated only at the boundaries. The conditions on the
interpolation functions are now simply that only the functions and their first derivative need
to be continuous throughout the region. However, we have chosen to use, as trial functions,
the very adaptable cubic splines with their well-known advantages.

3. The B-Spline Finite Element Solution

The region [a, b] is partitioned into N finite elements of equal length h by knots xi such that
a = x0 < x1 · · · < xN = b, and let φi(x) be the cubic B-splines with knots at the points xi. The
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Table 1

x x�−2 x�−1 x� x�+1 x�+2

φ� 0 1 4 1 0
φ

′
�

0 3/h 0 −3/h 0
φ

′′
�

0 6/h2 −12/h2 6/h2 0

set of splines {φ−1, φ0, . . . , φN, φN+1} form a basis for functions defined over [a, b]. We seek
the approximation uN(x, t) to the solution u(x, t), which uses these splines as trial functions

uN(x, t) =
N+1∑
�=−1

δ�(t)φ�(x), (3.1)

where the δ� are time-dependent quantities to be determined from (2.3).
Defining a local coordinate system for the finite element [x�, x�+1] with nodes at x�

and x�+1, each cubic B-spline covers four elements [22]; consequently each element [x�, x�+1]
is covered by four splines (φ�−1, φ�, φ�+1, φ�+2) which are given in terms of a local coordinate
system η, where η = x − x� and 0 ≤ η ≤ h, by

⎧⎪⎪⎨
⎪⎪⎩

φ�−1
φ�

φ�+1

φ�+2

=
1
h3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
h − η

)3
,

h3 + 3h2(h − η
)
+ 3h

(
h − η

)2 − 3
(
h − η

)3
,

h3 + 3h2η + 3hη2 − 3η3,

η3, 0 ≤ η ≤ h.

(3.2)

It is the representation of cubic B-spline over a single element which is most appropriate for
the finite element approach where all other splines are zero over this element.

The spline φ�(x) and its two principle derivatives vanish outside the interval
[x�−2, x�+2]. In Table 1 we list for convenience the values of φ�(x) and its derivatives φ′

�
(x),

φ′′
�
(x) at the relevant knots.

We now identify the finite elements for the problem with the intervals [x�, x�+1], and
the element nodes with the knots x�, x�+1.

Using (3.1) and Table 1, we see that the nodal parameters u� are given in terms of the
parameters δ� by

u� = u(x�) = δ�−1 + 4δ� + δ�+1,

u�+1 = u(x�+1) = δ� + 4δ�+1 + δ�+2,
(3.3)

and the variation of a function u over the element [x�, x�+1] is given by

u =
�+2∑

j=�−1
δjφj . (3.4)
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In addition, we have the valuable property that δ�−1 − δ�+2 determine also the first and
second derivatives at the nodes (element boundaries), and these are also continuous

u′ =
3
h
(−δ�−1 + δ�+1), (3.5)

u′′ =
6
h2 (δ�−1 − 2δ� + δ�+1). (3.6)

The finite element equations we will set up will not be expressed in terms of the nodal
parameters u�, u

′
� but in terms of element parameters δ� , so we shall not directly determine

the nodal values as is the case with the usual finite element formulations, but these can always
be recovered using (3.3) and (3.5).

We will now set up the element matrices relevant to (2.3). For a typical element
[x�, x�+1], we have the contribution

∫x�+1

x�

v(ut + εuux)dx + ν

∫x�+1

x�

vxuxdx = 0. (3.7)

Using (3.4) in (3.7) and identifying the weight function v(η)with the cubic splines we
obtain

�+2∑
j=�−1

[∫h

0
φiφjdη

]
dδe

j

dt
+ ε

�+2∑
j=�−1

�+2∑
k=�−1

[∫h

0
φiφ

′
jφkdη

]
δe
kδ

e
j + ν

�+2∑
j=�−1

[∫h

0
φ′
iφ

′
jdη

]
δe
j = 0, (3.8)

which can be written in matrix form as

Ae dδ
e

dt
+ εδeT Leδe + νCeδe = 0, (3.9)

where δe = (δe
�−1, δ

e
�, δ

e
�+1, δ

e
�+2)

T .
The element matrices are given by the integrals

Ae
ij =

∫h

0
φiφjdη,

Ce
ij =

∫h

0
φ′
iφ

′
jdη,

Le
ijk =

∫h

0
φiφ

′
jφkdη,

(3.10)
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where i, j, k take only the values � − 1, �, � + 1, � + 2, for this typical element [x�, x�+1]. The
matrices Ae,Ce are therefore 4 × 4 and the matrix Le is 4 × 4 × 4. An associated 4 × 4 matrix
Be is given by

Be
ij =

�+2∑
k=�−1

Le
ijkδ

e
k, (3.11)

which also depends on the parameters δe
k and will be used in the following theoretical

discussions.
The element matrices Ae,Ce, Le, and Be can be determined algebraically from (3.2).

Then, we obtain

Ae =
h

140

⎛
⎜⎜⎝

20 129 60 1
129 1188 933 60
60 933 1188 129
1 60 129 20

⎞
⎟⎟⎠,

Ce =
1

10h

⎛
⎜⎜⎝

18 21 −36 −3
21 102 −87 −36
−36 −87 102 21
−3 −36 21 18

⎞
⎟⎟⎠,

(3.12)

Be
11 = − 1

840
(280, 1605, 630, 5)δe,

Be
12 = − 1

840
(150, 1305, 792, 21)δe,

Be
13 =

1
840

(420, 2781, 1314, 21)δe,

Be
14 =

1
840

(10, 129, 108, 5)δe,

Be
21 = − 1

840
(1605, 10830, 5349, 108)δe,

Be
22 = − 1

840
(1305, 17640, 17541, 1314)δe,

Be
23 =

1
840

(2781, 25002, 17541, 792)δe,

Be
24 =

1
840

(129, 3468, 5349, 630)δe,

Be
31 = − 1

840
(630, 5349, 3468, 129)δe,

Be
32 = − 1

840
(792, 17541, 25002, 2781)δe,
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Be
33 =

1
840

(1314, 17541, 17640, 1305)δe,

Be
34 =

1
840

(108, 5349, 10830, 1605)δe,

Be
41 = − 1

840
(5, 108, 129, 10)δe,

Be
42 = − 1

840
(21, 1314, 2781, 420)δe,

Be
43 =

1
840

(21, 792, 1305, 150)δe,

Be
44 =

1
840

(5, 630, 1605, 280)δe.

(3.13)

Combining contributions from all elements leads to the matrix equation

A
dδ

dt
+ Bδ + νCδ = 0, (3.14)

where

δ = (δ−1, δ0, δ1, . . . , δN+1)
T , (3.15)

and A,B,C assembled from the element matrices Ae, Be, Ce in the usual way, are
septadiagonal in form. We have assumed homogeneous boundary conditions on u or u′ and
so the term on the right-hand side of (2.3) is zero. The general row for each matrix has the
following form:

A:
h

140
(1, 120, 1191, 2416, 1191, 120, 1),

C:
−1
10h

(3, 72, 45,−240, 45, 72, 3),

B:
1
840

(−(5, 108, 129, 10, 0, 0, 0)δ,−(21, 1944, 8130, 3888, 129, 0, 0)δ,

− (−21, 0, 17841, 35682, 8130, 108, 0)δ, (5, 1944, 17841, 0,−17841,−1944,−5)δ,
(0, 108, 8130, 35682, 17841, 0,−21)δ, (0, 0, 129, 3888, 8130, 1944, 21)δ,
(0, 0, 0, 10, 129, 108, 5)δ),

(3.16)

where δ = (δ�−3, δ�−2, δ�−1, δ�, δ�+1, δ�+2, δ�+3)
T , for row �. ThematricesA andC are symmetric

while the form of the matrix B has a somewhat more complex structure.
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We will time centre on t = (n + 1/2)Δt and write

δ =
1
2

(
δn + δn+1

)
,

dδ

dt
=

1
Δt

(
δn+1 − δn

)
, (3.17)

where the δn are the parameters at time nΔt, and Δt is the timestep. Then (3.14), can be
written as

[
A +

εΔt

2
B +

νΔt

2
C

]
δn+1 =

[
A − εΔt

2
B − νΔt

2
C

]
δn. (3.18)

The matrices A, C are independent of the time; so, they will remain constant
throughout the calculations. While the matrix B is dependent on the time, it must therefore
be recalculated at each step. Apply the boundary conditions and eliminate δ−1, δN+1 from
(3.18) which then becomes (N + 1) × (N + 1) septadiagonal system and can be solved using
septadiagonal algorithm.

The time evolution of the approximate solution uN(x, t) is determined by the time
evolution of the vector δn. This is found by repeatedly solving the system (3.18), once
the initial vector δ0 has been computed from the initial conditions. The system (3.18) is
septadiagonal and so can be solved using the septadiagonal algorithm, but an inner iteration
is needed at each timestep to scope with the nonlinear terms in which the matrix B depends
on δ = (1/2)(δn + δn+1). The following solution procedure is followed.

(i) At time t = 0, for the initial step of the inner iteration, we approximate B by B∗

calculated from δ0 only and obtain a first approximation to δ1 from (3.18). We then
iterate, using (3.18) with matrix B calculated from δ = (1/2)(δ0 + δ1), for up to
10-times to refine the approximation to δ1.

(ii) At the other timesteps we use for the matrix B, at the first step of inner iteration,
B∗ derived from δ∗ = δn + (1/2)(δn − δn−1), to obtain a first approximation to δn+1,
by solving (3.18). We then iterate, using (3.18) with matrix B calculated from δ =
(1/2)(δn + δn+1), two- or three-times to refine the approximation to δn+1.

4. The Stability Analysis

An investigation into the stability of the numerical scheme (3.18) is based on the Von
Neumann theory in which the growth factor of a typical Fourier mode defined as

δn
j = δ̂neijkh, (4.1)

where k is the mode number, and h is the element size, is determined for a linearization of
the numerical scheme (3.18).

In this linearization, we assume that the quantity u in the nonlinear term uux is locally
constant. This is equivalent to assuming that the corresponding values of δj are also constant
and equal to d.
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A linearized recurrence relationship corresponding to (3.18) is then given by

α1δ
n+1
�−3 + α2δ

n+1
�−2 + α3δ

n+1
�−1 + α4δ

n+1
� + α5δ

n+1
�+1 + α6δ

n+1
�+2 + α7δ

n+1
�+3

= α7δ
n
�−3 + α6δ

n
�−2 + α5δ

n
�−1 + α8δ

n
� + α3δ

n
�+1 + α2δ

n
�+2 + α1δ

n
�+3,

(4.2)

where

α1 = r1 − 3r2 − 3r3, α2 = 120r1 − 168r2 − 72r3,

α3 = 1191r1 − 735r2 − 45r3, α4 = 2416r1 + 240r3,

α5 = 1191r1 + 735r2 + 45r3, α6 = 120r1 + 168r2 + 72r3,

α7 = r1 + 3r2 + 3r3, α8 = 2416r1 − 240r3,

r1 =
h

140
, r2 =

εdΔt

20
, r3 =

νΔt

20
.

(4.3)

Substituting (4.1) into (4.2)we obtain

(a + 120 + ib)δ̂n+1 = (a − 120 − ib)δ̂n, (4.4)

where

i =
√
−1,

a = r1 cos 3kh + 120r1 cos 2kh + 1191r1 cos kh + 1208r1,

b = (3r2 + 3r3) sin 3kh + (168r2 + 72r3) sin 2kh + (1470r2 + 45r3) sin kh.

(4.5)

Let δ̂n+1 = gδ̂n and substitute in (4.4) to give

g =
a − 120 − ib

a + 120 + ib
, (4.6)

where g is the growth factor for the mode. Then, the modulus of the growth factor is

∣∣g∣∣ =
√
gg =

√√√√ (a − 120)2 + b2

(a + 120)2 + b2
< 1. (4.7)

Therefore the linearized scheme is unconditionally stable.

5. The Initial State

From the initial condition u(x, 0) on the function u(x, t), we must determine the initial vector
δ0 so that the time evolution of δ, using (3.18), can be started.
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First rewrite (3.1) for the initial condition as

uN(x, 0) =
N+1∑
j=−1

δ0
j φj(x), (5.1)

where δ0
j are unknown parameters to be determined. To do this we require uN(x, 0) to satisfy

the following constraints:

(a) it must agree with the initial condition u(x, 0) at the knots; (3.3) leads to N + 1
conditions, that is, uN(x�, 0) = u(x�, 0), � = 0, . . . ,N,

(b) the first or second derivatives of the approximate initial condition shall agree with
those of the exact initial condition at both ends of the range; (3.5) or (3.6) produces
two further equations, that is, u′(x0, 0) = u′(xN, 0) = 0.

The initial vector δ0 is then determined as the solution of a matrix equation derived
from (3.3)–(3.6)

Mδ0 = b. (5.2)

This system can be solved using the Thomas algorithm.

6. The Test Problems

Numerical solutions of Burgers’ equation for three test problems will now be considered. To
measure the accuracy of the numerical algorithm, we compute the difference between the
analytic and numerical solutions at each mesh point after specified timesteps and use these
to calculate the discrete L2- and L∞- error norms.

(a) Burgers’ equation has the analytic solution [23]

u(x, t) =
x/t

1 +
√
(t/t0) exp(x2/4νt)

, 0 ≤ x ≤ 1, t ≥ 1, (6.1)

where t0 = exp(1/8ν). With (6.1), at time t = 1 as initial condition, numerical solutions are
determined up to a time of t = 4, and use as boundary conditions u(0, t) = u(1, t) = 0. We
discuss the three cases.

(i) Figures 1 and 2 shows us the behavior of the numerical solutions for viscosity
coefficients ν = 0.005 and 0.0005 at times from t = 1 to 3.1 and from t = 1 to 3.25,
respectively. It is seen that for the smaller viscosity value the propagation front
is steeper. These graphs agree with those reported by Nguyen and Reynen [23]
to within plotting accuracy. In both cases, if the exact solutions are plotted on the
same diagram, the curves are indistinguishable. The L2- and L∞- error norms are
comparedwith results presented in the papers [9, 14], which are given in Tables 1, 2,
and 3. From these tables, we find that the errors obtained by the present algorithm
are smaller than the errors calculated by [9, 14].
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Figure 1: Example (a): v = 0.005, h = 0.02,Δt = 0.1.
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Figure 2: Example (a): v = 0.0005, h = 0.005,Δt = 0.01.

(ii) The case with ν = 0.0005, h = 0.005, Δt = 0.01, at different times t = 1.7, 2.5,
and 3.25, respectively. The numerical and the analytical solutions computed by the
present approach are given in Table 4, with corresponding previous results [15].
From Table 4, we deduce that the numerical solutions computed by the present
algorithm are more accurate than those evaluated by [15], at different times.

(iii) In this case, we take h = 0.01,Δt = 0.01, and viscosity coefficients ν = 0.005, ν = 0.01.
The results given in Tables 5 and 6 show us that the computed errors using the
present algorithm are smaller than the corresponding errors obtained by Raslan
[18], even, when we chose large timestep.

(b) A second analytic solution is [11]

u(x, t) =
1
2

[
1 − tanh

{
1
4ν

(
x − 1

2
t − 15

)}]
. (6.2)

We take as initial condition (6.2), at t = 0, over the range 0 ≤ x ≤ 30, with boundary
conditions

u(0, t) = 1, u(30, t) = 0, t > 0. (6.3)
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Figure 3: The behavior of the numerical solution with different viscosity at different times.
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Figure 4: Example (c): the numerical solution with v = 0.01 at different times.

Table 2: Error norm L2 × 103 for problem (a).

ν = 0.005 ν = 0.0005
t = 1.7 t = 2.4 t = 3.1 t = 1.75 t = 2.5 t = 3.25

Present 1.206 0.653 0.434 0.581 0.252 0.179
[14] 1.003 0.598 0.522 0.567 0.308 0.291
[9] 2.281 1.175 0.808 2.023 2.094 0.933

Table 3: Error norm L∞ × 103 for problem (a).

ν = 0.005 ν = 0.0005
t = 1.7 t = 2.4 t = 3.1 t = 1.75 t = 2.5 t = 3.25

Present 3.868 1.679 1.295 5.371 1.619 0.821
[14] 3.730 2.029 1.537 5.880 2.705 2.291
[9] 7.150 2.921 2.297 14.033 12.615 8.394
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Table 4: Comparison of results at different times for ν = 0.0005 and 0 ≤ x ≤ 1, with h = 0.005 andΔt = 0.01,
problem (a).

x

t = 1.7 t = 1.7 t = 1.7 t = 2.5 t = 2.5 t = 2.5 t = 3.25 t = 3.25 t = 3.25
Exact Numer Numer Exact Numer Numer Exact Numer Numer

Present [15] Present [15] Present [15]
0.1 0.05882 0.05882 0.05883 0.04000 0.04003 0.04000 0.03077 0.03082 0.03077
0.2 0.11765 0.11765 0.11765 0.08000 0.08000 0.08000 0.06154 0.06154 0.06154
0.3 0.17647 0.17647 0.17648 0.12000 0.12000 0.12001 0.09231 0.09231 0.09231
0.4 0.23529 0.23529 0.23531 0.16000 0.16000 0.16001 0.12308 0.12308 0.12308
0.5 0.29412 0.29412 0.29414 0.20000 0.20000 0.20001 0.15385 0.15385 0.15385
0.6 0.35294 0.35287 0.35296 0.24000 0.24000 0.24001 0.18462 0.18462 0.18462
0.7 0.00000 0.00000 0.00000 0.28000 0.28000 0.28001 0.21538 0.21538 0.21539
0.8 0.00000 0.00000 0.00000 0.00977 0.00994 0.00811 0.24615 0.24615 0.24616
0.9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.12433 0.12401 0.12358

Table 5: Comparison of errors at different times for ν = 0.005 and 0 ≤ x ≤ 1, with h = 0.01, problem (a).

Time
L2-error L2-error L∞-error L∞-error
Present [18] Present [18]
Δt = 0.01 Δt = 0.001 Δt = 0.01 Δt = 0.001

1.5 0.00019 0.00770 0.00132 0.04210
2.0 0.00018 0.01154 0.00102 0.05166
2.5 0.00017 0.01431 0.00082 0.05623
3.0 0.00016 0.01654 0.00069 0.05882
3.5 0.00019 0.01872 0.00109 0.06046
4.0 0.00035 0.02255 0.00268 0.07691

Table 6: Comparison of errors at different times for ν = 0.01 and 0 ≤ x ≤ 1, with h = 0.01, problem (a).

Time
L2-error L2-error L∞-error L∞-error
Present [18] Present [18]
Δt = 0.01 Δt = 0.001 Δt = 0.01 Δt = 0.001

1.07 0.00019 0.00207 0.00168 0.01660
1.14 0.00021 0.00333 0.00166 0.02413
1.35 0.00023 0.00613 0.00147 0.03667
1.70 0.00022 0.00938 0.00120 0.04677
2.40 0.00020 0.01376 0.00086 0.05537
3.10 0.00021 0.01689 0.00074 0.05906
3.24 0.00022 0.01746 0.00089 0.05955
3.31 0.00023 0.01775 0.00096 0.05977

Table 7: Comparison of L2 × 103 at different times for 0 ≤ x ≤ 30, with h = 0.1, and Δt = 0.025, problem (b).

t = 2 t = 4 t = 6 t = 8 t = 10 ν

Present 0.002 0.003 0.003 0.004 0.004 1/2
[9] 0.006 0.010 0.014 0.022 0.043 1/2
Present 0.032 0.036 0.038 0.038 0.038 1/8
[9] 0.228 0.227 0.227 0.227 0.226 1/8
Present 0.431 0.433 0.433 0.433 0.433 1/24
[9] 3.431 3.426 3.426 3.426 3.429 1/24
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Table 8: Comparison of L∞ × 103 at different times for 0 ≤ x ≤ 30, with h = 0.1, and Δt = 0.025, problem
(b).

t = 2 t = 4 t = 6 t = 8 t = 10 ν

Present 0.001 0.002 0.002 0.003 0.003 1/2
[9] 0.004 0.006 0.007 0.017 0.045 1/2
Present 0.044 0.049 0.050 0.051 0.051 1/8
[9] 0.346 0.339 0.340 0.347 0.356 1/8
Present 0.937 0.939 0.939 0.939 0.939 1/24
[9] 4.340 4.336 4.363 4.402 4.432 1/24

Table 9: Comparison of results for various numerical schemes with exact at time t = 0.5, for ν = 0.01.

x

SGA [10] PAG [10] ML [9] CSCM [14] CSCM [15] Present
Exacth = 1/18 h = 1/18 h = 1/36 h = 1/36 h = 1/36 h = 1/36

Δt = .001 Δt = .001 Δt = .025 Δt = .025 Δt = .025 Δt = .025
.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.056 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.111 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.167 1.000 1.000 1.000 1.000 1.000 1.000 1.000
.222 0.998 0.999 1.000 1.000 1.000 1.000 1.000
.278 0.991 0.997 0.998 0.999 0.999 0.999 0.998
.333 0.970 0.982 0.985 0.985 0.986 0.986 0.980
.389 0.862 0.850 0.851 0.847 0.850 0.850 0.847
.444 0.461 0.444 0.447 0.452 0.448 0.448 0.452
.500 0.159 0.171 0.238 0.238 0.236 0.238 0.238
.556 0.300 0.286 0.205 0.204 0.204 0.204 0.204
.611 0.194 0.197 0.201 0.200 0.200 0.200 0.200
.667 0.213 0.211 0.200 0.200 0.200 0.200 0.200
.722 0.211 0.210 0.200 0.200 0.200 0.200 0.200
.778 0.188 0.190 0.200 0.200 0.200 0.200 0.200
.833 0.201 0.207 0.200 0.200 0.200 0.200 0.200
.889 0.191 0.193 0.200 0.200 0.200 0.200 0.200
.944 0.203 0.202 0.200 0.200 0.200 0.200 0.200
1.00 0.200 0.200 0.200 0.200 0.200 0.200 0.200

For ν = 1/2, a very weak shock wave develops, when ν = 1/8, we obtain a moderate
shock wave and when ν = 1/24, a strong shock wave is produced. As the value of ν is
decreased the propagation front becomes steeper. The L2- and L∞- error norms for these
simulations with the corresponding errors obtained by [9], are given in Tables 7 and 8. For
large values of ν the errors are small and as the value of ν is decreased the errors tend to
increase, but for the values of ν used here, the errors are still acceptable. From Tables 7 and 8,
we deduce that the errors computed by the present algorithm are more accurate than those
evaluated by [9] at different times. Figure 3 shows us the behavior of the numerical solutions
for viscosity coefficients ν = 1/24, at different times from t = 0 to 10.
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(c) A third test example, consider the particular analytic solution of Burgers’ equation
[8, 10]

u(x, t) =

[
α + μ +

(
α − μ

)
exp

(
η
)]

1 + exp
(
η
) , 0 ≤ x ≤ 1, t ≥ 0, (6.4)

where η = α(x − μt − β)/ν, α, μ, and β are constants.
The comparison can be made with [8–10, 14, 15], these constants are chosen to have

the values α = 0.4, β = 0.125, μ = 0.6, and ν = 0.01. The initial condition is obtained from (6.4),
when t = 0. The boundary conditions are taken as

u(0, t) = 1, (1, t) = 0.2, t ≥ 0. (6.5)

From Figure 4, it can be seen that the solution represents a travelling wave, initially
situated at x = β, moving to the right with speed μ. The present method behaves very
well until the wave encounters the right-hand boundary. The numerical results at t = 0.5
are compared with the analytic solution, and the results presented in papers [8–10, 14, 15],
known as methods of method of lines (ML), standard Galerkin approach (SGA), product
approximation Galerkin method (PAG), cubic B-spline collocation method (CSCM), and a
numerical solution of Burgers’ equation using cubic B-spline (CSCM), are given in Table 9. It
is seen from Table 9 that the agreement between the numerical and the exact solution appears
very satisfactorily.

7. Conclusions

We have seen that the algorithm proposed here using Galerkins’ method with cubic spline
shape functions compares well in the accuracy with the other published methods, such as
methods of lines, standard Galerkin approach, product approximation Galerkin method,
and cubic B-spline collocation method. The L2- and L∞- error norms are satisfactorily small
during the simulations. A linear stability analysis based on the Von Neumann theory shows
that the numerical scheme is unconditionally stable. We conclude that a finite element
approach based on Galerkins’ method with cubic spline shape functions is eminently suitable
for the computation of solutions to Burgers’ equation. We believe that the approach should
be suitable for other applications where the continuity of derivatives is essential.
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